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Global phase synchronization for a class of dynamical complex networks composed of multiinput
multioutput pendulum-like systems with time-varying coupling delays is investigated. The
problem of the global phase synchronization for the complex networks is equivalent to the problem
of the asymptotical stability for the corresponding error dynamical networks. For reducing the
conservation, no linearization technique is involved, but by Kronecker product, the problem
of the asymptotical stability of the high dimensional error dynamical networks is reduced to
the same problem of a class of low dimensional error systems. The delay-dependent criteria
guaranteeing global asymptotical stability for the error dynamical complex networks in terms
of Liner Matrix Inequalities (LMIs) are derived based on free-weighting matrices technique and
Lyapunov function. According to the convex characterization, a simple criterion is proposed. A
numerical example is provided to demonstrate the effectiveness of the proposed results.

1. Introduction

Over the recent decades, dynamical complex networks are increasingly used to model a
variety of phenomena of nature in power system, biological system, traffic system, and so
on [1]. Many of these networks exhibit complexity in the overall topological properties and
dynamical properties of the network nodes and the coupled units. The complex nature of the
networks has resulted in a series of important research problems. In particular, one significant
and interesting phenomenon is the synchronization of all its dynamics.

The pendulum-like system is a special kind of nonlinear system with periodic
nonlinearity and multiple equilibria [2]. In practical engineering, there are many kinds
of nonlinear pendulum-like system, such as phase-locked loops and various synchronous
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machines. With the development of the modern industry and control technique, all kinds of
rotating electrical machines play more and more important roles in industry. Therefore, the
pendulum-like system is worth being researched not only of academic significant, but also of
practical value.

Recently, the coupled pendulum-like systems attract more and more researchers’
attentions. Anticipating synchronization in a class of nonlinear dynamical systems is
investigated in [3]. In [4], the global asymptotical stability and generalized synchronization
of phase synchronous dynamical networks composed of multiinput multioutput pendulum-
like systems via linear interconnections are investigated. Of particular note is that the
global synchronization of the dynamical complex network composed of the pendulum-like
systems is different from that of the general complex networks. The global synchronization
of the dynamical complex networks composed of the pendulum-like systems is defined as
phase synchronization introduced in [4]. But all of literatures above are not involving the
coupling delays. However, time delay is unavoidably encountered, and it is the main cause
of instability and poor performance of a system. Besides, the time-varying delays should be
considered because they are more general than the constant cones. Thus, it is important and
necessary to study the global synchronization of the dynamical complex networks composed
of pendulum-like systems with time-varying coupling delays. In fact, the synchronization of
the dynamical complex networks can be transformed into the global asymptotical stability of
the corresponding error dynamical systems. In this paper, through studying the asymptotical
stability of the corresponding error dynamical networks, several criteria guaranteeing the
global phase synchronization of the dynamical network composed of multiinput multioutput
pendulum-like systems with time-varying coupling delays are given. The effectiveness of the
proved results is illustrated by a concrete example.

The rest of this paper is organized as follows. In Section 2, some preliminary results
necessary for successive development are introduced. Section 3 contains our main results. In
this section, we give some criteria guaranteeing the phase synchronization of the dynamical
complex networks composed of the multiinput multioutput pendulum-like systems with
time-varying coupling delays. The effectiveness of the proposed results is illustrated with
a numerical example given in Section 4, and a brief conclusion is given in Section 5.

The following notions are used in this paper. XT indicate the transpose for real X.
X > 0 (X < 0) means X is a Hermitian and positive (negative) definite matrix. IN , INn,
INm, In, and Im are N × N, Nn × Nn, Nm × Nm, n × n, and m × m identity matrices,
respectively. I is an identity matrix with appropriate dimension. diag{X1, . . . , XN}, U ⊗ V
are defined by

⎛
⎜⎜⎜⎝

X1 · · · 0

...
. . .

...

0 · · · Xn

⎞
⎟⎟⎟⎠, U ⊗ V =

⎛
⎜⎜⎜⎝

u11V · · · u1mV

...
. . .

...

un1V · · · unmV

⎞
⎟⎟⎟⎠. (1.1)

If not explicitly stated, matrices are assumed to have compatible dimensions.
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2. Preliminaries

The nodes that compose a class of dynamical complex network can be described by following
differential equation:

ẋi = Axi + Bϕ(σi),

σ̇i = Cxi +Dϕ(σi),
i = 1, 2, . . . ,N, (2.1)

where variables xi = (xi1, xi2, . . . , xin)
T and σi = (σi1, σi2, . . . , σim)

T denote the state variables.
A ∈ R

n×n, B ∈ R
n×m, C ∈ R

m×n, and D ∈ R
m×m are constant matrices. The continuously

differentiable vector function ϕ(σi) = (ϕ1(σi1), . . . , ϕm(σim))
T and ϕl : R → R is Δl-periodic

with finite number of zeros on the interval [0,Δl) (l = 1, . . . , m). The system equation (2.1)
with Δ-periodic σi is called a pendulum-like system.

Proposition 2.1 (see [2]). If the solution xi(t) of the pendulum-like system (2.1) is bounded, then
the functions ϕl(σil(t)) (l = 1, . . . , m), where σil(t) belongs to a solution of (2.1), are uniformly
continuous on [0,+∞].

The validity of this assertion follows from the facts that ϕl(σil(t)) is locally Lipschitz
continuous and σ̇il(t) is bounded on [0,+∞).

Lemma 2.2 (see [2]). If α : R+ → R belongs to L2[0,+∞) and β : R+ → R belongs to L2[0,+∞),
then

τ(t) =
∫ t

0
α(t − τ)β(τ)dτ −→ 0, t −→ +∞. (2.2)

Lemma 2.3 (see [2]). If f : R+ → R and is uniformly continuous and is L2[0,+∞), then

lim
t→+∞

f(t) = 0. (2.3)

3. Main Results

The dynamical complex network considered in this study is composed by N identic
pendulum-like nodes (2.1) with time-varying coupling delays, which could be described by
the following equation:

ẋi(t) = Axi(t) + Bϕ(σi(t)) +
N∑
j=1

GijΓxj(t − τ(t)),

σ̇i(t) = Cxi(t) +Dϕ(σi(t)), i = 1, 2, . . . ,N,

(3.1)

where Γ ∈ R
n×n defines the coupling between any two nodes. If node j is linked node i (i /= j)

directly, then Gij = Gji = 1; otherwise, Gij = Gji = 0 (i /= j). The row sums of G are zero, that
is,
∑n

j=1,j /= i Gij = −Gii (i = 1, . . . ,N). The matrix G = (Gij) ∈ R
n×n indicates the connection
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topology and coupling strength, and G is supposed to be irreducible. The time delay, τ(t), is
a time-varying differentiable function that satisfies

0 ≤ τ(t) ≤ h,

τ̇(t) ≤ μ,
(3.2)

where h > 0 and μ are constants.

Lemma 3.1 (Wu [5]). The eigenvalues of an irreducible matrix G = (Gij) ∈ R
N×N with∑N

j=1,j /= i Gij = −Gii (i = 1, . . . ,N) satisfy the following properties.

(i) 0 is an eigenvalue of G associated the eigenvector (1, 1, . . . , 1)T .

(ii) If Gij ≥ 0 for 1 ≤ i, j ≤ N, and i /= j, then the real parts of all eigenvalues of G are less than
or equal to 0, and all possible eigenvalues with zero part are the real eigenvalue 0. In fact, 0
is an eigenvalue of G with multiplicity 1.

There exists an orthogonal matrixU satisfyingUUT = I such thatUTGU = Λ, whereΛ
is a diagonal matrix composed of eigenvalues ofG. According to Lemma 3.1, it can be written
as the following form:

Λ = diag

⎛
⎜⎜⎝λ1, λ2, . . . , λ2︸ ︷︷ ︸

m2

, λ3, . . . , λ3︸ ︷︷ ︸
m3

, . . . , λq, . . . , λq︸ ︷︷ ︸
mq

⎞
⎟⎟⎠, (3.3)

where λ1 = 0 is the maximum eigenvalue of multiply 1, and λi is the eigenvalue of multiply
mi (i = 2, 3, . . . , q) satisfying m2 + · · · +mq = N − 1 and 0 > λ2 > λ3 > · · · > λq.

Definition 3.2 (see [4]). The dynamical complex network model (3.1) is said to achieve global
generalized phase synchronization if

lim
t→+∞

‖xi(t) − xs(t)‖2 = 0,

lim
t→+∞

‖σi(t) − σs(t)‖2 = ς,
i = 1, 2, . . . ,N. (3.4)

The sign ‖ · ‖2 here means the Euclidean norm, and ς is a constant value. (xs(t), σs(t)) is
the solution of each single node which can be equilibrium points, periodic orbits, or even
nonperiodic orbits with

ẋs = Axs + Bϕ(σs),
σ̇s = Cxs +Dϕ(σs).

(3.5)

From properties of the internal coupling matrix G given in Lemma 3.1, we know that∑N
j=1 GijΓxs(t − τ(t)) = 0, which could be added to the first equation in (3.5). By subtracting



Journal of Inequalities and Applications 5

(3.5) from (3.1), we can get the following error dynamical system

ė1i(t) = Ae1i(t)+Bφ(e2i(t), σs(t))+
N∑
j=1

GijΓe1j(t−τ(t)),

ė2i(t) = Ce1i(t)+Dφ(e2i(t), σs(t)),

i = 1, 2, . . . ,N, (3.6)

with e1i(t) = xi(t)−xs(t), e2i(t) = σi(t)−σs(t), and φ(e2i(t), σs(t)) = ϕ(e2i(t) +σs(t))−ϕ(σs(t)).
Since ϕ is a periodic function about σi, φ(e2i(t), σs(t)) also has a period of Δ. According to the
Kronecker product, system (3.6) could be written as follows:

ė1(t) = (IN ⊗A)e1(t) + (IN ⊗ B)Φ(e2(t), σ(t)) + (G ⊗ Γ)e1(t − τ(t)),

ė2(t) = (IN ⊗ C)e1(t) + (IN ⊗D)Φ(e2(t), σ(t)),
(3.7)

where

e1 =
(
eT11, . . . , e

T
1N

)T
, e2 =

(
eT21, . . . , e

T
2N

)T
,

Φ(e2(t)) =
(
φT (e21(t), σs(t)), . . . , φT (e2N(t), σs(t))

)T
.

(3.8)

Under such circumstances, system (3.7) could be regarded as a pendulum-like system
with state delay. Thus, the synchronization problem of the dynamical network (3.1) can
be transformed into the global asymptotical stability problem of the corresponding error
dynamical system.

Theorem 3.3. Suppose that there exist scalars h > 0 and μ, matrices Pi = PT
i > 0, Qi = QT

i > 0,

Ri = RT
i > 0, Eij = ET

ij > 0 (j = 1, 2), Ni = (NT
i1 NT

i2 NT
i3 NT

i4)
T
, Si = (ST

i1 ST
i2 ST

i3 ST
i4)

T
,

Mi = (MT
i1 MT

i2 MT
i3 MT

i4)
T
and diagonal matrices κi, δi, εi with δi > 0, εi > 0 such that the

following inequalities are satisfied:

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π11 Π12 Π13 Π14 CTεi hNi1 hSi1 hMi1 hAT (Ei1 + Ei2)

∗ Π22 Π23 −NT
i4 + ST

i4 0 hNi2 hSi2 hMi2 hλiΓT (Ei1 + Ei2)

∗ ∗ Π33 −ST
i4 −MT

i4 0 hNi3 hSi3 hMi3 0

∗ ∗ ∗ Π44 DTεi 0 0 0 hBT (Ei1 + Ei2)

∗ ∗ ∗ ∗ −εi 0 0 0 0

∗ ∗ ∗ ∗ ∗ −hEi1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −hEi1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −hEi2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h(Ei1 + Ei2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.9)

(
2εi κiνi

∗ 2δi

)
> 0 i = 1, 2, . . . ,N, (3.10)
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whereΠ11 = PiA +ATPi +Qi +Ri +Ni1 +NT
i1 +Mi1 +MT

i1,Π12 = PiλiΓ −Ni1 +NT
i2 + Si1 +MT

i2,
Π13 = NT

i3−Mi1+MT
i3−Si1,Π14 = PiB+NT

i4+M
T
i4+1/2C

Tκi,Π22 = −(1−μ)Qi−Ni2−NT
i2+Si2+ST

i2,
Π23 = −Si2 +ST

i3 −Mi2 −NT
i3,Π33 = −Ri −Si3 −ST

i3 −Mi3 −MT
i3,Π44 = δi + 1/2κiD + (1/2)DTκi,

νi = diag(νi1, . . . , νim) with

νil =

∫Δl

0

∫Δl

0 φl

(
yil(t), σsl(t)

)
dyil dσsl∫Δl

0

∫Δl

0

∣∣φl

(
yil(t), σsl(t)

)∣∣dyil dσsl

l = 1, 2, . . . , m, (3.11)

where y(t) = (UT ⊗ Im)e2(t) = (yT
1 (t), . . . , y

T
N(t))T , andU is a selected orthogonal matrix satisfying

UTGU = Λ, where Λ is defined as (3.3). Then the delayed pendulum-like system (3.7) with
time-varying coupling delay τ(t) satisfying (3.2) is global asymptotic, stable and the corresponding
dynamical network (3.1) achieves phase synchronization.

Proof. Recall the property of Kronecker product [6]

(M ⊗N)(G ⊗D) = (MG) ⊗ (ND), (3.12)

where M ∈ R
k×m, N ∈ R

p×s, G ∈ R
m×n, and D ∈ R

s×q. Choose an orthogonal matrix U
satisfying UTGU = Λ, where Λ is defined as the form of (3.3). Let

z(t) =
(
UT ⊗ In

)
e1(t) =

(
zT1 (t), . . . , z

T
N(t)

)T
,

y(t) =
(
UT ⊗ Im

)
e2(t) =

(
yT
1 (t), . . . , y

T
N(t)

)T
.

(3.13)

Premultiplying two formulas of (3.7) by UT ⊗ In and UT ⊗ Im, respectively, yields

ż(t) = (IN ⊗A)z(t) + (IN ⊗ B)Φ
(
y(t), σs(t)

)
+ (Λ ⊗ Γ)z(t − τ(t)),

ẏ(t) = (IN ⊗ C)z(t) + (IN ⊗D)Φ
(
y(t), σs(t)

)
,

(3.14)

yielding

żi(t) = Azi(t) + λiΓzi(t − τ(t)) + Bφ
(
yi(t), σs(t)

)
,

ẏi(t) = Czi(t) +Dφ
(
yi(t), σs(t)

)
, i = 1, 2, . . . ,N.

(3.15)

Introduce the new functions

Fl

(
yil(t)

)
= φl

(
yil(t), σsl(t)

) − νil
∣∣φl

(
yil(t), σsl(t)

)∣∣, (3.16)

therefore,

∫Δl

0
Fl

(
yil

)
dyil = 0, (3.17)
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and the function Fl has a mean value zero. We consider the following Lyapunov function:

V = V1 +
m∑
k=1

κik

∫yik

0
Fk(τ)dτ, (3.18)

where

V1 = zTi (t)Pizi(t) +
∫ t

t−τ(t)
zTi (α)Qizi(α)dα +

∫ t

t−h
zTi (α)Rizi(α)dα

+
∫0

−h

∫ t

t+θ
żTi (α)(Ei1 + Ei2)żi(α)dαdθ.

(3.19)

By the New-Leibniz formula, we have

∫ t

t−h
żi(α)dα = zi(t) − zi(t − h). (3.20)

Then, in virtue of (3.20), we have the following formulations for any matricesNi, Si,Mi with
appropriate dimensions:

Φ1 =
[
zTi (t)Ni1 + zTi (t − τ(t))Ni2 + zTi (t − h)Ni3 + φT(yi(t), σs(t)

)
Ni4

][
zi(t) − zi(t − τ(t))

−
∫ t

t−τ(t)
żi(α)dα

]
= 0,

(3.21)

Φ2 =
[
zTi (t)Si1 + zTi (t − τ(t))Si2 + zTi (t − h)Si3 + φT(yi(t), σs(t)

)
Si4

][
zi(t − τ(t)) − zi(t − h)

−
∫ t−τ(t)

t−h
żi(α)dα

]
= 0,

(3.22)

Φ3 =
[
zTi (t)Mi1 + zTi (t − τ(t))Mi2 + zTi (t − h)Mi3 + φT(yi(t), σs(t)

)
Mi4

][
zi(t) − zi(t − h)

−
∫ t

t−h
żi(α)dα

]
= 0.

(3.23)
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Calculating the derivative of V1 along the solutions of (3.15) and adding 2Φ1 from (3.21), 2Φ2

from (3.22), and 2Φ3 from (3.23) to it, we have

V̇1 = 2zTi (t)Pi

[
Azi(t) + λiΓzi(t − τ(t)) + Bφ

(
yi(t), σs(t)

)]
+ zTi (t)Qizi(t)

− (1 − τ̇(t))zTi (t − τ(t))Qizi(t − τ(t)) + zTi (t)Rizi(t) − zTi (t − h)Rizi(t − h)

+ hżTi (t)(Ei1 + Ei2)żi(t) −
∫ t

t−h
żTi (α)(Ei1 + Ei2)żi(α)dα + 2Φ1 + 2Φ2 + 2Φ3

≤ 2zTi (t)Pi

[
Azi(t) + λiΓzi(t − τ(t)) + Bφ

(
yi(t), σs(t)

)]
+ zTi (t)Qixi(t)

− (1 − μ
)
zTi (t − τ(t))Qizi(t − τ(t)) + zTi (t)Rix(t) − zTi (t − h)Rizi(t − h)

+ hżTi (t)(Ei1 + Ei2)żi(t) −
∫ t

t−h
żTi (α)(Ei1 + Ei2)żi(α)dα + 2Φ1 + 2Φ2 + 2Φ3

= ζT (t)Λ1ζ(t) + hżTi (t)(Ei1 + Ei2)żi(t) −
∫ t

t−h
żTi (α)(Ei1 + Ei2)żi(α)dα

− 2ζT (t)Ni

∫ t

t−τ(t)
żi(α)dα − 2ζT (t)Si

∫ t−τ(t)

t−h
żi(α)dα − 2ζT (t)Mi

∫ t

t−h
żi(α)dα

= ζT (t)
(
Λ1 + hAT

k(Ei1 + Ei2)Ak + τ(t)NiE
−1
i1 N

T
i + (h − τ(t))SiE

−1
i1 S

T
i + hMiE

−1
i2 M

T
i

)
ζ(t)

−
∫ t

t−τ(t)

[
ζT (t)Ni + żTi (α)Ei1

]
E−1
i1

[
NT

i ζ(t) + Ei1żi(α)
]
dα

−
∫ t−τ(t)

t−h

[
ζT (t)Si + żTi (α)Ei1

]
E−1
i1

[
ST
i ζ(t) + Ei1żi(α)

]
dα

−
∫ t

t−h

[
ζT (t)Mi + żTi (α)Ei2

]
E−1
i2

[
MT

i ζ(t) + Ei2żi(α)
]
dα

≤ ζT (t)
(
Λ1 + hAT

k(Ei1 + Ei2)Ak + hNiE
−1
i1 N

T
i + hSiE

−1
i1 S

T
i + hMiE

−1
i2 M

T
i

)
ζ(t)

−
∫ t

t−τ(t)

[
ζT (t)Ni + żTi (α)Ei1

]
E−1
i1

[
NT

i ζ(t) + Ei1żi(α)
]
dα

−
∫ t−τ(t)

t−h

[
ζT (t)Si + żTi (α)Ei1

]
E−1
i1

[
ST
i ζ(t) + Ei1żi(α)

]
dα

−
∫ t

t−h

[
ζT (t)Mi + żTi (α)Ei2

]
E−1
i2

[
MT

i ζ(t) + Ei2żi(α)
]
dα,

(3.24)
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where

ζT(t) =
[
zTi (t) zTi (t − τ(t)) zTi (t − h) φT

(
yi(t), σs(t)

)]
,

Λ1 =

⎛
⎜⎜⎜⎜⎜⎝

Λ11 Λ12 NT
i3 −Mi1 +MT

i3 − Si1 PiB +NT
i4 +MT

i4

∗ Λ22 −Si2 + ST
i3 −Mi2 −NT

i3 −NT
i4 + ST

i4

∗ ∗ −Ri − Si3 − ST
i3 −Mi3 −MT

i3 −ST
i4 −MT

i4

∗ ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎠

,

Λ11 = PiA +ATPi +Qi + Ri +Ni1 +NT
i1 +Mi1 +MT

i1,

Λ12 = PiλiΓ −Ni1 +NT
i2 + Si1 +MT

i2,

Λ22 = −(1 − μ
)
Qi −Ni2 −NT

i2 + Si2 + ST
i2,

Ak = [A λiΓ 0 B].

(3.25)

Since Eil > 0, l = 1, 2, then the last three parts are all less than 0. So if Λ1 + hAT
k(Ei1 + Ei2)Ak +

hNiE
−1
i1 N

T
i + hSiE

−1
i1 S

T
i + hMiE

−1
i2 M

T
i < 0, then V̇1 < 0.

Then,

V̇ = V̇1 +
m∑
k=1

κikFk

(
yik(t)

)
ẏik(t)

= V̇1 +
m∑
k=1

[
κikφk

(
yik(t), σsk(t)

)
ẏik(t) − κikνik

∣∣φk

(
yik(t), σsk(t)

)∣∣ẏik(t) − εikẏ
2
ik(t)

−δikφ2
k

(
yik(t), σsk(t)

)
+ εikẏ

2
ik(t) + δikφ

2
k

(
yik(t), σsk(t)

)]
.

(3.26)

In virtue of condition (3.10) of the theorem, there exist δi0k > 0 and εi0k > 0 such that

κikνik
∣∣φk

(
yik(t), σsk(t)

)∣∣ẏik(t) + εikẏ
2
ik(t) + δikφ

2
k

(
yik(t), σsk(t)

)

≥ εi0kẏ
2
ik(t) + δi0kφ

2
k

(
yik(t), σsk(t)

)
.

(3.27)

Thus, the following inequality is satisfied:

V̇ (t) +
m∑
k=1

[
εi0ky

2
ik(t) + δi0kφ

2
k

(
yik(t), σsk(t)

)]

≤ V̇1(t) +
m∑
k=1

[
κikφk

(
yik(t), σsk(t)

)
ẏik(t) + εiky

2
ik(t) + δikφ

2
ik

(
yik(t), σsk(t)

)]
.

(3.28)
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Assuming that

Υ(t) =
m∑
k=1

[
κikφk

(
yik(t), σsk(t)

)
ẏik(t) + εikσ

2
ik(t) + δikφ

2
k

(
yik(t), σsk(t)

)]
. (3.29)

substituting the second equation of (3.15) into (3.29), we have

V̇1(t) + Υ(t) ≤ ζT (t)
(
Λ1 + hAT

k(Ei1 + Ei2)Ak + hNiE
−1
i1 N

T
i + hSiE

−1
i1 S

T
i + hMiE

−1
i2 M

T
i + Λ2

)
ζ(t),

(3.30)

where

Λ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

CTεiC 0 0
1
2
CTκi + CTεiD

∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 1
2
κiD +

1
2
DTκi +DTεiD + δi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.31)

and Λ1 + hAT
k
(Ei1 + Ei2)Ak + hNiE

−1
i1 N

T
i + hSiE

−1
i1 S

T
i + hMiE

−1
i2 M

T
i + Λ2 is equivalent to Π in

(3.9) by Schur complements. The inequality condition (3.9) of the theorem guarantees that

ζT (t)
(
Λ1 + hAT

k(Ei1 + Ei2)Ak + hNiE
−1
i1 N

T
i + hSiE

−1
i1 S

T
i + hMiE

−1
i2 M

T
i + Λ2

)
ζ(t) < 0. (3.32)

Then, there exists a diagonal matrix ρi = diag(ρi1, ρi2, . . . , ρin), ρik > 0, k = 1, 2, . . . , n

ζT (t)
(
Λ1 + hAT

k(Ei1 + Ei2)Ak + hNiE
−1
i1 N

T
i + hSiE

−1
i1 S

T
i + hMiE

−1
i2 M

T
i + Λ2

)
ζ(t) < −

m∑
k=1

ρikz
2
ik,

(3.33)

namely,

V̇ (z(t), σ(t)) +
m∑
k=1

[
εi0kẏ

2
ik(t) + δi0kφ

2
k

(
yik(t), σsk(t)

)]
< −

m∑
k=1

ρikz
2
ik. (3.34)

Hence,

V (t) − V (0) ≤ −
m∑
k=1

∫ t

0

[
εi0kẏ

2
ik(t) + δi0kφ

2
k

(
yik(t), σsk(t)

)]
dt −

n∑
k=1

∫ t

0
ρikz

2
ik(t)dt, (3.35)
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for all t ≥ 0. The function V (t) is bounded because solutions zk(t) are bounded, and the
functions Fk(τ) have mean value zero. Therefore, from (3.35), we have

∫+∞

0
φ2
k

(
yik(t), σsk(t)

)
dt < +∞, (3.36)

∫+∞

0
ẏ2
ik(t)dt < +∞, (3.37)

∫+∞

0
z2ik(t)dt < +∞. (3.38)

From Proposition 2.1, it follows that the functions φ(yi(t), σs(t)) are uniformly continuous on
[0,+∞). And from (3.36) and Lemma 3.1, functions φ(yi(t), σs(t)) tend to zero as t → +∞,

lim
t→+∞

φ2
k

(
yik(t), σsk(t)

)
= 0. (3.39)

Further, we have

yik(t) −→ ŷik(t), t −→ +∞, (3.40)

where φk(ŷik(t), σsk(t)) = 0 (k = 1, 2, . . . , m). Let us now consider the the first equation of
system (3.15). We can represent zi(t) in the form

zi(t) = eAtzi(0) +
∫ t

0
eA(t−s)λiΓzi(s − τ(s))ds +

∫ t

0
eA(t−s)Bφ2

ik

(
yik(s), σs(t)

)
ds. (3.41)

From (3.36), (3.38), and Lemma 2.3, we have

lim
t→+∞

∫ t

0
eA(t−s)Bφik

(
yik(s), σs(s)

)
ds = 0,

lim
t→+∞

∫ t

0
eA(t−s)λiΓzi(s − τ(s))ds = 0.

(3.42)

Furthermore, since A is Hurwitzian, the following conclusion is obtained:

lim
t→+∞

zi(t) = 0. (3.43)

The conditions (3.40) and (3.43) show that every solution (zi(t), yi(t)) of the pendulum-like
system (3.15) converges to a certain equilibrium (zieq = 0, (yieq)l = ŷil)with φil(ŷil(t), σsl(t)) =
0 (l = 1, 2, . . . , m). Namely, the pendulum-like system (3.7) is global asymptotic stable.

Remark 3.4. It is shown from the formula (3.3) that the coupling matrix G has q different
eigenvalues. Therefore, it is just needed to examine q LMIs groups in (3.9) and (3.10). In
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addition, according to the convex properties of LMI [7], q − 3 groups of LMIs corresponding
to λ3, . . . , λq−1 can be written as a linear combination of the tow groups of LMIs with the
second-maximum λ2 and the minimum eigenvalue λq. Therefore, above criterion only needs
to examine three groups of LMIs corresponding to the largest, second largest, and the smallest
distinct eigenvalues of G, respectively. Furthermore, note that the system (3.1) with λ1 = 0
just corresponds to the synchronous manifold, which is not required to be verified. Hence, if
(3.9) and (3.10) hold for q = 2 and N, the nonlinear pendulum-like dynamical network will
achieve phase synchronization.

Corollary 3.5. Suppose that there exist scalars h > 0 and μ, matrices Pi = PT
i > 0, Qi = QT

i > 0,

Ri = RT
i > 0, Eij = ET

ij > 0 (j = 1, 2), Ni = (NT
i1 NT

i2 NT
i3 NT

i4)
T
, Si = (ST

i1 ST
i2 ST

i3 ST
i4)

T
,

Mi = (MT
i1 MT

i2 MT
i3 MT

i4)
T
and diagonal matrices κi, δi, εi with δi > 0, εi > 0, such that the

following inequalities are satisfied:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π11 Π12 Π13 Π14 CTεi hNi1 hSi1 hMi1 hAT (Ei1 + Ei2)

∗ Π22 Π23 −NT
i4 + ST

i4 0 hNi2 hSi2 hMi2 hλiΓT (Ei1 + Ei2)

∗ ∗ Π33 −ST
i4 −MT

i4 0 hNi3 hSi3 hMi3 0

∗ ∗ ∗ Π44 DTεi 0 0 0 hBT (Ei1 + Ei2)

∗ ∗ ∗ ∗ −εi 0 0 0 0

∗ ∗ ∗ ∗ ∗ −hEi1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −hEi1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −hEi2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h(Ei1 + Ei2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(
2εi κiνi

∗ 2δi

)
> 0 i = 2, q,

(3.44)

whereΠ11 = PiA +ATPi +Qi +Ri +Ni1 +NT
i1 +Mi1 +MT

i1,Π12 = λiPiΓ −Ni1 +NT
i2 + Si1 +MT

i2,
Π13 = NT

i3−Mi1+MT
i3−Si1,Π14 = PiB+NT

i4+M
T
i4+(1/2)C

Tκi,Π22 = −(1−μ)Qi−Ni2−NT
i2+Si2+ST

i2,
Π23 = −Si2 +ST

i3 −Mi2 −NT
i3,Π33 = −Ri −Si3 −ST

i3 −Mi3 −MT
i3,Π44 = δi +(1/2)κiD+(1/2)DTκi,

and νi defined as the Theorem 3.3. Then, the dynamical network (3.1) with time-varying coupling
delay τ(t) satisfying (3.2) achieves phase synchronization.

4. Numerical Example

The example given in this section is based on concrete systems studied in the theory of
interconnected phase-locked loops (PLLs), which are frequently observed in electrical and
engineering aspects. PLL could be treated as a representative for pendulum-like system,
where model is described by (2.1) after certain simplifications [8].
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Figure 1: Simulation of each PLL node: x1, x2, and σ and the phase plot between x1, x2, and σ.

The dynamical complex network (3.1) is composed of third-order PLL nodes with the
following parameters:

A =

[−1 −2
5 1

]
, B =

[
1

4

]
, C =

[−2 2
]
, D = 3 , (4.1)

and the nonlinear function ϕ(σi) = sin(σi). The network topology parameters in (4.1) are
picked as

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 1

1 −2 1 0 0

0 1 −2 1 0

0 1 1 −3 1

1 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.2)
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Figure 2: The error variations in (4.1): e1j1 = x11 − xj1; e1j2 = x12 − xj2; e2j = σ1 − σj , and j = 2, . . . , 5.

Assume that the inner-coupling matrix is Γ = diag{1, 1, 1, 1, 1}. Eigenvalues of the coupling
matrix G can be calculated as

λ1 = 0, λ2 = −1.382, λ3 = −2, λ4 = −3.618, λ5 = −4. (4.3)

The chaotic phenomenon of the state variables x1 and x2 of the single PLL node is shown in
Figure 1. It is also observed that the phase variable σ is unbounded, so there is no chaotic
phenomenon about σ in plane phase space. However, chaotic phenomenon appears on the
cylindrical surface of cylindrical phase space. This peculiar phenomenon to pendulum-like
system is called the chaos on cylindrical surface [9, 10]. Although the global asymptotical
stability of pendulum-like system network model (4.1)may not be ensured, the global phase
synchronization could be achieved. According to Corollary 3.5, when h = 0.2, μ = 0.1, the
LMIs (3.44) are feasible with λ2 = −1.382, λ5 = −4, that means for any time delay function
τ(t) satisfying 0 ≤ τ(t) ≤ 0.2 and τ̇(t) ≤ 0.1, the system (4.1) achieves phase synchronization.
In the following, we give the simulation results for the case of the time delay function τ(t) =
0.05 sin(t) + 0.051, and obviously τ(t) satisfies 0 ≤ τ(t) ≤ 0.2 and τ̇(t) ≤ 0.1. The difference
between state variables xi1 and xim (i = 1, 2,m = 2, . . . , 5) and the phase difference between σ1

and σm (m = 2, . . . , 5) are shown in Figure 2. And we can get that the state error variables are
convergent to zero as t → +∞, and the phase error variables are convergent to zero and 2π
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Figure 3: The synchronization variations in (4.1) of xi1, xi2, and σi, i = 1, . . . , 5.

as defined by Corollary 3.5, which illustrated that the complex network (4.1) achieves phase
synchronization. The changes of the synchronous states xi1(t), xi2(t), σi(t) (i = 1, . . . ,N) are
shown in Figure 3, from which we can also observe that the complex network (4.1) achieves
the phase synchronization. All of these illustrate that result coincides with the theorem given
above. Hence, the effectiveness of the proposed criterion has been proved.

5. Conclusion

In this paper, the effects of interconnections between two independent second-order
pendulum-like systems have been investigated. Linear interconnection and a class of
input and output interconnections have been involved. Some frequency domain and LMI
conditions of dichotomy for interconnected pendulum-like systems have been established.
Examples show that input and output interchange presented here can result in great changes
in some practical systems. For example, chaotic phenomenon in partial variables may appear
by adding interconnections between two independent second-order pendulum-like systems
which are dichotomous. Since the solution σ is unbounded, there is no chaotic phenomenon
in plane phase space. However, chaotic phenomenon appears on the cylindrical surface of
cylindrical phase space, here we call it the chaos on cylindrical surface, which was never
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studied by now. It shows the complexity of physical property in concrete systems even they
are dichotomous. This also indicates that it is possible for the existence of chaotic attractors
in pendulum-like systems.
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