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Uniform finite difference methods are constructed via nonstandard finite difference methods
for the numerical solution of singularly perturbed quasilinear initial value problem for delay
differential equations. A numerical method is constructed for this problem which involves the
appropriate Bakhvalov meshes on each time subinterval. The method is shown to be uniformly
convergent with respect to the perturbation parameter. A numerical example is solved using the
presented method, and the computed result is compared with exact solution of the problem.

1. Introduction

Delay differential equations are used to model a large variety of practical phenomena in
the biosciences, engineering and control theory, and in many other areas of science and
technology, in which the time evolution depends not only on present states but also on states
at or near a given time in the past (see, e.g., [1–4]). If we restrict the class of delay differential
equations to a class in which the highest derivative is multiplied by a small parameter,
then it is said to be a singularly perturbed delay differential equation. Such problems arise
in the mathematical modeling of various practical phenomena, for example, in population
dynamics [4], the study of bistable devices [5], description of the human pupil-light reflex
[6], and variational problems in control theory [7]. In the direction of numerical study of
singularly perturbed delay differential equation, much can be seen in [8–16].

The numerical analysis of singular perturbation cases has always been far from trivial
because of the boundary layer behavior of the solution. Such problems undergo rapid
changes within very thin layers near the boundary or inside the problem domain. It is well
known that standard numerical methods for solving singular perturbation problems do not
give a satisfactory result when the perturbation parameter is sufficiently small. Therefore, it is
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important to develop suitable numerical methods for these problems, whose accuracy does
not depend on the perturbation parameter, that is, methods that are uniformly convergent
with respect to the perturbation parameter [17–20].

In order to construct parameter-uniform numerical methods for singularly perturbed
differential equations, two different techniques are applied. Firstly, the fitted operator
approach [20]which has coefficients of exponential type adapted to the singular perturbation
problems. Secondly, the special mesh approach [19], which constructs meshes adapted to the
solution of the problem.

The work contained in this paper falls under the second category. We use the
nonstandard finite difference methods originally developed by Bakhvalov for some other
problems. One of the simplest ways to derive suchmethods consists of using a class of special
meshes (such as Bakhvalov meshes; see, e.g., [18–24]), which is constructed a priori and
depend on the perturbation parameter, the problem data, and the number of corresponding
mesh points.

In this paper, we study the following singularly perturbed delay differential problem
in the interval I = [0,T]:

εu′(t) + a(t)u(t) = f(t, u(t − r)), t ∈ I, (1.1)

u(t) = ϕ(t), t ∈ I0, (1.2)

where I = (0, T] =
⋃m

p=1 Ip, Ip = {t : rp−1 < t ≤ rp}, 1 ≤ p ≤ m, and rs = sr, for 0 ≤ s ≤ m
and I0 = (−r, 0]. 0 < ε ≤ 1 is the perturbation parameter, and r > 0 is a constant delay, which
is independent of ε. a(t), ϕ(t), and f(t, v) are given sufficiently smooth functions satisfying
certain regularity conditions in I and I × R, respectively moreover

a(t) ≥ α > 0,
∣
∣
∣
∣
∂f

∂v

∣
∣
∣
∣ ≤ M < ∞. (1.3)

The solution, u(t), displays in general boundary layers on the right side of each point t =
rs(0 ≤ s ≤ m) for small values of ε.

In the present paper we discretize (1.1)-(1.2) using a numerical method which is
composed of an implicit finite difference scheme on special Bakhvalov meshes for the
numerical solution on each timesubinterval. In Section 2, we state some important properties
of the exact solution. In Section 3, we describe the finite difference discretization and
introduce Bakhvalov-Shishkin mesh and Bakhvalov mesh. In Section 4, we present the
error analysis for the approximate solution. Uniform convergence is proved in the discrete
maximum norm. In Section 5, a test example is considered and a comparison of the numerical
and exact solutions is presented.

In the works of Amiraliyev and Erdogan [9], special meshes (Shishkin mesh) have
been used. The method that we propose in this paper uses Bakhvalov-type meshes.

Throughout the paper, C denotes a generic positive constant independent of ε and the
mesh parameter. Some specific, fixed constants of this kind are indicated by subscripting C.
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2. The Continuous Problem

Before defining the mesh and the finite difference scheme, we show some results about
the behavior with respect to the perturbation parameter of the exact solution of problem
(1.1)-(1.2) and its derivatives, which we will use in later section for the analysis of an
appropriate numerical solution. For any continuous function g(t), ‖g‖∞ denotes a continuous
maximum norm on the corresponding closed interval I; in particular we will use ‖g‖∞,p =
maxIp |g(x)|, 0 ≤ p ≤ m.

Lemma 2.1. The solution u(t) of the problem (1.1)-(1.2) satisfies the following estimates:

‖u‖∞,p ≤ Cp, 1 ≤ p ≤ m, (2.1)

where

Cp =
∥
∥ϕ

∥
∥
∞,0

(
1 + α−1M

)p
+ α−1

p∑

s=1

(
1 + α−1M

)p−s
‖F‖∞,p, p = 1, 2, . . . , m,

F(t) = f(t, 0),

(2.2)

∣
∣u′∣∣ ≤ C

⎧
⎨

⎩
1 +

(
t − rp−1

)p−1

εp
exp

(

−α
(
t − rp−1

)

ε

)⎫
⎬

⎭
, t ∈ Ip, 1 ≤ p ≤ m, (2.3)

provided

∣
∣
∣
∣
∂f

∂t

∣
∣
∣
∣ ≤ C, for t ∈ I, |v| ≤ C0, (2.4)

where

C0 =
∥
∥ϕ

∥
∥
∞,0

(
1 + α−1M

)m
+ α−1‖F‖∞,I

{(
1 + α−1M

)m−1}
. (2.5)

Proof. The quasilinear equation (1.1) can be written in the form

εu′(t) + a(t)u(t) + b(t)u(t − r) = F(t), t ∈ I, (2.6)

where

b(t) = −∂f
∂v

(t, ṽ),

ṽ = γu(t − r)
(
0 < γ < 1

)
-intermediate values.

(2.7)
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Applying the maximum principle on Ip gives

‖u‖∞,p ≤ ∣
∣u
(
rp−1

)∣
∣ + α−1

(
‖b‖∞,p‖u‖∞,p−1 + ‖F‖∞,p

)

≤
(
1 + α−1M

)
‖u‖∞,p−1 + α−1‖F‖∞,p,

(2.8)

which implies the first-order difference inequality

wp ≤ μwp−1 + ψp, (2.9)

with

wp = ‖u‖∞,p, μ = 1 + α−1M, ψp = α−1‖F‖∞,p. (2.10)

From the last inequality, it follows that

wp ≤ w0μ
p +

p∑

s=1

μp−sψs (2.11)

which proves (2.1).
Now we prove (2.3). The proof is verified by induction. For p = 1. it is known that

∣
∣u′(t)

∣
∣ ≤ C

{

1 +
1
ε
exp

(

−αt
ε

)}

. (2.12)

Now, let (2.3) hold true for p = k. Differentiating (1.1), we have the relation for p = k+1

εu′′(t) + a(t)u′(t) = g(t), t ∈ Ik+1, (2.13)

where

g(t) = −u(t)∂a
∂t

+
∂f

∂t
(t, u(t − r)) +

∂f

∂v
(t, u(t − r))u′(t − r). (2.14)

Then, from (2.13)we have the following relation for u′(t):

u′(t) = u′(rk) exp

(

−1
ε

∫ t

rk

a(s)ds

)

+
1
ε

∫ t

rk

g(τ) exp

(

−1
ε

∫ t

τ

a(s)ds

)

dτ. (2.15)

Using the estimate (2.3) for p = k and t = tk, we have

∣
∣u′(rk)

∣
∣ ≤ C

{

1 +
rk−1

εk
exp

(

−αr
ε

)}

. (2.16)
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Hence,

∣
∣u′(rk)

∣
∣ ≤ C, k ≥ 1. (2.17)

Furthermore, using now (2.3) for p = k, we get

∣
∣g(t)

∣
∣ ≤

∣
∣
∣
∣u(t)

∂a

∂t

∣
∣
∣
∣ +

∣
∣
∣
∣
∂f

∂t
(t, u(t − r))

∣
∣
∣
∣ +

∣
∣
∣
∣
∂f

∂v
(t, u(t − r))

∣
∣
∣
∣
∣
∣
(
u′(t − r)

)∣
∣

≤ C
(
1 +

∣
∣u′(t − r)

∣
∣
)

≤ C

{

1 +
(t − rk)k−1

εk
exp

(

−α(t − rk)
ε

)}

.

(2.18)

Taking into account (2.17) and (2.18) in (2.15), we have

∣
∣u′(t)

∣
∣ ≤ C exp

(−α(t − rk)
ε

)

+
1
ε
C

∫ t

rk

(

1 +
(τ − rk)k−1

εk
exp

(−α(τ − rk)
ε

))

exp
(−α(t − τ)

ε

)

dτ

≤ C + C
t − rk
ε

α−1ε
(

1 − exp
(

−α(t − rk)
ε

))

+
1
ε
C exp

(

−α(t − rk)
ε

)
(t − rk)k

kεk

≤ C

{

1 +
(t − rk)k

εk+1
exp

(−α(t − rk)
ε

)}

, t ∈ Ik+1,

(2.19)

which proves (2.3).

3. Discretization and Mesh

Let ωN0 be any nonuniform mesh on I

ωN0 = {0 = t0 < t1 < · · · < tN0 = T, τi = ti − ti−1} (3.1)

which contains byN mesh point at each subinterval Ip(1 ≤ p ≤ m)

ωN,p =
{
ti :

(
p − 1

)
N + 1 ≤ i ≤ pN

}
, 1 ≤ p ≤ m, (3.2)
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and consequently,

ωN0 =
m⋃

p=1

ωN,p. (3.3)

To simplify the notation, we set gi = g(ti) for any function g(t); moreover, yi denotes
an approximation of u(t) at ti. For any mesh function {wi} defined on ωN0 , we use

wt,i =
(wi −wi−1)

τi
,

‖w‖∞,N,p = ‖w‖∞,ωN,p
:= max

(p−1)N≤i≤pN
|wi|, 1 ≤ p ≤ m.

(3.4)

For the difference approximation to (1.1), we integrate (1.1) over (ti−1, ti)

εut,i + τ−1
∫ ti

ti−1
a(t)u(t)dt = τ−1

∫ ti

ti−1
f(t, u(t − r))dt, (3.5)

which yields the relation

εut,i + aiui + Ri = f(ti, ui−N), 1 ≤ i ≤ N0, (3.6)

with the local truncation error

Ri = − τ−1i

∫ ti

ti−1

{

(t − ti−1)
d

dt
(a(t)u(t))

}

dt

− τ−1i

∫ ti

ti−1

{

(ti−1 − t)
d

dt
f(t, u(t − r))

}

dt.

(3.7)

As a consequence of (3.6), we propose the following difference scheme for
approximation to (1.1)-(1.2):

εyt,i + aiyi = f(ti, ui−N), 1 ≤ i ≤ N0,

yi = ϕi, −N ≤ i ≤ 0.
(3.8)

We consider two special discretization meshes, both dense in the boundary layer. We
illustrate that the essential idea of Bakhvalov [21] by constructing special nonuniformmeshes
and has been combined with various difference schemes in numerous papers [22, 23].
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3.1. Bakhvalov-Shishkin Mesh

Let us introduce a non-uniform mesh ωN,p which will be generated as follows. For the even
numberN, the non-uniformmeshωN,p divides each of the interval [rp−1, σp] and [σp, rp] into
N/2 subintervals, where the transition point σp, which separates the fine and coarse portions
of the mesh is defined by

σp = rp−1 + α−1θpε lnN, 1 ≤ p ≤ m, (3.9)

where θ1 ≥ 1 and θp > 1 (2 ≤ p ≤ m) are some constants. We will assume throughout the
paper that ε ≤ N−1, as is generally the case in practice.

Hence, if τp denote the step sizes in [σp, rp], we have

τp = 2
(
rp − σp

)
N−1, 1 ≤ p ≤ m. (3.10)

The corresponding mesh points are

ti =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rp−1 − α−1θp ε ln

[

1 −
(
1 −N−1)2i

N

]

, i =
(
p − 1

)
N, . . . ,

(

p − 1
2

)

N,

σp +
(

i − N

2

)

τp, i =
(

p − 1
2

)

N + 1, . . . , pN, 1 ≤ p ≤ m.

(3.11)

3.2. Bakhvalov Mesh

In order the difference scheme (3.8), to be ε-uniform convergent, wewill use the fitted form of
ωN,p. This is a special non-uniformmeshwhich is condensed in the boundary layer. The fitted
special non-uniform mesh ωN,p on the interval [rp−1, rp] is formed by dividing the interval
into two subintervals [rp−1, σp] and [σp, rp], where

σp = rp−1 − α−1θp ε ln ε, 1 ≤ p ≤ m. (3.12)

In practice one usually has σp ≤ rp. So, the mesh is fine on [rp−1, σp] and coarse on
[σp, rp]. The corresponding mesh points are

ti =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rp−1 − α−1θp ε ln
[

1 − (1 − ε)2i
N

]

, i =
(
p − 1

)
N, . . . ,

(

p − 1
2

)

N,

σp +
(

i − N

2

)

τp, i =
(

p − 1
2

)

N + 1, . . . , pN, 1 ≤ p ≤ m.

(3.13)
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4. Stability and Convergence Analysis

To investigate the convergence of the method, note that the error function zi = yi − ui, 0 ≤ i ≤
N0, is the solution of the discrete problem

εzt,i + aizi + Ri = f
(
ti, yi−N

) − f(ti, ui−N), 1 ≤ i ≤ N0,

zi = ϕi, −N ≤ i ≤ 0,
(4.1)

where the truncation error Ri is given by (3.7).

Lemma 4.1. Let yi be an approximate solution of (1.1)-(1.2). Then, the following estimate holds

∥
∥y

∥
∥
∞,ωN,p

≤ ∥
∥ϕ

∥
∥
∞,ωN,0

(
1 + α−1M

)p
+ α−1

p∑

k=1

∥
∥f

∥
∥
∞,ωN,k

(
1 + α−1M

)p−1
, 1 ≤ p ≤ m. (4.2)

Proof. The proof follows easily by induction in p, by analogy with differential case.

Lemma 4.2. Let zi be the solution of (4.1). Then, the following estimate holds:

‖z‖∞,N,p ≤ C
p∑

k=1

‖R‖∞,ωN,k
, 1 ≤ p ≤ m. (4.3)

Proof. It evidently follows from (4.2) by taking ϕ ≡ 0 and f ≡ R.

Lemma 4.3. Under the above assumptions of Section 1 and Lemma 2.1, for the error function Ri, the
following estimate holds:

‖R‖∞,ωN,p ≤ CN−1, 1 ≤ p ≤ m. (4.4)

Proof. From explicit expression (3.7) for Ri, on an arbitrary mesh, we have

|Ri| ≤ τ−1i

∫ ti

ti−1
(t − ti−1)

∣
∣
∣
∣
d

dt

(
a(t)u(t) − f(t, u(t − r))

)
∣
∣
∣
∣dt, 1 ≤ i ≤ N0. (4.5)

This inequality together with (2.1) enables us to write

|Ri| ≤ C

{

τi +
∫ ti

ti−1

(∣
∣u′(t)

∣
∣ +

∣
∣u′(t − r)

∣
∣
)
dt

}

, 1 ≤ i ≤ N0. (4.6)
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From here, in view of (2.3), it follows that

|Ri| ≤ C

{

τi +
1
ε

∫ ti

ti−1
e−αt/εdt

}

, for 1 ≤ i ≤ N, (4.7)

|Ri| ≤ C

⎧
⎨

⎩
τi +

∫ ti

ti−1

(
t − rp−1

)p−1

εp
e−α(t−rp−1)/εdt +

∫ ti

ti−1

(
t − rp−1

)p−2

εp−1
e−α(t−rp−1)/εdt

⎫
⎬

⎭
,

for ti ∈ Ip
(
p > 1

)
.

(4.8)

Applying the inequality xke−x ≤ Ce−γx, 0 < γ < 1, x ∈ [0,∞) to (4.7), we deduce

|Ri| ≤ C

{

τi +
1
ε

∫ ti

ti−1
e−α(t−rp−1)/θpεdt

}

, for ti ∈ Ip, θp > 1, p > 1. (4.9)

Combining (4.7) and (4.9), we can write

|Ri| ≤ C

{

τi +
1
ε

∫ ti

ti−1
e−α(t−rp−1)/θpεdt

}

, for ti ∈ Ip, p = 1, 2, . . . , m, θ1 ≥ 1, θp > 1
(
p ≥ 2

)

(4.10)

where

τi = τp,

(

p − 1
2

)

N + 1 ≤ i ≤ pN. (4.11)

At each submesh ωN,p, we estimate the truncation error Ri for Bakhvalov-Shishkin
mesh as follows. We estimate Ri on [rp−1, σp] and [σp, rp] separately. We consider that ti ∈
[σp, rp]. We obtain from (4.10) that

|Ri| ≤ C
{
τp + α−1θp

(
e−α(ti−1−rp−1)/θpε − e−α(ti−rp−1)/θpε

)}

= C
{
τp + α−1θpN−1e−α(i−1−(p−1/2)N)τp/θpε

(
1 − e−ατp/θpε

)}
.

(4.12)

This implies that

|Ri| ≤ CN−1. (4.13)

On the other hand, in the layer region [rp−1, σp], (4.10) becomes

|Ri| ≤ C
{
τi + α−1θp

(
e−α(ti−1−rp−1)/θpε − e−α(ti−rp−1)/θpε

)}
. (4.14)
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Hereby, since

τi = ti − ti−1

= α−1θpε

{

− ln

[

1 −
(
1 −N−1)2i

N

]

+ ln

[

1 −
(
1 −N−1)2(i − 1)

N

]}

≤ 2α−1θpε
(
1 −N−1

)
≤ CN−1,

(4.15)

e−αti−1/ε − e−αti/ε = 2
(
1 −N−1

)
N−1 (4.16)

then

|Ri| ≤ 4α−1θpCN−1,
(
p − 1

)
N ≤ i ≤

(

p − 1
2

)

N, 1 ≤ p ≤ m. (4.17)

We estimate the truncation error Ri for Bakhvalov mesh as follows. We consider first
ti ∈ [σp, rp]. In [σp, rp]; that is, outside the layer |u′(t)| ≤ C and |u′(t − r)| ≤ C(ε−pe−αt/ε ≤ 1) by
(2.1) and (4.7). Hereby, we get from (4.7) and (4.10) that

|Ri| ≤ Cτi,
(
p − 1

)
N ≤ i ≤

(

p − 1
2

)

N. (4.18)

Hence,

|Ri| ≤ 2CrN−1,
(
p − 1

)
N ≤ i ≤

(

p − 1
2

)

N. (4.19)

Next, we estimate Ri for [rp−1, σp].
Since

τi = ti − ti−1

= α−1θpε
{

− ln
[

1 − (1 − ε)2i
N

]

+ ln
[

1 − (1 − ε)2(i − 1)
N

]}

≤ 2α−1θp(1 − ε)N−1,

(4.20)

e−αti−1/ε − e−αti/ε = 2(1 − ε)N−1, (4.21)

recalling that ε ≤ N−1, it then follows from (4.12) that

|Ri| ≤ 4α−1θpCN−1. (4.22)

Thus, the proof is completed.

Combining the previous lemmas gives us the following convergence result.
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Table 1: Maximum Errors and Rates of Convergence for the Bakhvalov-Shishkin Mesh on ωN,1.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−2 0.00978429 0.00493577 0.00247899 0.00124229 0.00062184
0.987 0.993 0.996 0.998

2−4 0.016348 0.00831665 0.0041954 0.00210714 0.00105595
0.975 0.987 0.993 0.996

2−6 0.0230541 0.0118195 0.00598914 0.00301454 0.00151234
0.963 0.980 0.990 0.995

2−8 0.0298948 0.0154465 0.00785801 0.00396404 0.00199094
0.952 0.975 0.987 0.993

2−10 0.0366571 0.0190685 0.0097511 0.00492979 0.00247866
0.942 0.967 0.984 0.991

2−12 0.0432959 0.022705 0.0116405 0.00589844 0.00296889
0.931 0.963 0.980 0.990

2−14 0.0493475 0.0262615 0.0135164 0.00686448 0.00345923
0.911 0.958 0.977 0.988

2−16 0.0560001 0.0297789 0.0153866 0.00782756 0.00394867
0.911 0.52 0.975 0.987

Theorem 4.4. Let u be the solution of (1.1)-(1.2), and let y be the solution of (3.8). Then, for both
meshes the following estimate holds:

∥
∥y − u

∥
∥
∞,ωN,p

≤ CN−1, 1 ≤ p ≤ m, (4.23)

where C is a constant independent ofN and ε.

5. Numerical Results

We begin with an example from Driver [2] for which we possess the exact solution

εu′(t) + u(t) = u(t − 1), t ∈ [0, T],

u(t) = 1 + t, −1 ≤ t ≤ 0.
(5.1)

The exact solution for 0 ≤ t ≤ 2 is given by

u(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ε + t + (1 + ε)e−t/ε, t ∈ [0, 1],

−1 − 2ε + t + (1 + ε)e−t/ε +
[

ε − 1
ε
+
(

1 +
1
ε

)

t

]

e(1−t)/ε, t ∈ (1, 2].

(5.2)
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Table 2: Maximum Errors and Rates of Convergence for the Bakhvalov-Shishkin Mesh on ωN,2.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−2 0.0120441 0.00609088 0.00306261 0.00153567 0.00076893
0.983 0.991 0.995 0.997

2−4 0.0204344 0.0106567 0.00542574 0.0027399 0.00137664
0.939 0.973 0.985 0.992

2−6 0.0206243 0.0123374 0.00663473 0.00346693 0.00178218
0.741 0.894 0.936 0.960

2−8 0.0251094 0.0129806 0.00660313 0.00346667 0.00192158
0.951 0.975 0.929 0.951

2−10 0.0308922 0.0160402 0.00819434 0.00414173 0.00208219
0.945 0.968 0.992 0.996

2−12 0.0358208 0.0190729 0.00978373 0.00495569 0.00249403
0.909 0.963 0.981 0.990

2−14 0.0418982 0.0220722 0.0113657 0.00576776 0.00290598
0.924 0.957 0.978 0.988

2−16 0.0471824 0.0250121 0.0129303 0.00657754 0.0033174
0.915 0.951 0.975 0.987

Table 3:Maximum Errors and Rates of Convergence for the Bakhvalov Mesh on ωN,1.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−2 0.0140074 0.00709303 0.00356936 0.00179046 0.000896684
0.987 0.993 0.996 0.998

2−4 0.0241181 0.0143603 0.00831665 0.00471467 0.00263101
0.975 0.987 0.993 0.996

2−6 0.0230541 0.0137267 0.00794974 0.00450667 0.00251493
0.963 0.980 0.990 0.995

2−8 0.0227881 0.0135684 0.00785801 0.00445467 0.00248591
0.952 0.975 0.987 0.993

2−10 0.0227216 0.0135288 0.00783508 0.00444167 0.00247866
0.942 0.967 0.984 0.991

2−12 0.0227050 0.0135189 0.00782935 0.00443842 0.00247684
0.931 0.963 0.980 0.990

2−14 0.0227008 0.0135164 0.0782791 0.00443761 0.00247639
0.911 0.958 0.977 0.988

2−16 0.0226998 0.0135158 0.00782756 0.0044374 0.00247628
0.911 0.52 0.975 0.987

We define the computed parameter-uniform maximum error eN,p
ε as follows:

e
N,p
ε =

∥
∥y − u

∥
∥
∞,ωN,p

, p = 1, 2, (5.3)
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Table 4:Maximum Errors and Rates of Convergence for the Bakhvalov Mesh on ωN,2.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−2 0.0121386 0.00613925 0.00308755 0.00154829 0.000775281
0.983 0.991 0.995 0.997

2−4 0.0202600 0.0120754 0.00698853 0.00396095 0.00221017
0.939 0.973 0.985 0.992

2−6 0.0206243 0.0115426 0.00668021 0.0037862 0.00211266
0.741 0.894 0.936 0.960

2−8 0.0191427 0.0114094 0.00660313 0.00374251 0.00208828
0.951 0.975 0.929 0.951

2−10 0.0190868 0.0113761 0.00658386 0.00373159 0.00208219
0.945 0.968 0.992 0.996

2−12 0.0190729 0.0113678 0.00657904 0.00372886 0.00208066
0.909 0.963 0.981 0.990

2−14 0.0190694 0.0113657 0.0657784 0.00372817 0.00208028
0.924 0.957 0.978 0.988

2−16 0.0190685 0.0113652 0.00657754 0.003728 0.00208019
0.915 0.951 0.975 0.987

where y is the numerical approximation to u for various values of N, ε. We also define the
computed parameter-uniform rate of convergence to be

rN,p =
ln
(
eN,p/e2N,p

)

ln 2
, p = 1, 2. (5.4)

The values of ε for which we solve the test problem are ε = 2−i, i = 2, 4, . . . , 16. Tables 1, 2, 3,
and 4 verify the ε-uniform convergence of the numerical solution on both subintervals, and
computed rates are essentially in agreement with our theoretical analysis.
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