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We study the global existence and uniqueness of a solution to an initial boundary value problem
for the nonlinear wave equation with the p-Laplacian operator utt−div(|∇u|p−2∇u)−Δut+g(x, u) =
f(x). Further, the asymptotic behavior of solution is established. The nonlinear term g likes
g(x, u) = a(x)|u|α−1u − b(x)|u|β−1u with appropriate functions a(x) and b(x), where α > β ≥ 1.

1. Introduction

This paper is concerned with the global existence, uniqueness, and asymptotic behavior of
solution for the nonlinear wave equation with the p-Laplacian operator

utt − div
(
|∇u|p−2∇u

)
−Δut + g(x, u) = f(x), in Ω × (0,∞), (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω; u(x, t) = 0, on ∂Ω × [0,∞), (1.2)

where 2 ≤ p < n and Ω is a boundary domain in Rn with smooth boundary ∂Ω. The
assumptions on f, g, u0 and u1 will be made in the sequel.

Recently, Ma and Soriano in [1] investigated the global existence of solution u(t) for
the problem (1.1)-(1.2) under the assumptions

p = n, g(u)u ≥ 0,
∣∣g(u)∣∣ ≤ Cβ exp

(
β|u|n/(n−1)

)
, u ∈ R. (1.3)
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Moreover, if f = 0 and ug(u) ≥ G(u), then there exist positive constants c and γ such that

E(t) ≤ c exp
(−γt), t ≥ 0, if n = 2, (1.4)

E(t) ≤ c(1 + t)−n/(n−2), t ≥ 0, if n ≥ 3, (1.5)

where

E(t) =
1
2
‖ut(t)‖22 +

1
n
‖∇u(t)‖nn +

∫

Ω
G(x, u(t))dx (1.6)

with G(x, u) =
∫u
0 f(x, s)ds.

Gao and Ma in [2] also considered the global existence of solution for (1.1)-(1.2). In
Theorem 3.1 of [2], the similar results to (1.4)-(1.5) for asymptotic behavior of solution were
obtained if the nonlinear function g(x, u) = g(u) satisfies

∣∣g(u)∣∣ ≤ a|u|σ−1 + b, ug(u) ≥ ρG(u) ≥ 0, in Ω × R, (1.7)

where a, b > 0, ρ > 0, 1 < σ < np/(n − p) if 1 < p < n and 1 < σ < ∞ if n ≤ p.
More precisely, they obtained that the global existence of solution for (1.1)-(1.2) if one

of the following assumptions was satisfied:

(i) 1 < σ < p, the initial data (u0, u1) ∈ W
1,p
0 (Ω) × L2(Ω);

(ii) p < σ, the initial data (u0, u1) ∈ W
1,p
0 (Ω) × L2(Ω) is small.

Similar consideration can be found in [3–5]. In [6], Yang obtained the uniqueness of
solution of the Laplacian wave equation (1.1)-(1.2) for n = 1. To the best of our knowledge,
there are few information on the uniqueness of solution of (1.1)-(1.2) for n > 1 and p > 2.

In this paper, we are interested in the global existence, the uniqueness, the continuity
and the asymptotic behavior of solution for (1.1)-(1.2). The nonlinear term g in (1.1) likes
g(x, u) = a(x)|u|α−1u − b(x)|u|β−1u with α > β ≥ 1 and a, b ≥ 0. Obviously, the sign condition
ug(u) ≥ 0 fails to hold for this type of function.

For these purposes, we must establish the global existence of solution for (1.1)-(1.2).
Several methods have been used to study the existence of solutions to nonlinear wave
equation. Notable among them is the variational approach through the use of Faedo-Galerkin
approximation combined with the method of compactness and monotonicity, see [7]. To
prove the uniqueness, we need to derive the various estimates for assumed solution u(t).
For the decay property, like (1.5), we use the method recently introduced by Martinez [8] to
study the decay rate of solution to the wave equation utt −Δu + g(ut) = 0 in Ω ×R+, where Ω
is a bounded domain of Rn.

This paper is organized as follows. In Section 2, some assumptions and the main
results are stated. In Section 3, we use Faedo-Galerkin approximation together with a
combination of the compactness and the monotonicity methods to prove the global existence
of solution to problem (1.1)-(1.2). Further, we establish the uniqueness of solution by some a
priori estimate to assumed solutions. The proof of asymptotic behavior of solution is given in
Section 4.
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2. Assumptions and Main Results

We first give some notations and definitions. Let Ω be a bounded domain in Rn with smooth
boundary ∂Ω. We denote the space Lp and W

1,p
0 for Lp(Ω) and W

1,p
0 (Ω) and relevant norms

by ‖ · ‖p and ‖ · ‖1,p, respectively. In general, ‖ · ‖X denotes the norm of Banach space X. We
also denote by (·, ·) and 〈·, ·〉 the inner product of L2(Ω) and the duality pairing between
W

1,p
0 (Ω) and W−1,p′(Ω), respectively. As usual, we write u(t) instead u(x, t). Sometimes, let

u′(t) represent for ut(t) and so on.
If T > 0 is given and X is a Banach space, we denote by Lp(0, T ;X) the space of

functions which are Lp over (0, T) and which take their values inX. In this space, we consider
the norm

‖u‖Lp(0,T ;X) =

(∫T

0
‖u(t)‖pXdt

)1/p

, 1 ≤ p < ∞,

‖u‖L∞(0,T ;X) = ess sup
0≤t≤T

‖u(t)‖X.
(2.1)

Let us state our assumptions on f and g.

(A1) f ∈ Lp′ with p′ = p/(p − 1), p > 1.

(A2) Let g(x, u) ∈ C1(Ω × R) and satisfy

ug(x, u) + h1(x)|u| ≥ k0(G(x, u) + h1(x)|u|) ≥ 0, in Ω × R (2.2)

and growth condition

∣∣g(x, u)∣∣ ≤ k1
(|u|α + h2(x)

)
,

∣∣gu(x, u)
∣∣ ≤ k1

(
|u|α−1 + h3(x)

)
, in Ω × R (2.3)

with some k0, k1 > 0 and the nonnegative functions h1(x) ∈ Lp′ , h2 ∈ L2 ∩ L(α+1)/α, h3 ∈
L2 ∩ L(α+1)/(α−1), where 1 ≤ α ≤ np/(n − p) − 1, G(x, u) =

∫u
0 g(x, s)ds.

A typical function g is g(x, u) = a(x)|u|α−1u − b(x)|u|β−1u with the appropriate
nonnegative functions a(x) and b(x), where α > β ≥ 1.

Definition 2.1 (see [7]). A measurable function u = u(x, t) on Ω × R+ is said to be a (weak)
solution of (1.1)-(1.2) if all T > 0, u ∈ L∞(0, T ;W1,p

0 ), ut ∈ L2(0, T ;W1,2
0 ), utt ∈ L2(0, T ;W−1,p′),

and u satisfies (1.2)with (u0, u1) ∈ W
1,p
0 and the integral identity

∫

Ω

(
uttφ + |∇u|p−2∇u · ∇φ +∇ut · ∇φ + gφ − fφ

)
dx = 0 (2.4)

for all φ ∈ C∞
0 (Ω).

Now we are in a position to state our results.
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Theorem 2.2. Assume (A1)-(A2) hold and (u0, u1) ∈ W
1,p
0 ×L2. Then the problem (1.1)-(1.2) admits

a solution u(t) satisfying

u ∈ C
(
[0,∞); ,W1,2

0

)
∩ L∞

(
[0,∞); ,W1,p

0

)
,

ut ∈ L2
(
[0,∞); ,W1,2

0

)
, utt ∈ L2

loc

(
[0,∞); ,W−1,p′

)
,

(2.5)

and the following estimates

‖∇ut(t)‖22 + ‖∇u(t)‖pp +
∫ t

0
‖∇ut(s)‖22ds ≤ C1(A + B), ∀t ≥ 0, (2.6)

where

A = ‖u0‖pp + ‖∇u0‖α+1p + ‖u1‖22, B = H1 +H2 +H3 + F, (2.7)

with F = ‖f‖p′p′ , Hi = ‖hi‖p
′

p′ , i = 1, 2,H3 = ‖h3‖λ1λ1 , λ1 = n/2.

Further, if 1 ≤ α ≤ (n + p)/(n − p) and 2 ≤ p ≤ 4, the solution satisfying (2.5)-(2.6) is
unique.

Theorem 2.3. Let u be a solution of (1.1)-(1.2) with f = 0. In addition, let 2 < p < n and

g(x, u)u ≥ pG(x, u) ≥ 0, in Ω × R. (2.8)

Then there exists C0 = C0(u0, u1), such that

‖∇ut(t)‖22 + ‖∇u(t)‖pp +
∫

Ω
G(x, u(x, t))dx ≤ C0(1 + t)−p/(p−2), ∀t ≥ 0. (2.9)

The following theorem shows that the asymptotic estimate (2.9) can be also derived if
assumption (2.8) fails to hold.

Theorem 2.4. Let u be a solution of (1.1)-(1.2) with f = 0. In addition, let 2 < p < n and

g(x, u) = λ|u|α−1u − |u|β−1u, in Ω × R (2.10)

with p < β+1 < 2p, β < α < np/(n−p). Then there existsC0 = C0(u0, u1) > 0 and λ2 = λ2(α, β) > 0,
such that λ > λ2, the solution u(t) satisfies

‖∇ut(t)‖22 + ‖∇u(t)‖pp + ‖u(t)‖α+1α+1 ≤ C0(1 + t)−p/(p−2), ∀t ≥ 0. (2.11)
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3. Proof of Theorem 2.2

In this section, we assume that all assumptions in Theorem 2.2 are satisfied. We first prove
the global existence of a solution to problem (1.1)-(1.2) with the Faedo-Galerkin method as
in [1, 2, 7, 9].

Let r be an integer for which the embedding Hr
0(Ω) = Wr,2

0 (Ω) ↪→ W
1,p
0 (Ω) is

continuous. Let wj(j = 1, 2, . . .) be eigenfunctions of the spectral problem

(
wj, v

)
Hr

0
= λj

(
wj, v

)
, ∀v ∈ Hr

0(Ω), (3.1)

where (·, ·)Hr
0
represents the inner product in Hr

0(Ω). Then the family {w1, w2, . . . , wm, . . .}
yields a basis for both Hr

0(Ω) and L2(Ω). For each integer m, let Vm = span{w1, w2, . . . , wm}.
We look for an approximate solution to problem (1.1)-(1.2) in the form

um(t) =
m∑
j=1

Tjm(t)wj, (3.2)

where Tjm(t) are the solution of the nonlinear ODE system in the variant t:

(
u′′
m,wj

) − (
Δpum,wj

) − (
Δu′

m,wj

)
+
(
g,wj

)
=
(
f,wj

)
, j = 1, 2, . . . m (3.3)

with the p-Laplacian operator Δpu = div(|∇u|p−2∇u) and the initial conditions

um(0) = u0m, u′
m(0) = u1m, (3.4)

where u0m and u1m are chosen in Vm so that

u0m −→ u0 in W
1,p
0 , u1m −→ u1 in L2. (3.5)

As it is well known, the system (3.3)-(3.4) has a local solution um(t) on some interval
[0, tm).We claim that for any T > 0, such a solution can be extended to thewhole interval [0, T]
by using the first a priori estimate below. We denote by Ck the constant which is independent
ofm and the initial data u0 and u1.

Multiplying (3.3) by T ′
jm(t) and summing the resulting equations over j, we get after

integration by parts

E′
m(t) +

∥∥∇u′
m(t)

∥∥2
2 = 0, ∀t ≥ 0, (3.6)

where

Em(t) =
1
2
∥∥u′

m(t)
∥∥2
2 +

1
p
‖∇um(t)‖pp +

∫

Ω
G(x, um)dx −

∫

Ω
f(x)umdx. (3.7)
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By (2.2) and Young inequality, we have

∫

Ω
G(x, um)dx ≥ −

∫

Ω
h1(x)|um|dx ≥ −ε‖∇um‖pp − Cε‖h1‖p

′

p′ ,

∫

Ω
f(x)umdx ≥ −ε‖∇um‖pp − Cε

∥∥f∥∥p′

p′ .

(3.8)

Let ε > 0 be so small that 2p−1 − 4ε ≥ p−1. Then

Em(t) ≥ 1
2
∥∥u′

m(t)
∥∥2
2 +

1
2p

‖∇um(t)‖pp − C1(H1 + F), (3.9)

or

∥∥u′
m(t)

∥∥2
2 + ‖∇um(t)‖pp ≤ C1(Em(t) +H1 + F1) (3.10)

for some C1 > 0.
Thus, it follows from (3.6) and (3.10) that, for any m = 1, 2, . . . , and t ≥ 0

∥∥u′
m(t)

∥∥2
2 + ‖∇um(t)‖pp +

∫ t

0
‖∇um(s)‖22ds ≤ C2(Em(0) +H1 + F1). (3.11)

By assumption (A2), we obtain that α + 1 ≤ np/(n − p) and

∣∣∣∣
∫

Ω
G(x, um)dx

∣∣∣∣ ≤ k1

(
‖um‖α+1α+1 +

∫

Ω
|h2||um|dx

)

≤ C2

(
‖∇um‖α+1p + ‖um‖pp + ‖h2‖p

′

p′

)

≤ C2

(
‖∇um‖α+1p + ‖∇um‖pp +H2

)
.

(3.12)

Then it follows (3.5) and (3.6) that

Em(t) ≤ Em(0) =
1
2
∥∥u′

1m

∥∥2
2 +

1
p
‖∇u0m‖pp +

∫

Ω
G(x, u0m) dx −

∫

Ω
f(x)u0mdx

≤ C2

(
‖u1‖22 + ‖∇u0‖pp + ‖∇u0‖αp +H1 +H2 + F

)

≤ C2(A + B).

(3.13)

Hence, for any t ≥ 0 and m = 1, 2, . . ., we have from (3.11) and (3.13) that

∥∥u′
m(t)

∥∥2
2 + ‖∇um(t)‖pp +

∫ t

0

∥∥∇u′
m(s)

∥∥2
2ds ≤ C2(A + B), ∀t ≥ 0. (3.14)
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With this estimate we can extend the approximate solution um(t) to the interval [0, T]
and we have that

{um(t)} is bounded in L∞
(
0, T ;W1,p

0

)
, (3.15)

{u′
m(t)} is bounded in L∞(0, T ;L2), (3.16)

{u′
m(t)} is bounded in L2

(
0, T ;W1,2

0

)
. (3.17)

Now we recall that operator −Δpu = −div(|∇u|p−2∇u) is bounded, monotone, and
hemicontinuous fromW

1,p
0 toW−1,p′ with p ≥ 2. Then we have

{−Δpum(t)
}
is bounded L∞

(
0, T ;W−1,p′

)
. (3.18)

By the standard projection argument as in [1], we can get from the approximate
equation (3.3) and the estimates (3.15)–(3.17) that

{
u′′
m(t)

}
is bounded in L2(0, T ; H−r(Ω)

)
. (3.19)

From (3.15)-(3.16), going to a subsequence if necessary, there exists u such that

um ⇀ u weakly star in L∞
(
0, T ;W1,p

0

)
, (3.20)

u′
m ⇀ u′ weakly star in L∞

(
0, T ;L2

)
, (3.21)

u′
m ⇀ u′ weakly in L2

(
0, T ;L2

)
, (3.22)

and in view of (3.18), there exists χ(t) such that

−Δpum(t) ⇀ χ(t) weakly star in L∞
(
0, T ;W−1,p′

)
. (3.23)

By applying the Lions-Aubin compactness Lemma in [7], we get, from (3.15) and
(3.16),

um −→ u strongly in L2
(
0, T ;L2

)
, (3.24)

and um → u a.e. in Ω × (0, T).
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Since the embedding W1,2
0 ↪→ L2 is compact, we get, from (3.18) and (3.19),

u′
m −→ u′ strongly in L2

(
0, T ;L2

)
. (3.25)

Using the growth condition (2.3) and (3.25), we see that

∫T

0

∫

Ω

∣∣g(x, um(x, t))
∣∣(α+1)/αdx dt (3.26)

is bounded and

g(x, um) −→ g(x, u) a.e. in (Ω × T). (3.27)

Therefore, from [7, Chapter 1, Lemma 1.3], we infer that

g(x, um) ⇀ g(x, u) weakly in L(α+1)/α
(
0, T ;L(α+1)/α

)
. (3.28)

With these convergences, we can pass to the limit in the approximate equation and
then

d

dt

(
u′(t), v

)
+
〈
χ(t), v

〉
+
(∇u′,∇v

)
+
(
g, v

)
=
(
f, v

)
, ∀v ∈ W

1,p
0 . (3.29)

Obviously, u satisfies the estimates (2.5)-(2.6). Finally, using the standard monotonic-
ity argument as done in [1, 7], we get that χ(t) = −Δpu(t). This completes the proof of
existence of solution u(t).

To prove the uniqueness, we assume that u(t) and v(t) are two solutions which satisfy
(2.5)-(2.6) and u(0) = v(0), ut(0) = vt(0). Setting U(t) = ut(t), V (t) = vt(t), and W(t) =
U(t) − V (t). We see from (1.1) and (1.2) that

Wt −ΔW − div
(
|∇u|p−2∇u − |∇v|p−2∇v

)
= g(x, v) − g(x, u). (3.30)

Multiplying (3.30) by W and integrating over Ω, we have

1
2
d

dt
‖W(t)‖22 + ‖∇W(t)‖22 +

∫

Ω

(
|∇u|p−2∇u − |∇v|p−2∇v

)
∇Wdx =

∫

Ω

(
g(x, v) − g(x, u)

)
Wdx,

‖W(t)‖22 + 2
∫ t

0
‖∇W(s)‖22ds + 2

∫ t

0

∫

Ω

(
|∇u|p−2∇u − |∇v|p−2∇v

)
∇W dxdτ

= 2
∫ t

0

∫

Ω

(
g(x, v) − g(x, u)

)
W dxds

(3.31)
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Now setting Uε = εu + (1 − ε)v, 0 ≤ ε ≤ 1, then

∫ t

0

∫

Ω

∣∣∣
(
|∇u|p−2∇u − |∇v|p−2∇v

)
∇W

∣∣∣dx dτ

≤
∫ t

0

∫

Ω

∣∣∣∣∣
∫1

0

d

dε

(
|∇Uε|p−2∇Uε

)
dε

∣∣∣∣∣|∇W |dx dτ

≤ (
p − 1

) ∫ t

0

∫

Ω

∫1

0
|∇Uε|p−2|∇(u(τ) − v(τ))||∇W |dε dx dτ ≡ I.

(3.32)

Note that

|∇Uε(τ)| ≤ |∇u(τ)| + |∇v(τ)|,

|∇(u(τ) − v(τ))| ≤
∫ τ

0
|∇(us(s) − vs(s))|ds =

∫ τ

0
|∇W(s)|ds.

(3.33)

Then, by the estimates (2.6) and 2 ≤ p ≤ 4, we have

I ≤ C1

∫ t

0

∫

Ω

∫ τ

0

(
|∇u(τ)|p−2 + |∇v(τ)|p−2

)
|∇W(s)||∇W(τ)|dx dsdτ

≤ C1

∫ t

0

∫ τ

0

(
‖∇u(τ)‖p−2p + ‖∇v(τ)‖p−2p

)
‖∇W(s)‖2‖∇W(τ)‖2dsdτ

≤ C1(A + B)(p−2)/p
∫ t

0

∫ τ

0
‖∇W(s)‖2‖∇W(τ)‖2dsdτ

≤ C1(A + B)(p−2)/p
(∫ t

0
‖∇W(s)‖2ds

)2

≤ C2t

∫ t

0
‖∇W(s)‖22ds

(3.34)

with C2 = C1(A + B)(p−2)/p.
For the term of the right side to (3.31), we have

G1 =
∫ t

0

∫

Ω

∣∣g(x, v) − g(x, u)
∣∣|W |dx dτ =

∫ t

0

∫

Ω

∣∣∣∣∣
∫1

0

d

dε
g(x,Uε)dε

∣∣∣∣∣|W |dx dτ

≤
∫ t

0

∫

Ω

∫1

0

∣∣gu(x,Uε)‖u(τ) − v(τ)‖W(τ)
∣∣dε dxdτ

≤
∫ t

0

∫ τ

0

∫1

0

∥∥gu(x,Uε)
∥∥
λ1
dε‖us(s) − vs(s)‖λ2‖W(τ)‖λ2dε dsdτ

(3.35)

with λ1 = n/2, λ2 = 2n/(n − 2).
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By the assumption (A2) and 1 ≤ α ≤ (n + p)/(n − p), we see that

∥∥gu(x,Uε)
∥∥λ1
λ1

≤ k1

∫

Ω

(
|u(τ)|α−1 + |v(τ)|α−1 + |h3|

)n/2
dx

≤ C3

∫

Ω

(
|u(τ)|n(α−1)/2 + |v(τ)|n(α−1)/2 + |h3|n/2

)
dx

≤ C3

(
‖∇u(τ)‖n(α−1)/2p + ‖∇v(τ)‖n(α−1)/2p +H3

)
.

(3.36)

By the estimate (2.6), we have

‖∇u(t)‖p, ‖v(t)‖p ≤ C2(A + B)1/p, ∀t ≥ 0. (3.37)

Therefore, there exists C4 > 0, depending u0, v0, f, hi such that

∥∥gu(x,Uε)
∥∥
λ1

≤ C4, ∀t ≥ 0. (3.38)

Since u, v ∈ W
1,p
0 ⊂ W1,2

0 , ut, vt ∈ W1,2
0 , we get

‖us(s) − vs(s)‖λ2 ≤ C0‖∇(us(s) − vs(s))‖2 = C0‖∇W(s)‖2,

‖W(τ)‖2 ≤ C0‖∇W(τ)‖2 .
(3.39)

Then (3.35) becomes

G1 ≤ C4

∫ t

0

∫ τ

0
‖W(s)‖λ2‖W(τ)‖λ2dsdτ ≤ C4

(∫ t

0
‖∇W(s)‖2ds

)2

≤ C4t

∫ t

0
‖∇W(s)‖22ds.

(3.40)

Therefore, it follows from (3.31), (3.34), and (3.40) that

‖W(t)‖22 + 2
∫ t

0
‖∇W(s)‖22ds ≤ (C2 + C4)t

∫ t

0
‖∇W(s)‖22. (3.41)

The integral inequality (3.41) shows that there exists T1 > 0, such that

W(t) = 0, 0 ≤ t ≤ T1. (3.42)

Consequently, u(t) − v(t) = u(0) − v(0) = 0, 0 ≤ t ≤ T1.
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Repeating the above procedure, we conduce that u(t) = v(t) on [T1, 2T1], [2T1, 3T1], . . .
and u(t) = v(t) on [0,∞). This ends the proof of uniqueness.

Next, we prove that u ∈ C([0,∞);W1,2
0 ). Let t > s ≥ 0, we have

‖∇(u(t) − u(s))‖22 =
∫

Ω

∣∣∣∣∣
∫ t

s

∇uτ(τ)dτ

∣∣∣∣∣
2

dx ≤
∫

Ω

∫ t

s

|∇uτ(τ)|2dsdx(t − s)

= (t − s)
∫ t

s

‖∇uτ(τ)‖22dτ −→ 0, as t −→ s.

(3.43)

This shows that u(t) ∈ C([0,∞);W1,2
0 ). We complete the proof of Theorem 2.2.

4. Proof of Theorem 2.3

Let us first state a well-known lemma that will be needed later.

Lemma 4.1 (see [10]). Let E : R+ → R+ be a nonincreasing function and assume that there are
constants q ≥ 0 and γ > 0, such that

∫∞

S

Eq+1(t)dt ≤ γ−1Eq(0)E(S), ∀S ≥ 0. (4.1)

Then, we have

E(t) ≤ E(0)
(

1 + q

1 + qγt

)1/q

, ∀t ≥ 0, if q > 0,

E(t) ≤ E(0)e1−γt, ∀t ≥ 0, if q = 0.

(4.2)

4.1. The Proof of Theorem 2.3

Let

E(t) =
1
2
‖ut(t)‖22 +

1
p
‖∇u(t)‖pp +

∫

Ω
G(x, u)dx, t ≥ 0. (4.3)

Then, we have from (1.1) that

E′(t) + ‖∇ut(t)‖22 = 0, ∀t ≥ 0. (4.4)

This shows that E(t) is nonincreasing in [0,∞).
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Multiplying (1.1) by Eq(t)u(t) with q = (p − 2)/p > 0, we get

∫T

S

Eq(t)
∫

Ω
u
(
utt −Δpu −Δut + g(x, u)

)
dx dt = 0, ∀T > S ≥ 0. (4.5)

Note that

∫T

S

Eq(t)(u, utt)dt = Eq(t)(u, ut)|TS −
∫T

S

(
qEq−1(t)E′(t)(u, ut) + Eq(t)‖ut(t)‖22

)
dt

−
∫T

S

Eq(t)
(
u,Δpu

)
dt =

∫T

S

Eq(t)‖∇u(t)‖ppdt,

−
∫T

S

Eq(t)(u,Δut)dt =
∫T

S

Eq(t)(∇u,∇ut)dt.

(4.6)

Then we have from (4.5) that

p

∫T

S

Eq+1(t)dt = −Eq(t)(u, ut)|TS + q

∫T

S

Eq−1(t)E′(t)(u, ut)dt

+
(
1 +

p

2

)∫T

S

Eq(t)‖ut(t)‖22dt −
∫T

S

Eq(t)(∇u,∇ut)dt

+
∫T

S

Eq(t)
∫

Ω

(
pG(u) − ug(u)dx dt.

(4.7)

Since
∫
Ω G(x, u)dx ≥ 0, E(t) ≥ 0. Further, by (4.4), we see that

‖∇ut(t)‖2 ≤
(−E′(t)

)1/2
, ‖∇u(t)‖p ≤ pE1/p(t), ∀t ≥ 0,

|Eq(t)(u, ut)| ≤ Eq(t)‖u(t)‖2‖ut(t)‖2 ≤ C0E
q(t)‖∇u(t)‖p‖∇ut(t)‖2 ≤ C0(E(t))μ1

(4.8)

with μ1 = q + 1/2 + 1/p.
This gives

Eq(t)(u, ut)|TS ≤ C1E
μ1(S), ∀T > S ≥ 0, (4.9)

where the fact that E(t) is nonincreasing is used.
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Similarly, we derive the following estimates

∫T

S

Eq(t)‖ut(t)‖22dt ≤ C1

∫T

S

Eq(t)‖∇ut(t)‖22dt

= C1

∫T

S

Eq(t)
(−E′(t)

)
dt ≤ C1E

q+1(S),

(4.10)

q

∫T

S

∣∣∣Eq−1(t)E′(t)(u, ut)
∣∣∣dt ≤ C1

∫T

S

Eq−1(t)
∣∣E′(t)

∣∣‖u(t)‖2‖ut(t)‖2dt

≤ C1

∫T

S

Eμ1−1(t)
∣∣E′(t)

∣∣dt ≤ C1E
μ1(S),

(4.11)

∫T

S

|Eq(t)(∇u,∇ut)|dt ≤
∫T

S

Eq(t)‖∇u(t)‖2‖∇ut(t)‖2dt

≤ C1

∫T

S

Eq+1/p(t)
(−E′(t)

)1/2
dt

≤
∫T

S

Eq+1(t)dt + C1

∫T

S

Eq+2/p−1(t)
(−E′(t)

)
dt

≤
∫T

S

Eq+1(t)dt + C1E
q+2/p(S).

(4.12)

Then we get from (4.9)–(4.12) that

∫T

S

Eq+1(t)dt ≤ C1

(
Eμ1(S) + Eq+1(S) + Eq+2/p(S)

)

≤ C1E(S)
(
Eμ1(S) + Eq(S) + Eq+2/p−1(S)

)

≤ C1E(S)Eq(0)
(
E1/p−1/2(0) + 1 + E2/p−1(0)

)

≡ γ−1Eq(0)E(S),

(4.13)

for any T > S ≥ 0, letting T → ∞, we find that
∫∞

S

Eq+1(t)dt ≤ γ−1E(S)Eq(0), ∀S ≥ 0. (4.14)

By Lemma 4.1, we obtain that

E(t) =
1
2
‖ut(t)‖22 +

1
p
‖∇u(t)‖pp +

∫

Ω
G(x, u)dx ≤ E(0)

(
1 + q

1 + qγt

)1/q

≤ C2E(0)(1 + t)−p/(p−2).

(4.15)

This is (2.9) and we complete the proof of Theorem 2.3.
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4.2. The Proof of Theorem 2.4

By Sobolev inequality, we know that there exists λ0 > 0 such that

λ0‖u‖pp ≤ ‖∇u‖pp, ∀u ∈ W
1,p
0 (Ω). (4.16)

Let u be a solution for (1.1)-(1.2) in Theorem 2.2. By (2.10),

G(u) =
λ

α + 1
|u|α+1 − 1

β + 1
|u|β+1. (4.17)

Obviously, there exists λ2 > 0, such that λ > λ2,

λ0
2p

|u|p +G(u) ≥ 1
2(α + 1)

|u|α+1, ∀u ∈ R. (4.18)

This implies that

λ0
2p

‖u‖pp +
∫

Ω
G(u)dx ≥ 1

2(α + 1)
‖u‖α+1α+1,

E(t) ≥ 1
2
‖ut(t)‖22 +

1
2p

‖∇u(t)‖pp +
1

2(α + 1)
‖u(t)‖α+1α+1.

(4.19)

On the other hand, we have, from (4.18) and (4.19),

pG(u) − ug(u) =
β + 1 − p

β + 1
|u|β+1 − λ

(
α + 1 − p

)

α + 1
|u|α+1

≤ β + 1 − p

β + 1
|u|β+1 = (

β + 1 − p
)( λ

α + 1
|u|α+1 −G(u)

)

≤ (
β + 1 − p

)(λ0
p
|u|p +G(u)

)
.

(4.20)

It shows that

∫T

S

Eq(t)
∫

Ω

(
pG(u) − gu

)
dxdt ≤ (

β + 1 − p
) ∫T

S

Eq+1(t)dt. (4.21)

Then, by (4.9) and (4.11)–(4.14), we have

(
2p − β − 1

) ∫T

S

Eq+1(t)dt ≤ C0

(
Eq+1/p+2(S) + Eq+1(S) + Eq+2/p(S)

)

≤ γ−1E(S)Eq(0).

(4.22)
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The applications of Lemma 4.1 and (4.19) yields that

‖ut(t)‖22 + ‖∇u(t)‖22 + ‖u(t)‖α+1α+1 ≤ C0(1 + t)−p/(p−2), ∀t ≥ 0. (4.23)

This ends the proof of Theorem 2.4.
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