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By constructing a mixed monotone iterative technique under a new concept of upper and lower
solutions, some existence theorems of mild ω-periodic (L-quasi) solutions for abstract impulsive
evolution equations are obtained in ordered Banach spaces. These results partially generalize and
extend the relevant results in ordinary differential equations and partial differential equations.

1. Introduction and Main Result

Impulsive differential equations are a basic tool for studying evolution processes of real life
phenomena that are subjected to sudden changes at certain instants. In view of multiple
applications of the impulsive differential equations, it is necessary to develop the methods
for their solvability. Unfortunately, a comparatively small class of impulsive differential
equations can be solved analytically. Therefore, it is necessary to establish approximation
methods for finding solutions. The monotone iterative technique of Lakshmikantham et
al. (see [1–3]) is such a method which can be applied in practice easily. This technique
combines the idea of method of upper and lower solutions with appropriate monotone
conditions. Recent results by means of monotone iterative method are obtained in [4–7] and
the references therein. In this paper, by using a mixed monotone iterative technique in the
presence of coupled lower and upper L-quasisolutions, we consider the existence of mild ω-
periodic (L-quasi)solutions for the periodic boundary value problem (PBVP) of impulsive
evolution equations

u′(t) +Au(t) = f(t, u(t), u(t)), a.e. t ∈ J,

Δu|t=tk = Ik(u(tk), u(tk)), k = 1, 2, . . . , p,

u(0) = u(ω)

(1.1)
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in an ordered Banach space X, where A : D(A) ⊂ X → X is a closed linear operator and
−A generates a C0-semigroup T(t) (t ≥ 0) in X; f : J × X × X → X only satisfies weak
Carathéodory condition, J = [0, ω], ω > 0 is a constant; 0 = t0 < t1 < t2 < · · · < tp < tp+1 = ω;
Ik : X × X → X is an impulsive function, k = 1, 2, . . . , p; Δu|t=tk denotes the jump of u(t)
at t = tk, that is, Δu|t=tk = u(t+

k
) − u(t−

k
), where u(t+

k
) and u(t−

k
) represent the right and left

limits of u(t) at t = tk, respectively. Let PC(J,X) := {u : J → X | u(t) is continuous at t /= tk
and left continuous at t = tk, and u(t+k) exists, k = 1, 2, . . . , p}. Evidently, PC(J,X) is a Banach
space with the norm ‖u‖PC = supt∈J‖u(t)‖. Let J ′ = J \ {t1, t2, . . . , tp}, J ′′ = J \ {0, t1, t2, . . . , tp}.
Denote by X1 the Banach space generated by D(A) with the norm ‖ · ‖1 = ‖ · ‖ + ‖A · ‖. An
abstract function u ∈ PC(J,X) ∩ C1(J ′′, X) ∩ C(J ′, X1) is called a solution of the PBVP(1.1) if
u(t) satisfies all the equalities of (1.1).

Let X be an ordered Banach space with the norm ‖ · ‖ and the partial order “≤”, whose
positive coneK := {u ∈ X | u ≥ 0} is normal with a normal constantN. Let L ≥ 0. If functions
v0, w0 ∈ PC(J,X) ∩ C1(J ′′, X) ∩ C(J ′, X1) satisfy

v′
0(t) +Av0(t) ≤ f(t, v0(t), w0(t)) + L(v0(t) −w0(t)), t ∈ J ′,

Δv0|t=tk ≤ Ik(v0(tk), w0(tk)), k = 1, 2, . . . , p,

v0(0) ≤ v0(ω),

(1.2)

w′
0(t) +Aw0(t) ≥ f(t,w0(t), v0(t)) + L(w0(t) − v0(t)), t ∈ J ′,

Δw0|t=tk ≥ Ik(w0(tk), v0(tk)), k = 1, 2, . . . , p,

w0(0) ≥ w0(ω),

(1.3)

we call v0, w0 coupled lower and upper L-quasisolutions of the PBVP(1.1). Only choosing
“=” in (1.2) and (1.3), we call (v0, w0) coupled ω-periodic L-quasisolution pair of the
PBVP(1.1). Furthermore, if u0 := v0 = w0, we call u0 an ω-periodic solution of the PBVP(1.1).

Definition 1.1. Abstract functions u, v ∈ PC(J,X) are called a coupled mild ω-periodic L-
quasisolution pair of the PBVP(1.1) if u(t) and v(t) satisfy the following integral equations:

u(t)=T(t)B1(u, v)+
∫ t

0
T(t−s)G1(u, v)(s)ds

+
∑

0<tk<t

T(t − tk)Ik(u(tk), v(tk)), t ∈ J,

v(t) = T(t)B1(v, u)+
∫ t

0
T(t−s)G1(v, u)(s)ds

+
∑

0<tk<t

T(t−tk)Ik(v(tk), u(tk)), t ∈ J,

(1.4)

where B1(x, y) = (I − T(ω))−1[
∫ω
0 T(ω − s)G1(x, y)(s)ds +

∑p

k=1 T(ω − tk)Ik(x(tk), y(tk))] and
G1(x, y)(s) = f(s, x(s), y(s))+L(x(s)−y(s)) for any x, y ∈ PC(J,X), I is an identity operator.
If ũ := u = v, then ũ is called a mild ω-periodic solution of the PBVP(1.1).
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Without impulse, the PBVP(1.1) has been studied by many authors, see [8–11] and the
references therein. In particular, Shen and Li [11] considered the existence of coupled mild
ω-periodic quasisolution pair for the following periodic boundary value problem (PBVP) in
X:

u′(t) +Au(t) = f(t, u(t), u(t)), t ∈ J,

u(0) = u(ω),
(1.5)

where f : J ×X ×X → X is continuous. Under one of the following situations:

(i) T(t) (t ≥ 0) is a compact semigroup,

(ii) K is regular in X and T(t) is continuous in operator norm for t > 0,

they built a mixed monotone iterative method for the PBVP(1.5), and they proved that, if
the PBVP(1.5) has coupled lower and upper quasisolutions (i.e., L ≡ 0 and without impulse
in (1.2) and (1.3)) v0 and w0 with v0 ≤ w0, nonlinear term f satisfies one of the following
conditions:

(F1) f : J ×X ×X → X is mixed monotone,

(F2) There exists a constant M1 > 0 such that

f(t, u2, w) − f(t, u1, w) ≥ −M1(u2 − u1), ∀t ∈ J, v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ w ≤ w0(t),
(1.6)

and f(t, u, v) is nonincreasing on v.
Then the PBVP(1.5) has minimal and maximal coupled mild ω-periodic quasisolutions
between v0 and w0, which can be obtained by monotone iterative sequences from v0 and w0.
But conditions (i) and (ii) are difficult to satisfy in applications except some special situations.

In this paper, by constructing a mixed monotone iterative technique under a new
concept of upper and lower solutions, we will discuss the existence of mild ω-periodic (L-
quasi) solutions for the impulsive evolution Equation(1.1) in an ordered Banach space X. In
our results, we will delete conditions (i) and (ii) for the operator semigroup T(t) (t ≥ 0), and
improve conditions (F1) and (F2) for nonlinearity f . In addition, we only require that the
nonlinear term f : J ×X ×X → X satisfies weak Carathéodory condition:

(1) for each u, v ∈ X, f(·, u, v) is strongly measurable.

(2) for a.e.t ∈ J, f(t, ·, ·) is subcontinuous, namely, there exists e ⊂ J with mes e = 0 such
that

f(t, un, vn)
weak−→ f(t, u, v), (n −→ +∞), (1.7)

for any t ∈ J \ e, and un → u, vn → v (n → +∞).
Our main result is as follows:

Theorem 1.2. Let X be an ordered and weakly sequentially complete Banach space, whose positive
cone K is normal, A : D(A) ⊂ X → X be a closed linear operator and −A generate a positive C0-
semigroup T(t) (t ≥ 0) in X. If the PBVP(1.1) has coupled lower and upper L-quasisolutions v0 and
w0 with v0 ≤ w0, nonlinear term f and impulsive functions Ik’s satisfy the following conditions
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(H1) There exist constants M > 0 and L ≥ 0 such that

f(t, u2, v2) − f(t, u1, v1) ≥ −M(u2 − u1) + L(v2 − v1) (1.8)

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ v2 ≤ v1 ≤ w0(t).

(H2) Impulsive function Ik(·, ·) is continuous, and for any ui, vi ∈ X (i = 1, 2), it satisfies

Ik(u1, v1) ≤ Ik(u2, v2), k = 1, 2, . . . , p (1.9)

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ v2 ≤ v1 ≤ w0(t).
then the PBVP(1.1) has minimal and maximal coupled mild ω-periodic L-quasisolutions

between v0 and w0, which can be obtained by monotone iterative sequences starting from v0 and
w0.

Evidently, condition (H1) contains conditions (F1) and (F2). Hence, even without
impulse in PBVP(1.1), Theorem 1.2 still extends the results in [10, 11].

The proof of Theorem 1.2 will be shown in the next section. In Section 2, we also
discuss the existence of mild ω-periodic solutions for the PBVP(1.1) between coupled lower
and upper L-quasisolutions (see Theorem 2.3). In Section 3, the results obtained will be
applied to a class of partial differential equations of parabolic type.

2. Proof of the Main Results

Let X be a Banach space, A : D(A) ⊂ X → X be a closed linear operator, and −A generate a
C0-semigroup T(t) (t ≥ 0) in X. Then there exist constants C > 0 and δ ∈ R such that

‖T(t)‖ ≤ Ceδt, t ≥ 0. (2.1)

Definition 2.1. A C0-semigroup T(t) (t ≥ 0) is said to be exponentially stable inX if there exist
constants C ≥ 1 and δ > 0 such that

‖T(t)‖ ≤ Ce−δt, t ≥ 0. (2.2)

Let I0 = [t0, T]. Denote by C(I0, X) the Banach space of all continuous X-value
functions on interval I0 with the norm ‖u‖C = maxt∈I0‖u(t)‖. It is well-known ([12, Chapter
4, Theorem 2.9]) that for any x0 ∈ D(A) and h ∈ C1(I0, X), the initial value problem(IVP) of
linear evolution equation

u′(t) +Au(t) = h(t), t ∈ I0,

u(t0) = x0

(2.3)
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has a unique classical solution u ∈ C1(I0, X) ∩ C(I0, X1) expressed by

u(t) = T(t − t0)x0 +
∫ t

t0

T(t − s)h(s)ds, t ∈ I0. (2.4)

If x0 ∈ X and h ∈ C(I0, X), the function u given by (2.4) belongs to C(I0, X). We call it a mild
solution of the IVP(2.3).

To prove Theorem 1.2, for any h ∈ PC(J,X), we consider the periodic boundary value
problem (PBVP) of linear impulsive evolution equation in X

u′(t) +Au(t) = h(t), t ∈ J, t /= tk,

Δu|t=tk = yk, k = 1, 2, . . . , p,

u(0) = u(ω),

(2.5)

where yk ∈ X, k = 1, 2, . . . , p.

Lemma 2.2. Let T(t) (t ≥ 0) be an exponentially stable C0-semigroup in X. Then for any h ∈
PC(J,X) and yk ∈ X, k = 1, 2, . . . , p, the linear PBVP(2.5) has a unique mild solution u ∈ PC(J,X)
given by

u(t) = T(t)B(h) +
∫ t

0
T(t − s)h(s)ds +

∑
0<tk<t

T(t − tk)yk, t ∈ J, (2.6)

where B(h) = (I − T(ω))−1[
∫ω
0 T(ω − s)h(s)ds +

∑p

k=1 T(ω − tk)yk].

Proof. For any h ∈ PC(J,X), we first show that the initial value problem (IVP) of linear
impulsive evolution equation

u′(t) +Au(t) = h(t), t ∈ J, t /= tk,

Δu|t=tk = yk, k = 1, 2, . . . , p,

u(0) = x0

(2.7)

has a unique mild solution u ∈ PC(J,X) given by

u(t) = T(t)x0 +
∫ t

0
T(t − s)h(s)ds +

∑
0<tk<t

T(t − tk)yk, t ∈ J, (2.8)

where x0 ∈ X and yk ∈ X, k = 1, 2, . . . , p.
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Let Jk = [tk, tk+1], k = 0, 1, 2, . . . , p. Let y0 = 0. If u ∈ PC(J,X) is a mild solution of the
linear IVP(2.7), then the restriction of u on Jk satisfies the initial value problem (IVP) of linear
evolution equation without impulse

u′(t) +Au(t) = h(t), tk < t ≤ tk+1,

u
(
t+k
)
= u(tk) + yk.

(2.9)

Hence, on (tk, tk+1], u(t) can be expressed by

u(t) = T(t − tk)
(
u(tk) + yk

)
+
∫ t

tk

T(t − s)h(s)ds. (2.10)

Iterating successively in the above equality with u(tj) for j = k, k − 1, . . . , 1, 0, we see that u
satisfies (2.8).

Inversely, we can verify directly that the function u ∈ PC(J,X) defined by (2.8) is
a solution of the linear IVP(2.7). Hence the linear IVP(2.7) has a unique mild solution u ∈
PC(J,X) given by (2.8).

Next, we show that the linear PBVP(2.5) has a uniquemild solution u ∈ PC(J,X) given
by (2.6).

If a function u ∈ PC(J,X) defined by (2.8) is a solution of the linear PBVP(2.5), then
x0 = u(ω), namely,

(I − T(ω))x0 =
∫ω

0
T(ω − s)h(s)ds +

p∑
k=1

T(ω − tk)yk. (2.11)

Since T(t) (t ≥ 0) is exponentially stable, we define an equivalent norm in X by

|x| = sup
t≥0

‖eδtT(t)x‖. (2.12)

Then ‖x‖ ≤ |x| ≤ C‖x‖ and |T(t)| < e−δt (t ≥ 0), and especially, |T(ω)| < e−δω < 1. It follows
that I − T(ω) has a bounded inverse operator (I − T(ω))−1, which is a positive operator when
T(t)(t ≥ 0) is a positive semigroup. Hence we choose x0 = (I − T(ω))−1[

∫ω
0 T(ω − s)h(s)ds +∑p

k=1 T(ω − tk)yk] � B(h). Then x0 is the unique initial value of the IVP(2.7) in X, which
satisfies u(0) = x0 = u(ω). Combining this fact with (2.8), it follows that (2.6) is satisfied.

Inversely, we can verify directly that the function u ∈ PC(J,X) defined by (2.6) is a
solution of the linear PBVP(2.5). Therefore, the conclusion of Lemma 2.2 holds.

Evidently, PC(J,X) is also an ordered Banach space with the partial order “≤” reduced
by positive function cone KPC := {u ∈ PC(J,X) | u(t) ≥ 0, t ∈ J}. KPC is also normal with the
same normal constant N. For v,w ∈ PC(J,X) with v ≤ w, we use [v,w] to denote the order
interval {u ∈ PC(J,X) | v ≤ u ≤ w} in PC(J,X), and [v(t), w(t)] to denote the order interval
{u ∈ X | v(t) ≤ u ≤ w(t)} in X. From Lemma 2.2, if T(t) (t ≥ 0) is a positive C0-semigroup,
h ≥ 0 and yk ≥ 0, k = 1, 2, . . . , p, then the mild solution u ∈ PC(J,X) of the linear PBVP(2.5)
satisfies u ≥ 0.
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Proof of Theorem 1.2. We first show that f(t, h1(t), h2(t)) ∈ L1(J,X) for any t ∈ J and
h1(t), h2(t) ∈ [v0(t), w0(t)]. Since v0(t) ≤ h1(t) ≤ w0(t), v0(t) ≤ h2(t) ≤ w0(t) for any t ∈ J ,
from the assumption (H1), we have

f(t, h1(t), h2(t)) + (M + L)h1(t) − Lh2(t)

≤ f(t,w0(t), v0(t)) + L(w0(t) − v0(t)) +Mw0(t)

≤ w′
0(t) + (A +MI)w0(t) � h0(t),

f(t, h1(t), h2(t)) + (M + L)h1(t) − Lh2(t)

≥ f(t, v0(t), w0(t)) + L(v0(t) −w0(t)) +Mv0(t)

≥ v′
0(t) + (A +MI)v0(t) � g0(t).

(2.13)

Namely, g0(t) ≤ f(t, h1(t), h2(t)) + (M + L)h1(t) − Lh2(t) ≤ h0(t), t ∈ J . From the normality of
cone K in X, we have

∥∥f(t, h1(t), h2(t)) + (M + L)h1(t) − Lh2(t)
∥∥ ≤ N

∥∥h0 − g0
∥∥
PC +

∥∥g0∥∥PC � M∗. (2.14)

Combining this fact with the fact that f(t, h1(t), h2(t)) is strongly measurable, it follows that
f(t, h1(t), h2(t)) ∈ L1(J,X). Therefore, for any h1(t), h2(t) ∈ [v0(t), w0(t)], t ∈ J , we consider
the periodic boundary value problem(PBVP) of impulsive evolution equation in X

u′(t) + (A +MI)u(t) = G(h1, h2)(t), a.e. t ∈ J,

Δu|t=tk = Ik(h1(tk), h2(tk)), k = 1, 2, . . . , p,

u(0) = u(ω),

(2.15)

where G(h1, h2)(t) = f(t, h1(t), h2(t)) + (M + L)h1(t) − Lh2(t). Let M > 0 be large enough
such that M > δ (otherwise, replacing M by M + δ, the assumption (H1) still holds). Then
−(A+MI) generates an exponentially stableC0-semigroup S(t) = e−MtT(t) (t ≥ 0). Obviously,
S(t) (t ≥ 0) is a positive C0-semigroup and ‖S(t)‖ ≤ Ce−(M−δ)t for t ≥ 0. From Lemma 2.2, the
PBVP(2.15) has a unique mild solution u ∈ PC(J,X) given by

u(t) = S(t)B(h1, h2) +
∫ t

0
S(t − s)G(h1, h2)(s)ds +

∑
0<tk<t

S(t − tk)Ik(h1(tk), h2(tk)), t ∈ J,

B(h1, h2) = (I − S(ω))−1
[∫ω

0
S(ω − s)G(h1, h2)(s)ds +

p∑
k=1

S(ω − tk)Ik(h1(tk), h2(tk))

]
.

(2.16)
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Let D = [v0, w0]. We define an operator Q : D ×D → PC(J,X) by

Q(h1, h2)(t) = S(t)B(h1, h2) +
∫ t

0
S(t − s)G(h1, h2)(s)ds

+
∑

0<tk<t

S(t − tk)Ik(h1(tk), h2(tk)), t ∈ J.

(2.17)

Then the coupled mild ω-periodic L-quasisolution of the PBVP(1.1) is equivalent to the
coupled fixed point of operator Q.

Next, we will prove that the operator Q has coupled fixed points on D. For this
purpose, we first show that Q : D × D → PC(J,X) is a mixed monotone operator and
v0 ≤ Q(v0, w0), Q(w0, v0) ≤ w0. In fact, for any t ∈ J, v0(t) ≤ u1(t) ≤ u2(t) ≤ w0(t), v0(t) ≤
v2(t) ≤ v1(t) ≤ w0(t), from assumptions (H1) and (H2), we have

G(u1, v1)(t) ≤ G(u2, v2)(t),

Ik(u1(tk), v1(tk)) ≤ Ik(u2(tk), v2(tk)), k = 1, 2, . . . , p.
(2.18)

Since S(t)(t ≥ 0) is a positive C0-semigroup, it follows that (I − S(ω))−1 =
∑∞

n=0 S(nω) is
a positive operator. Then B(u1, v1) ≤ B(u2, v2). Hence from (2.17) we see that Q(u1, v1) ≤
Q(u2, v2), which implies that Q is a mixed monotone operator. Since

ϕ(t) � v′
0(t) + (A +MI)v0(t) ≤ G(v0, w0)(t), t ∈ J, (2.19)

from Lemma 2.2 and (1.2), we have

v0(t) = S(t)v0(0) +
∫ t

0
S(t − s)ϕ(s)ds +

∑
0<tk<t

S(t − tk)Δv0|t=tk

≤ S(t)v0(0) +
∫ t

0
S(t − s)G(v0, w0)(s)ds +

∑
0<tk<t

S(t − tk)Ik(v0(tk), w0(tk))

(2.20)

for t ∈ J . Especially, we have

v0(ω) ≤ S(ω)v0(0) +
∫ω

0
S(ω − s)G(v0, w0)(s)ds +

p∑
k=1

S(ω − tk)Ik(v0(tk), w0(tk)). (2.21)

Combining this inequality with v0(0) ≤ v0(ω), it follows that

v0(0) ≤ (I − S(ω))−1
[∫ω

0
S(ω − s)G(v0, w0)(s)ds +

p∑
k=1

S(ω − tk)Ik(v0(tk), w0(tk))

]

� B(v0, w0).

(2.22)
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On the other hand, from (2.17), we have

Q(v0, w0)(t) = S(t)B(v0, w0) +
∫ t

0
S(t − s)G(v0, w0)(s)ds

+
∑

0<tk<t

S(t − tk)Ik(v0(tk), w0(tk)), t ∈ J.

(2.23)

Therefore, Q(v0, w0)(t) − v0(t) ≥ S(t)(B(v0, w0) − v0(0)) ≥ 0 for all t ∈ J . It implies that
v0 ≤ Q(v0, w0). Similarly, we can prove that Q(w0, v0) ≤ w0.

Now, we define sequences {vn} and {wn} by the iterative scheme

vn = Q(vn−1, wn−1), wn = Q(wn−1, vn−1), n = 1, 2, . . . . (2.24)

Then from the mixed monotonicity of operator Q, we have

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (2.25)

Therefore, for any t ∈ J , {vn(t)} and {wn(t)} are monotone order-bounded sequences in X.
Noticing thatX is a weakly sequentially complete Banach space, then {vn(t)} and {wn(t)} are
relatively compact in X. Combining this fact with the monotonicity of (2.25) and the normal-
ity of cone K in X, it follows that {vn(t)} and {wn(t)} are uniformly convergent in X. Let

v∗(t) = lim
n→∞

vn(t), w∗(t) = lim
n→∞

wn(t), t ∈ J. (2.26)

Then v∗, w∗ : J → X are strongly measurable, and v0(t) ≤ v∗(t) ≤ w∗(t) ≤ w0(t) for any t ∈ J .
Hence, v∗, w∗ ∈ L1(J,X).

At last, we show that v∗ and w∗ are coupled mild ω-periodic L-quasisolutions of the
PBVP(1.1). For any φ ∈ X∗, from subcontinuity of f and continuity of Ik’s, there exists e ⊂ J
with mes e = 0 such that

φ(G(vn,wn)(t)) −→ φ(G(v∗, w∗)(t)), n −→ ∞, t ∈ J \ e,
Ik(vn(tk), wn(tk)) −→ Ik(v∗(tk), w∗(tk)), n −→ ∞, k = 1, 2, . . . , p.

(2.27)

Hence, for any t ∈ J and s ∈ [0, t] \ e, denote by S∗(t − s) the adjoint operator of S(t − s), then
S∗(t − s) ∈ X∗, and

φ[S(t − s)G(vn,wn)(s)] = S∗(t − s)φ(G(vn,wn)(s))

−→ S∗(t − s)φ(G(v∗, w∗)(s)) = φ[S(t − s)G(v∗, w∗)(s)], n −→ ∞,

φ

( ∑
0<tk<t

S(t − tk)Ik(vn(tk)), wn(tk)

)

−→ φ

( ∑
0<tk<t

S(t − tk)Ik(v∗(tk)), w∗(tk)

)
, n −→ ∞.

(2.28)



10 Journal of Inequalities and Applications

On the other hand, we have

∣∣φ[S(t − s)G(vn,wn)(s)]
∣∣ ≤ ∥∥φ∥∥ · S(t − s) · ‖G(vn,wn)(s)‖ ≤ ∥∥φ∥∥CM∗ � M∗∗. (2.29)

From Lebesgue’s dominated convergence theorem, we have

φ(B(vn,wn)) = φ

(
(I − S(ω))−1

[∫ω

0
S(ω − s)G(vn,wn)(s)ds

+
p∑

k=1

S(ω − tk)Ik(vn(tk), wn(tk))

])

−→ φ

(
(I − S(ω))−1

[∫ω

0
S(ω − s)G(v∗, w∗)(s)ds

+
p∑

k=1

S(ω − tk)Ik(v∗(tk), w∗(tk))

])

= φ(B(v∗, w∗)), n −→ ∞.

(2.30)

Hence, from (2.17), we have

φ(vn+1(t)) = φ(Q(vn,wn)(t)) = φ(S(t)B(vn,wn)) + φ

(∫ t

0
S(t − s)G(vn,wn)(s)ds

)

+ φ

( ∑
0<tk<t

S(t − tk)Ik(vn(tk), wn(tk))

)

−→ φ(S(t)B(v∗, w∗)) + φ

(∫ t

0
S(t − s)G(v∗, w∗)(s)ds

)

+ φ

( ∑
0<tk<t

S(t − tk)Ik(v∗(tk), w∗(tk))

)

= φ

(
S(t)B(v∗, w∗) +

∫ t

0
S(t − s)G(v∗, w∗)(s)ds +

∑
0<tk<t

S(t − tk)Ik(v∗(tk), w∗(tk))

)

= φ(Q(v∗, w∗)(t)), n −→ ∞.

(2.31)

On the other hand, it follows from (2.26) that limn→∞vn+1(t) = v∗(t), t ∈ J . Hence
φ(vn+1(t)) → φ(v∗(t)) (n → ∞). By the uniqueness of limits, we can deduce that

φ(Q(v∗, w∗)(t)) = φ(v∗(t)), t ∈ J, φ ∈ X∗. (2.32)
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By the arbitrariness of φ ∈ X∗, we have

v∗ = Q(v∗, w∗). (2.33)

Similarly, we can prove that w∗ = Q(w∗, v∗). Therefore, (v∗, w∗) is coupled mild ω-periodic
L-quasisolution pair of the PBVP(1.1).

Now, we discuss the existence of mild ω-periodic solutions for the PBVP(1.1) on
[v0, w0]. We assume that the following assumptions are also satisfied:

(H3) there exists a constant R with max{2L,M + 2L − 1/ωNC(CM0 + 1)} < R ≤ M + L
such that

f(t, u, v) − f(t, v, u) ≤ −R(u − v) (2.34)

for any t ∈ J, v0(t) ≤ v ≤ u ≤ w0(t), where M0 = ‖(I − S(ω))−1‖,

(H4) there exist positive constants τk(k = 1, 2, . . . , p) with
∑p

k=1 τk < (1 −ωNC(M + 2L −
R)(CM0 + 1))/CN(CM0 + 1) such that

Ik(u, v) − Ik(v, u) ≤ τk(u − v), k = 1, 2, . . . , p (2.35)

for any t ∈ J, v0(t) ≤ v ≤ u ≤ w0(t).
Thenwe have the following existence and uniqueness result in general ordered Banach space.

Theorem 2.3. Let X be an ordered Banach space, whose positive cone K is normal, A : D(A) ⊂
X → X be a closed linear operator, and −A generate a positive C0-semigroup T(t) (t ≥ 0) inX. If the
PBVP(1.1) has coupled lower and upper L-quasisolution v0 and w0 with v0 ≤ w0, nonlinear term f
and impulsive functions Ik’s satisfy the following assumptions:

(H1)
∗ there exist constantsM > 0 and 0 ≤ L < min{M, 1/ωNC(CM0 + 1)} such that

f(t, u2, v2) − f(t, u1, v1) ≥ −M(u2 − u1) + L(v2 − v1) (2.36)

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ v2 ≤ v1 ≤ w0(t).
And (H2)–(H4), then the PBVP(1.1) has a unique mild ω-periodic solution u∗ on [v0, w0].
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Proof. From the proof of Theorem 1.2, when the conditions (H1)
∗ and (H2) are satisfied, the

iterative sequences {vn} and {wn} defined by (2.24) satisfy (2.25). We show that there exists
a unique u∗ ∈ PC(J,X) such that u∗ = Q(u∗, u∗). For any t ∈ J , from (H3), (H4), (2.17), (2.24)
and (2.25), we have

0 ≤ wn(t) − vn(t) = Q(wn−1, vn−1)(t) −Q(vn−1, wn−1)(t)

= S(t)[B(wn−1, vn−1) − B(vn−1, wn−1)]

+
∫ t

0
S(t − s)[G(wn−1, vn−1)(s) −G(vn−1, wn−1)(s)]ds

+
∑

0<tk<t

S(t − tk)[Ik(wn−1(tk), vn−1(tk)) − Ik(vn−1(tk), wn−1(tk))]

≤ S(t)[B(wn−1, vn−1) − B(vn−1, wn−1)]

+ (M + 2L − R)
∫ t

0
S(t − s)(wn−1(s) − vn−1(s))ds

+
∑

0<tk<t

S(t − tk)τk(wn−1(tk) − vn−1(tk)).

(2.37)

By means of the normality of cone K in X, we have

‖wn(t) − vn(t)‖ ≤ N

∥∥∥∥∥S(t)[B(wn−1, vn−1) − B(vn−1, wn−1)]

+ (M + 2L − R)
∫ t

0
S(t − s)(wn−1(s) − vn−1(s))ds

+
∑

0<tk<t

S(t − tk)τk(wn−1(tk) − vn−1(tk))

∥∥∥∥∥
≤ NC‖B(wn−1, vn−1) − B(vn−1, wn−1)‖

+NC(M + 2L − R)ω‖wn−1 − vn−1‖PC +NC
p∑

k=1

τk‖wn−1 − vn−1‖PC

≤
[
NCω(M + 2L − R)(M0C + 1) +NC

p∑
k=1

τk(M0C + 1)

]
‖wn−1 − vn−1‖PC.

(2.38)

Therefore

‖wn − vn‖PC ≤
[
NC(M0C + 1)

(
ω(M + 2L − R) +

p∑
k=1

τk

)]
‖wn−1 − vn−1‖PC. (2.39)
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by Repeating the using of the above inequality, we can obtain that

‖wn − vn‖PC ≤
[
NC(M0C + 1)

(
ω(M + 2L − R) +

p∑
k=1

τk

)]n

‖w0 − v0‖PC −→ 0 (2.40)

as n → ∞. Then there exists a unique u∗ ∈ PC(J,X) such that limn→∞wn = limn→∞vn = u∗.
Therefore, let n → ∞ in (2.24), from the continuity of operator Q, we have u∗ = Q(u∗, u∗),
which means that u∗ is a unique mild ω-periodic solution of the PBVP(1.1).

3. An Example

LetΩ ⊂ R
n be a bounded domain with a sufficiently smooth boundary ∂Ω. Let J = [0, 2π], fi :

Ω × J × R → R, and Ik,i ∈ C(R,R), i = 1, 2. Consider the existence of mild solutions for the
boundary value problem of parabolic type:

∂

∂t
u − ∇2u = f1(x, t, u) + f2(x, t, u), ∀x ∈ Ω, a.e. t ∈ J,

Δu|t=tk = Ik,1(u(x, tk)) + Ik,2(u(x, tk)), ∀x ∈ Ω, k = 1, 2, . . . , p,

u|∂Ω = 0,

u(x, 0) = u(x, 2π), x ∈ Ω,

(3.1)

where ∇2 is the Laplace operator, 0 < t1 < t2 < · · · < tp < 2π . Let X := L2(Ω,R) equipped with
the L2-norm ‖ · ‖2, K := {u ∈ Xu(x) ≥ 0, a.e. x ∈ Ω}. Then K is a generating normal cone in
X. Consider the operator A : D(A) ⊂ X → X defined by

D(A) =
{
u ∈ X | ∇2u ∈ X, u|∂Ω = 0

}
, Au = −∇2u. (3.2)

Then −A generates an analytic semigroup T(t) (t ≥ 0) in X. By the maximum principle of the
equations of parabolic type, it is easy to prove that T(t) (t ≥ 0) is a positive C0-semigroup in
X. Let λ1 be the first eigenvalue of operatorA and e1 be a corresponding positive eigenvector.
For solving the problem (3.1), the following assumptions are needed.

(i) There exists a constant L ≥ 0 such that

(a) f1(x, t, 0) + f2(x, t, e1(x)) ≥ Le1(x), x ∈ Ω, t ∈ J ′, Ik,1(0) + Ik,2(e1(x)) = 0, x ∈ Ω.

(b) f1(x, t, e1(x)) + f2(x, t, 0) ≤ (λ1 − L)e1(x), x ∈ Ω, t ∈ J ′, Ik,1(e1(x)) + Ik,2(0) = 0,
x ∈ Ω.

(ii) (a) The partial derivative of f1(x, t, u) on u is continuous on any bounded domain.
(b) The partial derivative of f2(x, t, u) on u has upper bound, and

sup((∂/∂u)f2(x, t, u)) ≤ L.

(iii) For any u1, u2 ∈ [0, e1]with u1 ≤ u2, we have

Ik,1(u1(x, tk))≤Ik,1(u2(x, tk)), Ik,2(u2(x, tk))≤Ik,2(u1(x, tk)), x∈Ω, k=1, 2, . . . , p. (3.3)
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Let f : J × X × X → X and Ik : X × X → X be defined by f(t, u, u) = f1(·, t, u(·)) +
f2(·, t, u(·)) and by Ik(u, u) = Ik,1(u(·)) + Ik,2(u(·)). Then the problem (3.1) can be transformed
into the PBVP(1.1). Assumption (i) implies that v0 ≡ 0 and w0 ≡ e1 are coupled lower and
upper L-quasisolutions of the PBVP(1.1). From assumption (ii)(a), there exists a constant
M > 0 such that, for any (x, t) ∈ Ω × J , we have

∣∣∣∣ ∂

∂u
f1(x, t, u)

∣∣∣∣ ≤ M. (3.4)

This implies that

∣∣f1(x, t, u2) − f1(x, t, u1)
∣∣ =

∣∣∣∣ ∂

∂u
f1(x, t, ξ)(u2 − u1)

∣∣∣∣ ≤ M(u2 − u1) (3.5)

for any 0 ≤ u1 ≤ u2 ≤ e1 and ξ ∈ (u1, u2). Hence for any 0 ≤ u1 ≤ u2 ≤ e1 and ξ ∈ (u1, u2), we
have

f1(x, t, u2) − f1(x, t, u1) ≥ −M(u2 − u1). (3.6)

Therefore, for any ui, vi ∈ X with 0 ≤ u1 ≤ u2 ≤ e1, 0 ≤ v2 ≤ v1 ≤ e1, from the assumption (ii),
we have

f(t, u2, v2) − f(t, u1, v1) = f1(·, t, u2(·)) + f2(·, t, v2(·)) − f1(·, t, u1(·)) − f2(·, t, v1(·))
=
[
f1(·, t, u2(·)) − f1(·, t, u1(·))

]
+
[
f2(·, t, v2(·)) − f2(·, t, v1(·))

≥ −M(u2(·) − u1(·)) + sup
∂

∂u
f2(·, t, ξ)(v2(·) − v1(·))

≥ −M(u2 − u1) + L(v2 − v1),

(3.7)

That is, assumption (H1) is satisfied. From (iii), it is easy to see that assumption (H2) is
satisfied. Therefore, the following result is deduced from Theorem 1.2.

Theorem 3.1. If the assumptions (i)–(iii) are satisfied, then the problem (3.1) has coupled mild ω-
periodic L-quasisolution pair on [0, e1].

Remark 3.2. In applications of partial differential equations, we often choose Banach space
Lp(1 ≤ p < ∞) as working space, which is weakly sequentially complete. Hence the result
in Theorem 1.2 is more valuable in applications. In particular, we obtain a unique mild ω-
periodic solution of the PBVP(1.1) in general ordered Banach space in Theorem 2.3.

Remark 3.3. If L ≡ 0, then the coupled lower and upper L-quasisolutions are equivalent to
coupled lower and upper quasisolutions of the PBVP(1.1). Since condition (H1) contains
conditions (F1) and (F2), even without impulse in PBVP(1.1), the results in this paper still
extend the results in [10, 11].
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