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We introduce an iterative sequence and prove a weak convergence theorem for finding a solution
of a system of mixed equilibrium problems and the set of fixed points of a quasi-nonexpansive
mapping in Hilbert spaces. Moreover, we apply our result to obtain a weak convergence theorem
for finding a solution of a system of mixed equilibrium problems and the set of fixed points of a
nonspreading mapping. The result obtained in this paper improves and extends the recent ones
announced by Moudafi (2009), Iemoto and Takahashi (2009), and many others. Using this result,
we improve and unify several results in fixed point problems and equilibrium problems.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping T of C into
itself is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C, and a mapping F is
said to be firmly nonexpansive if ‖Fx − Fy‖2 ≤ 〈x − y, Fx − Fy〉 for all x, y ∈ C. Let E be a
smooth, strictly convex and reflexive Banach space; let J be the duality mapping of E and C
a nonempty closed convex subset of E. A mapping S : C → C is said to be nonspreading if

φ
(
Sx, Sy

)
+ φ

(
Sy, Sx

) ≤ φ
(
Sx, y

)
+ φ

(
Sy, x

)
(1.1)

for all x, y ∈ C, where φ(x, y) = ‖x‖2−2〈x, Jy〉+‖y‖2 for all x, y ∈ E; see, for instance, Kohsaka
and Takahashi [1]. In the case when E is a Hilbert space, we know that φ(x, y) = ‖x − y‖2 for
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all x, y ∈ E. Then a nonspreading mapping S : C → C in a Hilbert space H is defined as
follows:

2
∥
∥Sx − Sy

∥
∥2 ≤ ∥

∥Sx − y
∥
∥2 +

∥
∥x − Sy

∥
∥2 (1.2)

for all x, y ∈ C. Let F(Q) be the set of fixed points of Q, and F(Q) be nonempty; a mapping
Q : C → C is said to be quasi-nonexpansive if ‖Qx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F(Q).

Remark 1.1. In a Hilbert space, we know that every firmly nonexpansive mapping is
nonspreading and if the set of fixed points of a nonspreading mapping is nonempty, the
nonspreading mapping is quasi-nonexpansive; see [1].

Fixed point iterations process for nonexpansive mappings and asymptotically
nonexpansive mappings in Banach spaces including Mann and Ishikawa iterations process
have been studied extensively by many authors to solve the nonlinear operator equations. In
1953, Mann [2] introduced Mann iterative process defined by

xn+1 = (1 − αn)xn + αnTxn, (1.3)

where αn ∈ [0, 1] and satisfies the assumptions limn→∞αn = 0 and
∑∞

n=1 αn = ∞ and proved
that in case E is a Banach space, and C is closed, and T is continuous, then the convergence
of {xn} to a point y implies that Ty = y. Recently, Dotson [3] proved that a Mann iteration
process was applied to the approximation of fixed points of quasi-nonexpansive mappings
in Hilbert space and in uniformly convex and strictly convex Banach spaces.

On the other hand, Kohsaka and Takahashi [1] proved an existence theorem of fixed
points for nonspreadingmappings in a Banach space. Very recently, Iemoto and Takahashi [4]
studied the approximation theorem of common fixed points for a nonexpansive mapping T
of C into itself and a nonspreading mapping S of C into itself in a Hilbert space. In particular,
this result reduces to approximation fixed points of a nonspreading mapping S ofC into itself
in a Hilbert space by using iterative scheme

xn+1 = αnxn + (1 − αn)Sxn. (1.4)

Let ϕ : C → R be a real-valued function and F : C×C → R an equilibrium bifunction,
that is, F(u, u) = 0 for each u ∈ C. The mixed equilibrium problem is to find x∗ ∈ C such that

F
(
x∗, y

)
+ ϕ

(
y
) − ϕ(x∗) ≥ 0 for all y ∈ C. (1.5)

Denote the set of solutions of (1.5) by MEP(F, ϕ). The mixed equilibrium problems
include fixed point problems, optimization problems, variational inequality problems, Nash
equiliubrium problems, and the equilibrium problems as special cases (see, e.g., Blum and
Oettli [5]). In particular, if ϕ = 0, this problem reduces to the equilibrium problem, which is
to find x∗ ∈ C such that

F
(
x∗, y

) ≥ 0 for all y ∈ C. (1.6)
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The set of solutions of (1.6) is denoted by EP(F). Numerous problems in physics,
optimization, and economics reduce to find a solution of (1.6). Let F1, F2 : C × C → R

be two monotone bifunctions and λ > 0 is constant. In 2009, Moudafi [6] introduced an
alternating algorithm for approximating a solution of the system of equilibrium problems:
finding (x∗, y∗) ∈ C × C such that

F1(x∗, z) +
1
λ

〈
y∗ − x∗, x∗ − z

〉 ≥ 0, ∀z ∈ C,

F2
(
y∗, z

)
+
1
λ

〈
x∗ − y∗, y∗ − z

〉 ≥ 0, ∀z ∈ C.

(1.7)

Let F1, F2 : C ×C → R be two monotone bifunctions and λ, μ > 0 are two constants. In
this paper, we consider the following problem for finding (x∗, y∗) ∈ C × C such that

F1(x∗, z) + ϕ(z) − ϕ(x∗) +
1
λ

〈
y∗ − x∗, x∗ − z

〉 ≥ 0, ∀z ∈ C,

F2
(
y∗, z

)
+ ϕ(z) − ϕ

(
y∗) +

1
μ

〈
x∗ − y∗, y∗ − z

〉 ≥ 0, ∀z ∈ C,

(1.8)

which is called a system of mixed equilibrium problems. In particular, if λ = μ, then problem
(1.8) reduces to finding (x∗, y∗) ∈ C × C such that

F1(x∗, z) + ϕ(z) − ϕ(x∗) +
1
λ

〈
y∗ − x∗, x∗ − z

〉 ≥ 0, ∀z ∈ C,

F2
(
y∗, z

)
+ ϕ(z) − ϕ

(
y∗) +

1
λ

〈
x∗ − y∗, y∗ − z

〉 ≥ 0, ∀z ∈ C.

(1.9)

The system of nonlinear variational inequalities close to these introduced by Verma [7]
is also a special case: by taking ϕ = 0, F1(x, y) = 〈A(x), y − x〉, and F2(x, y) = 〈B(x), y − x〉,
where A,B : C → H are two nonlinear mappings. In this case, we can reformulate problem
(1.7) to finding (x∗, y∗) ∈ C × C such that

〈
λA(x∗) + x∗ − y∗, z − x∗〉 ≥ 0, ∀z ∈ C,

〈
μB

(
y∗) + y∗ − x∗, z − y∗〉 ≥ 0, ∀z ∈ C,

(1.10)

which is called a general system of variational inequalities where λ > 0 and μ > 0 are two
constants. Moreover, if we add up the requirement that x∗ = y∗, then problem (1.10) reduces
to the classical variational inequality VI(A,C).

In 2008,Ceng and Yao [8] considered a new iterative scheme for finding a common
element of the set of solutions of MEP and the set of common fixed points of finitely many
nonexpansive mappings. They also proved a strong convergence theorem for the iterative
scheme. In the same year, Yao et al. [9] introduced a new hybrid iterative algorithm for
finding a common element of the set of fixed points of an infinite family of nonexpansive
mappings, the set of solutions of the variational inequality of a monotone mapping, and the
set of solutions of a mixed equilibrium problem. Very recently, Ceng et al. [10] introduced and
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studied a relaxed extragradient method for finding a common of the set of solution (1.10)
for the α and β-inverse strongly monotones and the set of fixed points of a nonexpansive
mapping T of C into a real Hilbert space H. Let x1 = u ∈ C, and {xn} are given by

yn = PC

(
xn − μBxn

)
,

xn+1 = αnu + βnxn + γnTPC

(
yn − λAyn

)
, n ∈ N.

(1.11)

Then, they proved that the iterative sequence {xn} converges strongly to a common element
of the set of fixed points of a nonexpansive mapping and a general system of variational
inequalities with inverse-strongly monotone mappings under some parameters controlling
conditions.

In this paper, we introduce an iterative sequence and prove a weak convergence
theorem for finding a solution of a system of mixed equilibrium problems and the set of fixed
points of a quasi-nonexpansive mapping in Hilbert spaces. Moreover, we apply our result to
obtain a weak convergence theorem for finding a solution of a system of mixed equilibrium
problems and the set of fixed points of a nonspreading mapping.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be a closed
convex subset of H. For every point x ∈ H, there exists a unique nearest point in C, denoted
by PCx, such that

‖x − PCx‖ ≤ ∥∥x − y
∥∥ for all y ∈ C. (2.1)

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive
mapping of H onto C and satisfies

〈
x − y, PCx − PCy

〉 ≥ ∥∥PCx − PCy
∥∥2 (2.2)

for all x, y ∈ H. Moreover, PCx is characterized by the following properties: PCx ∈ C and

〈
x − PCx, y − PCy

〉 ≤ 0,
∥∥x − y

∥∥2 ≥ ‖x − PCx‖2 +
∥∥y − PCy

∥∥2
(2.3)

for all x ∈ H,y ∈ C. Further, for all x ∈ H and y ∈ C, y = PCx if and only if 〈x − y, y − z〉 ≥ 0,
for all z ∈ C.

A space X is said to satisfy Opial’s condition if for each sequence {xn}∞n=1 in X which
converges weakly to point x ∈ X, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥∥xn − y
∥∥, ∀y ∈ X, y /=x,

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥∥xn − y
∥∥, ∀y ∈ X, y /=x.

(2.4)
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The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 (see [11]). Let (E, 〈·, ·〉) be an inner product space. Then for all x, y, z ∈ E and α, β, γ ∈
[0, 1] with α + β + γ = 1, we have

∥
∥αx + βy + γz

∥
∥2 = α‖x‖2 + β

∥
∥y

∥
∥2 + γ‖z‖2 − αβ

∥
∥x − y

∥
∥2 − αγ‖x − z‖2 − βγ

∥
∥y − z

∥
∥2

. (2.5)

Lemma 2.2 (see [12]). Let H be a Hilbert space, C a closed convex subset of H, and T : C → C a
nonexpansive mapping with F(T)/= ∅. If {xn} is a sequence in C weakly converging to x ∈ C and if
{(I − T)xn} converges strongly to y, then (I − T)x = y.

Lemma 2.3 (see [1]). Let H be a Hilbert space and C a nonempty closed convex subset of H. Let S
be a nonspreading mapping of C into itself. Then the following are equivalent:

(1) there exists x ∈ C such that {Snx} is bounded;
(2) F(S) is nonempty.

Lemma 2.4 (see [1]). Let H be a Hilbert space and C a nonempty closed convex subset of H. Let S
be a nonspreading mapping of C into itself. Then F(S) is closed and convex.

Lemma 2.5 (see [4]). Let H be a Hilbert space, C a closed convex subset of H, and S : C → C
a nonspreading mapping with F(S)/= ∅. Then S is demiclosed, that is, xn ⇀ u and xn − Sxn → 0
imply u ∈ F(S).

Lemma 2.6 (see [13]). Let C be a closed convex subset of a real Hilbert space H and let {xn} be a
sequence inH. Suppose that for all u ∈ C,

‖xn+1 − u‖ ≤ ‖xn − u‖ (2.6)

for every n = 0, 1, 2, . . .. Then, {PCxn} converges strongly to some z ∈ C.

Lemma 2.7 (see [14]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − αn)an + δn, n ≥ 0, (2.7)

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 αn = ∞,

(2) lim supn→∞(δn/αn) ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞an = 0.

For solving the mixed equilibrium problems for an equilibrium bifunction F : C×C →
R, let us assume that F satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;
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(A3) for each y ∈ C, x → F(x, y) is weakly upper semicontinuous;

(A4) for each x ∈ C, y → F(x, y) is convex, semicontinuous.

The following lemma appears implicitly in [5, 15].

Lemma 2.8 (see [5]). Let C be a nonempty closed convex subset of H and let F be a bifunction of
C × C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0 for all y ∈ C. (2.8)

The following lemma was also given in [15].

Lemma 2.9 (see [15]). Assume that F : C × C → R satisfies (A1)–(A4). For r > 0 and x ∈ H,
define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
(2.9)

for all z ∈ H. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H, ‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉;
(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.

We note that Lemma 2.9 is equivalent to the following lemma.

Lemma 2.10. Let C a nonempty closed convex subset of a real Hilbert space H. Let F : C × C → R

be an equilibrium bifunction satisfying (A1)–(A4) and let ϕ : C → R be a lower semicontinuous and
convex functional. For r > 0 and x ∈ H, define a mapping Sr(x) : H → C as follows.

Sr(x) =
{
y ∈ C : F

(
y, z

)
+ ϕ(z) − ϕ

(
y
)
+
1
r

〈
y − x, z − y

〉 ≥ 0, ∀z ∈ C

}
, ∀x ∈ H. (2.10)

Then, the following results hold:

(i) for each x ∈ H, Sr(x)/= ∅;
(ii) Sr is single-valued;

(iii) Sr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Sr(x) − Sr

(
y
)∥∥2 ≤ 〈

Sr(x) − Sr

(
y
)
, x − y

〉
; (2.11)

(iv) F(Sr) = MEF(F, ϕ);

(v) MEF(F, ϕ) is closed and convex.
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Proof. DefineG(x, y) := F(x, y)+ϕ(y)+ϕ(x), for all x, y ∈ H. Thus, the bifunction F : C×C →
Rsatisfies, (A1)–(A4). Hence, by Lemmas 2.8 and 2.9, we have (i)–(v).

Lemma 2.11 (see [6]). LetC be a closed convex subset of a real Hilbert spaceH. Let F1 and F2 be two
mappings from C × C → R satisfying (A1)–(A4) and let S1,λ and S2,μ be defined as in Lemma 2.10
associated to F1 and F2, respectively. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem (1.8) if
and only if x∗ is a fixed point of the mapping G : C → C defined by

G(x) = S1,λ
(
S2,μx

)
, ∀x ∈ C, (2.12)

where y∗ = S2,μx
∗.

Proof. By a similar argument as in the proof of Proposition 2.1 in [6], we obtain the desired
result.

We note from Lemma 2.11 that the mapping G is nonexpansive. Moreover, if C is
a closed bounded convex subset of H, then the solution of problem (1.8) always exists.
Throughout this paper, we denote the set of solutions of (1.8) by Ω.

3. Main Result

In this section, we prove a weak convergence theorem for finding a common element of the
set of fixed points of a quasi-nonexpansive mapping and the set of solutions of the system of
mixed equilibrium problems.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let F1 and F2 be two
bifunctions from C × C → R satisfying (A1)–(A4). Let λ, μ > 0 and let S1,λ and S2,μ be defined
as in Lemma 2.10 associated to F1 and F2, respectively. Let T be a quasi-nonexpansive mapping of C
into itself such that F(T) ∩Ω/= ∅. Suppose x0 = x ∈ C and {xn}, {yn}, {zn} are given by

zn ∈ C, F2(zn, z) + ϕ(z) − ϕ(zn) +
1
μ
〈z − zn, zn − xn〉 ≥ 0, ∀z ∈ C,

yn ∈ C, F1
(
yn, z

)
+ ϕ(z) − ϕ

(
yn

)
+
1
λ

〈
z − yn, yn − zn

〉 ≥ 0, ∀z ∈ C,

xn+1 = αnxn + (1 − αn)Tyn,

(3.1)

for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1) and satisfy lim infn→∞αn(1 − αn) > 0. Then
{xn} converges weakly to x = limn→∞PF(T)∩Ωxn and (x, y) is a solution of problem (1.8), where
y = S2,μx.
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Proof. Let x∗ ∈ F(T)∩Ω. Then x∗ = Tx∗ and x∗ = S1,λ(S2,μx
∗). Put y∗ = S2,μx

∗, yn = S1,λzn and
zn = S2,μxn. Since

∥
∥yn − x∗∥∥ =

∥
∥S1,λzn − S1,λy

∗∥∥

≤ ∥
∥zn − y∗∥∥

=
∥
∥S2,μxn − S2,μx

∗∥∥

≤ ‖xn − x∗‖,

(3.2)

it follows by Lemma 2.1 that

‖xn+1 − x∗‖2 = ∥
∥αnxn + (1 − αn)Tyn

∥
∥2

=
∥∥αn(xn − x∗) + (1 − αn)

(
Tyn − x∗)∥∥2

= αn‖xn − x∗‖2 + (1 − αn)
∥∥Tyn − x∗∥∥2 − αn(1 − αn)

∥∥Tyn − xn

∥∥2

≤ αn‖xn − x∗‖2 + (1 − αn)
∥∥yn − x∗∥∥2 − αn(1 − αn)

∥∥Tyn − xn

∥∥2

≤ αn‖xn − x∗‖2 + (1 − αn)‖xn − x∗‖2 − αn(1 − αn)
∥∥Tyn − xn

∥∥2

= ‖xn − x∗‖2 − αn(1 − αn)
∥∥Tyn − xn

∥∥

≤ ‖xn − x∗‖2.

(3.3)

Hence {‖xn+1 − x∗‖} is a decreasing sequence and therefore limn→∞‖xn − x∗‖ exists. This
implies that {xn}, {yn}, {zn}, and {Tyn} are bounded. From (3.3), we note that

αn(1 − αn)
∥∥Tyn − xn

∥∥ ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.4)

Since 0 < a ≤ αn ≤ b < 1 and limn→∞‖xn − x∗‖2 = limn→∞‖xn+1 − x∗‖2, we obtain

a(1 − b)
∥∥Tyn − xn

∥∥ ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 −→ 0. (3.5)

This implies that limn→∞‖Tyn−xn‖ = 0. Since S1,λ and S2,μ are firmly nonexpansive, it follows
that

∥∥zn − y∗∥∥2 =
∥∥S2,μxn − S2,μx

∗∥∥2

≤ 〈
S2,μxn − S2,μx

∗, xn − x∗〉

=
1
2

(∥∥zn − y∗∥∥2 + ‖xn − x∗‖2 − ∥∥zn − y∗ − xn + x∗∥∥2
)

(3.6)
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and so ‖zn − y∗‖2 ≤ ‖xn − x∗‖2 − ‖zn − xn + x∗ − y∗‖2. By the convexity of ‖ · ‖2, we have

‖xn+1 − x∗‖2 = ∥
∥αnxn + (1 − αn)Tyn

∥
∥2

=
∥
∥αn(xn − x∗) + (1 − αn)

(
Tyn − x∗)∥∥2

≤ αn‖xn − x∗‖2 + (1 − αn)
∥
∥Tyn − x∗∥∥2

≤ αn‖xn − x∗‖2 + (1 − αn)
∥
∥yn − x∗∥∥2

≤ αn‖xn − x∗‖2 + (1 − αn)
∥
∥zn − y∗∥∥2

≤ αn‖xn − x∗‖2 + (1 − αn)
[
‖xn − x∗‖2 − ∥

∥zn − xn + x∗ − y∗∥∥2
]
.

(3.7)

This implies that

(1 − αn)
∥∥zn − xn + x∗ − y∗∥∥2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.8)

Since 0 < a ≤ αn ≤ b < 1 and limn→∞‖xn − x∗‖2 = limn→∞‖xn+1 − x∗‖2, we obtain limn→∞‖zn−
xn + x∗ − y∗‖ = 0. Similarly, we note that

∥∥yn − x∗∥∥2 =
∥∥S1,λzn − S1,λy

∗∥∥2

≤ 〈
S1,λzn − S1,λy

∗, zn − y∗〉

=
1
2

(∥∥yn − x∗∥∥2 +
∥∥zn − y∗∥∥2 − ∥∥yn − x∗ − zn + y∗∥∥2

)

≤ 1
2

(∥∥yn − x∗∥∥2 + ‖xn − x∗‖2 − ∥∥yn − zn − x∗ + y∗∥∥2
)

(3.9)

and so ‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖yn − zn − x∗ + y∗‖2. Thus, we have

‖xn+1 − x∗‖2 ≤ αn‖xn − x∗‖2 + (1 − αn)
∥∥yn − x∗∥∥2

≤ αn‖xn − x∗‖2 + (1 − αn)
[
‖xn − x∗‖2 − ∥∥yn − zn − x∗ + y∗∥∥2

] (3.10)

and hence

(1 − αn)
∥∥yn − zn − x∗ + y∗∥∥2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.11)

It follows from 0 < a ≤ αn ≤ b < 1 and limn→∞‖xn − x∗‖2 = limn→∞‖xn+1 − x∗‖2 that
limn→∞‖yn − zn − x∗ + y∗‖ = 0.Hence

∥∥Tyn − yn

∥∥ ≤ ∥∥Tyn − xn

∥∥ +
∥∥xn − zn − x∗ + y∗∥∥ +

∥∥zn − yn + x∗ − y∗∥∥ −→ 0, (3.12)
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and therefore

∥
∥yn − xn

∥
∥ ≤ ∥

∥yn − Tyn

∥
∥ +

∥
∥Tyn − xn

∥
∥ −→ 0. (3.13)

Since {yn} is a bounded sequence, there exists a subsequence {yni} ⊂ {yn} such that {yni}
converges weakly to x. From Lemma 2.5, we have x ∈ F(T). Let G be a mapping which is
defined as in Lemma 2.11. Thus, we have

∥
∥yn −G

(
yn

)∥∥ =
∥
∥S1,λS2,μxn −G

(
yn

)∥∥ =
∥
∥G(xn) −G

(
yn

)∥∥ ≤ ∥
∥xn − yn

∥
∥, (3.14)

and hence

‖xn −G(xn)‖ ≤ ∥∥xn − yn

∥∥ +
∥∥yn −G

(
yn

)∥∥ +
∥∥G

(
yn

) −G(xn)
∥∥ ≤ 3

∥∥xn − yn

∥∥ −→ 0. (3.15)

From limn→∞‖xn − yn‖ = 0 and yni ⇀ x, we get xni ⇀ x. According to Lemmas 2.2
and 2.11, we have x ∈ Ω. Hence x ∈ F(T) ∩ Ω. Since yni ⇀ x and ‖yn − xn‖ → 0, we obtain
xni ⇀ x. Let {xnj} be another subsequence of {xn} such that {xnj} converges weakly to x̂.
We may show that x = x̂, suppose not. Since limn→∞‖xn − x∗‖ exists for all x∗ ∈ F(T) ∩Ω, it
follows by the Opial’s condition that

lim
n→∞

‖xn − x‖ = lim inf
i→∞

‖xni − x‖ < lim inf
i→∞

‖xni − x̂‖ = lim
n→∞

‖xn − x̂‖

= lim inf
j→∞

∥∥∥xnj − x̂
∥∥∥ < lim inf

j→∞

∥∥∥xnj − x
∥∥∥ = lim

n→∞
‖xn − x‖.

(3.16)

This is a contradiction. Thus, we have x = x̂. This implies that {xn} converges weakly to
x ∈ F(T) ∩ Ω. Put un = PF(T)∩Ωxn. Finally, we show that x = limn→∞un. Now from (2.2) and
x ∈ F(T) ∩Ω, we have

〈x − un, un − xn〉 ≥ 0. (3.17)

Since {‖xn−x∗‖} is nonnegative and decreasing for any x∗ ∈ F(S)∩Ω, it follows by Lemma 2.6
that {un} converges strongly to some x̂ ∈ F(T) ∩Ω and hence

〈x − x̂, x̂ − x〉 ≥ 0. (3.18)

Therefore, x = x̂.

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space H. Let F1 and F2 be two
bifunctions from C × C → R satisfying (A1)–(A4). Let λ, μ > 0 and let S1,λ and S2,μ be defined as
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in Lemma 2.10 associated to F1 and F2, respectively. Let T be a nonspreading mapping of C into itself
such that F(T) ∩Ω/= ∅. Suppose x0 = x ∈ C and {xn}, {yn}, {zn} are given by

zn ∈ C, F2(zn, z) + ϕ(z) − ϕ(zn) +
1
μ
〈z − zn, zn − xn〉 ≥ 0, ∀z ∈ C,

yn ∈ C, F1
(
yn, z

)
+ ϕ(z) − ϕ

(
yn

)
+
1
λ

〈
z − yn, yn − zn

〉 ≥ 0, ∀z ∈ C,

xn+1 = αnxn + (1 − αn)Tyn,

(3.19)

for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1) and satisfy lim infn→∞αn(1 − αn) > 0. Then
{xn} converges weakly to x = limn→∞PF(T)∩Ωxn and (x, y) is a solution of problem (1.8), where
y = S2,μx.

Setting λ = μ and T = I in Theorem 3.1, we have following result.

Corollary 3.3. Let C be a closed convex subset of a real Hilbert space H. Let F1 and F2 be two
bifunctions from C × C → R satisfying (A1)–(A4). Let μ > 0 and let S1,μ and S2,μ be defined as in
Lemma 2.10 associated to F1 and F2, respectively, such that Ω/= ∅. Suppose x0 = x ∈ C and {xn},
{yn}, {zn} are given by

zn ∈ C, F2(zn, z) + ϕ(z) − ϕ(zn) +
1
μ
〈z − zn, zn − xn〉 ≥ 0, ∀z ∈ C,

yn ∈ C, F1
(
yn, z

)
+ ϕ(z) − ϕ

(
yn

)
+
1
μ

〈
z − yn, yn − zn

〉 ≥ 0, ∀z ∈ C,

xn+1 = αnxn + (1 − αn)yn,

(3.20)

for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1) and satisfy lim infn→∞αn(1 − αn) > 0.
Then {xn} converges weakly to x = limn→∞PΩxn and (x, y) is a solution of problem (1.9), where
y = S2,μx.

Setting F2 = ϕ = 0 in Theorem 3.1, we have the following result.

Corollary 3.4. Let C be a closed convex subset of a real Hilbert space H. Let F1 be a bifunction from
C × C → R satisfying (A1)–(A4). Let λ > 0 and let T1,λ be defined as in Lemma 2.9 associated to
F1. Let T be a quasi-nonexpansive mapping of C into itself such that F(T) ∩ EP(F1)/= ∅. Suppose
x0 = x ∈ C and {xn} and {yn} are given by

yn ∈ C; F1
(
yn, z

)
+
1
λ

〈
z − yn, yn − xn

〉 ≥ 0, ∀z ∈ C,

xn+1 = αnxn + (1 − αn)Tyn,

(3.21)

for all n ∈ N, where {αn} ⊂ [a, b] for some a, b ∈ (0, 1) and satisfy lim infn→∞αn(1 − αn) > 0. Then
{xn} converges weakly to x = limn→∞PF(T)∩EP(F)xn and (x, y) is a solution of problem (1.7), where
y = T1,λx.
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