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This paper proposes a new fuzzy adaptive exponential synchronization controller for uncertain
time-delayed chaotic systems based on Takagi-Sugeno (T-S) fuzzy model. This synchronization
controller is designed based on Lyapunov-Krasovskii stability theory, linear matrix inequality
(LMI), and Jesen’s inequality. An analytic expression of the controller with its adaptive laws of
parameters is shown. The proposed controller can be obtained by solving the LMI problem. A
numerical example for time-delayed Lorenz system is presented to demonstrate the validity of the
proposed method.

1. Introduction

Chaos synchronization is an important subject both theoretically and practically, for
applications requiring oscillations out of chaos, machine and building structural stability
analysis, chaos generators design and so on. Chaos synchronization, first described by
Fujisaka and Yamada [1] in 1983, did not received great attention until 1990 [2]. From then
on, chaos synchronization has been developed extensively due to its various applications
[3]. During the last decade, several techniques for handling chaos synchronization have been
developed, such as variable structure control [4], OGY method [5], observer-based control
[6], active control [7], backstepping design technique [8], H∞ approach [9], and passivity
based method [10].

Time delay inevitably appears in many physical systems such as aircraft, chemical,
and biological systems. Unlike ordinary differential equations, time delayed systems are
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infinite dimensional in nature and time-delay is, in many cases, a source of instability. The
stability issue and the performance of time delayed systems are, therefore, both of theoretical
and practical importance. Since Mackey and Glass [11] first found chaos in time delayed
system, there has been increasing interest in time delayed chaotic systems [12, 13]. The
synchronization problem for time delayed chaotic systems is also investigated by several
researchers [14–20].

In recent years, fuzzy logic methodology has been proven effective in dealing with
complex nonlinear systems containing certainties that are otherwise difficult to model.
Among various kinds of fuzzy methods, Takagi-Sugeno (T-S) fuzzy model provides a
successful method to describe certain complex nonlinear systems using some local linear
subsystems [21, 22]. In [23], a fuzzy feedback control method was proposed for chaotic
synchronization and chaotic model following control. The authors in [24, 25] proposed
fuzzy observer-based chaotic synchronization and secure communication. In [26, 27],
fuzzy adaptive synchronization methods for chaotic systems with unknown parameters
were proposed. In spite of these advances in T-S fuzzy model-based chaos control and
synchronization, most works were restricted to chaotic systems without time-delay. Due
to finite signal transmission times, switching speeds and memory effects, time delayed
systems are ubiquitous in nature, technology, and society [28, 29]. Time delayed chaotic
systems are also interesting because the dimension of their chaotic dynamics can be
increased by increasing the delay time sufficiently [30]. For this reason, the time delayed
chaotic system has been suggested as a good candidate for secure communication [31].
The dimension of solution space of time delayed chaotic systems is infinite and so more
than one positive Lyapunov exponents could be produced just by some low-dimension
delayed chaotic systems. Therefore, communication system with a higher security level
can be designed by means of time delayed chaotic systems. In addition, the time delayed
system can be considered as a special case of spatiotemporal system [32]. From the above
point of view, we can see that the study of fuzzy synchronization of time delayed chaotic
systems is of high practical importance. To the best of our knowledge, however, for the fuzzy
synchronization problem of time delayed chaotic systems, there is no result in the literature
so far, which still remains open and challenging. This situation motivates our present
investigation.

Motivated by the above discussions, the aim of this paper is to investigate the
fuzzy adaptive exponential synchronization problem for time delayed chaotic systems with
unknown parameters. T-S fuzzy model is adopted for the modeling of time delayed chaotic
drive and response systems. Based on this fuzzy model, a new fuzzy synchronization
controller is designed and an analytic expression of the controller with its adaptive laws of
parameters is shown. By the proposed scheme, the closed-loop error system is adaptively
exponentially synchronized. By virtue of Lyapunov-Krasovskii stability theory, linear matrix
inequality (LMI) approach, and Jesen’s inequality, an existence criterion for the proposed
controller is represented in terms of the LMI, that can be readily checked by using some
standard numerical packages [33].

This paper is organized as follows. In Section 2, we formulate the problem. In
Section 3, a fuzzy adaptive exponential synchronization controller is proposed for time
delayed chaotic systems with unknown parameters. In Section 4, an application example for
time delayed Lorenz system is given, and finally, conclusions are presented in Section 5.
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2. Problem Formulation

Consider a class of uncertain time delayed chaotic systems described by the following.

Fuzzy Rule i :

IF ω1 is ϑi1 and · · ·ωs is ϑis THEN

ẋ(t) = Aix(t) +Aix(t − τ) + ηi(t) +
p∑

k=1

Φk(x(t))θk +
q∑

l=1

Ψl(x(t − τ))φl,

(2.1)

where x(t) ∈ Rn is the state vector, τ > 0 is the time-delay of the chaotic system (2.1), Ai ∈
Rn×n and Ai ∈ Rn×n are known constant matrices, ηi(t) ∈ Rn denotes a bias term which
is generated by the fuzzy modeling procedure, Φk(x(t)) (k = 1, . . . , p) : Rn → Rn×λ and
Ψl(x(t)) (l = 1, . . . , q) : Rn → Rn×μ are activation function matrices, θk ∈ Rλ (k = 1, . . . , p)
and φl ∈ Rμ (l = 1, . . . , q) represent the uncertain constant parameter vectors, ωj (j = 1, . . . , s)
is the premise variable, ϑij (i = 1, . . . , r, j = 1, . . . , s) is the fuzzy set that is characterized
by membership function, r is the number of the IF-THEN rules, and s is the number of the
premise variables.

Using a standard fuzzy inference method (using a singleton fuzzifier, product fuzzy
inference, and weighted average defuzzifier), the system (2.1) is inferred as follows:

ẋ(t) =
r∑

i=1

hi(ω)

[
Aix(t) +Aix(t − τ) + ηi(t) +

p∑

k=1

Φk(x(t))θk +
q∑

l=1

Ψl(x(t − τ))φl

]
, (2.2)

where ω = [ω1, . . . , ωs], hi(ω) = 	i(ω)/
∑r

i=1 	j(ω), 	i : Rs → [0, 1] (i = 1, . . . , r) is the
membership function of the system with respect to the fuzzy rule i. hi can be regarded as the
normalized weight of each IF-THEN rule and it satisfies

hi(ω) ≥ 0,
r∑

i=1

hi(ω) = 1. (2.3)

The system (2.2) is considered as a drive system. The synchronization problem of system (2.2)
is considered by using the drive-response configuration. According to the drive-response
concept, the controlled fuzzy response system is described by the following rules.

Fuzzy Rule i :

IF ω1 is ϑi1 and · · ·ωs is ϑis THEN

˙̂x(t) = Aix̂(t) +Aix̂(t − τ) + ηi(t) + u(t),

(2.4)

where x̂(t) ∈ Rn is the state vector of the response system and u(t) ∈ Rn is the control input.
The fuzzy response system can be inferred as

˙̂x(t) =
r∑

i=1

hi(ω)
[
Aix̂(t) +Aix̂(t − τ) + ηi(t) + u(t)

]
. (2.5)
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Define the synchronization error e(t) = x̂(t) − x(t). Then we obtain the synchronization error
system

ė(t) =
r∑

i=1

hi(ω)

[
Aie(t) +Aie(t − τ) −

p∑

k=1

Φk(x(t))θk −
q∑

l=1

Ψl(x(t − τ))φl + u(t)

]
. (2.6)

Throughout this paper, we define that θ̂k(t) (k = 1, . . . , p) and φ̂l(t) (l = 1, . . . , q) are the
estimate values of θk and φl, respectively.

Definition 2.1 (Adaptive exponential synchronization). With nonzero initial conditions, the
error system (2.6) is adaptively exponentially synchronized if the synchronization error e(t)
satisfies

‖e(t)‖ < M exp(−Nt), (2.7)

where M and N are positive constants, under the control u(t) with the adaptive laws θ̂k(t)
and φ̂l(t) (k = 1, . . . , p, l = 1, . . . , q).

The purpose of this paper is to design the controller u(t) with the adaptive laws θ̂k(t)
and φ̂l(t) (k = 1, . . . , p, l = 1, . . . , q) guaranteeing the adaptive exponential synchronization
for time delayed chaotic systems with unknown parameters.

3. An LMI-Based Fuzzy Adaptive Exponential Synchronization

In this section, we present the LMI problem for achieving the fuzzy adaptive exponential
synchronization of time delayed chaotic systems with unknown parameters.

Theorem 3.1. If there exist P = PT > 0, Q = QT > 0, R = RT > 0, S = ST > 0, W = WT > 0, and
Mj such that

⎡
⎢⎢⎢⎢⎢⎣

AT
i P + PAi +Mj +MT

j + κP +
exp(κτ) − 1

κ
Q + R + S PAi W

A
T

i P − exp(−κτ)R −W

W −W κW − 1
τ
Q

⎤
⎥⎥⎥⎥⎥⎦

< 0 (3.1)

for i, j = 1, 2, . . . , r, where κ > 0 is an enough small real number properly selected, then the fuzzy
adaptive exponential synchronization is achieved under the control

u(t) =
r∑

j=1

hj(ω)Kj(x̂(t) − x(t)) −
p∑

k=1

Φk(x(t))θ̂k(t) −
q∑

l=1

Ψl(x(t − τ))φ̂l(t), (3.2)
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and the adaptive laws

˙̂θk(t) = ΓΦT
k(x(t))P(x̂(t) − x(t)) exp(κt),

(
k = 1, . . . , p

)
,

˙̂φl(t) = ΥΨT
l (x(t − τ))P(x̂(t) − x(t)) exp(κt),

(
l = 1, . . . , q

)
,

(3.3)

where Γ and Υ are positive definite matrices for design.

Proof. The fuzzy adaptive exponential synchronization controller can be constructed via the
parallel distributed compensation. The controller is described by the following rules.

Fuzzy Rule j :

IF ω1 is ϑj1 and · · ·ωs is ϑjs THEN

u(t) = Kje(t) −
p∑

k=1

Φk(x(t))θ̂k(t) −
q∑

l=1

Ψl(x(t − τ))φ̂l(t),

(3.4)

where Kj ∈ Rn×m is the gain matrix of the controller for the fuzzy rule j. The fuzzy controller
can be inferred as

u(t) =
r∑

j=1

hj(ω)Kje(t) −
p∑

k=1

Φk(x(t))θ̂k(t) −
q∑

l=1

Ψl(x(t − τ))φ̂l(t). (3.5)

The closed-loop error system with the control input (3.5) can be written as

ė(t) =
r∑

i=1

r∑

j=1

hi(ω)hj(ω)

[
(
Ai +Kj

)
e(t) +Aie(t − τ) −

p∑

k=1

Φk(x(t))θ̃k(t) −
q∑

l=1

Ψl(x(t − τ))φ̃l(t)

]
,

(3.6)

where θ̃k(t) = θ̂k(t) − θk and φ̃l(t) = φ̂l(t) − φl. Consider the following Lyapunov-Krasovskii
functional:

V (t) = exp(κt)eT (t)Pe(t) +
∫0

−τ
exp

(
−κβ

) ∫ t

t+β
exp(κα)eT (α)Qe(α)dαdβ

+
∫0

−τ
exp(κ(t + σ))eT(t + σ)Re(t + σ)dσ

+ exp(κt)

[∫0

−τ
e(t + σ)dσ

]T
W

[∫0

−τ
e(t + σ)dσ

]
+

p∑

k=1

θ̃T
k (t)Γ

−1θ̃k(t)

+
q∑

l=1

φ̃T
l (t)Υ

−1φ̃l(t).

(3.7)
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The time derivative of V (t) along the trajectory of (3.6) is

V̇ (t) = exp(κt)ė(t)TPe(t) + exp(κt)eT (t)Pė(t) + κ exp(κt)eT(t)Pe(t) +
exp(κτ) − 1

κ

× exp(κt)eT (t)Qe(t) − exp(κt)
∫ t

t−τ
eT (σ)Qe(σ)dσ + exp(κt)e(t)T Re(t)

− exp(κ(t − τ))eT(t − τ)Re(t − τ) + κ exp(κt)

[∫ t

t−τ
e(σ)dσ

]T
W

[∫ t

t−τ
e(σ)dσ

]

+ exp(κt)[e(t) − e(t − τ)]TW

[∫ t

t−τ
e(σ)dσ

]
+ exp(κt)

[∫ t

t−τ
e(σ)dσ

]T

×W[e(t) − e(t − τ)] + 2
p∑

k=1

θ̃T
k (t)Γ

−1 ˙̂θk(t) + 2
q∑

l=1

φ̃T
l (t)Υ

−1 ˙̂φl(t)

=
r∑

i=1

r∑

j=1

hi(ω)hj(ω)

×
{

exp(κt)eT (t)
[
AT

i P + PAi + PKj +KT
j P + κP

]
e(t)

+ exp(κt)eT (t)PAie(t − τ) + exp(κt)eT(t − τ)A
T

i Pe(t)

− 2 exp(κt)
p∑

k=1

θ̃T
k (t)Φ

T
k(x(t))Pe(t) − 2 exp(κt)

q∑

l=1

φ̃T
l (t)Ψ

T
l (x(t − τ))Pe(t)

}

+
exp(κτ) − 1

κ
exp(κt)eT (t)Qe(t)

− exp(κt)
∫ t

t−τ
eT (σ)Qe(σ)dσ + exp(κt)e(t)T Re(t) − exp(κ(t − τ))eT (t − τ)Re(t − τ)

+ κ exp(κt)

[∫ t

t−τ
e(σ)dσ

]T
W

[∫ t

t−τ
e(σ)dσ

]
+exp(κt)[e(t) − e(t − τ)]TW

[∫ t

t−τ
e(σ)dσ

]

+ exp(κt)

[∫ t

t−τ
e(σ)dσ

]T
W[e(t) − e(t − τ)] + 2

p∑

k=1

θ̃T
k (t)Γ

−1 ˙̂θk(t) + 2
q∑

l=1

φ̃T
l (t)Υ

−1 ˙̂φl(t).

(3.8)

Using the Jesen’s inequality [34], we have

− exp(κt)
∫ t

t−τ
e(σ)TQe(σ)dσ ≤ −

exp(κt)
τ

[∫ t

t−τ
e(σ)dσ

]T
Q

[∫ t

t−τ
e(σ)dσ

]
. (3.9)
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Finally, using (3.9), the time derivative of V (t) can be obtained as

V̇ (t) ≤
r∑

i=1

r∑

j=1

hi(ω)hj(ω) exp(κt)

×
{
eT (t)

[
AT

i P + PAi + PKj +KT
j P + κP

]
e(t)

+

[∫ t

t−τ
e(σ)dσ

]T[
κW − 1

τ
Q

][∫ t

t−τ
e(σ)dσ

]
+ eT(t)PAie(t − τ) + eT (t − τ)A

T

i Pe(t)

+
exp(κτ) − 1

κ
eT (t)Qe(t) + e(t)T Re(t) − exp(−κτ)eT (t − τ)Re(t − τ)

+ [e(t) − e(t − τ)]TW

[∫ t

t−τ
e(σ)dσ

]
+

[∫ t

t−τ
e(σ)dσ

]T
W[e(t) − e(t − τ)]

⎫
⎬

⎭

+ 2
p∑

k=1

θ̃T
k (t)Γ

−1
[ ˙̂θk(t) − ΓΦT

k(x(t))Pe(t) exp(κt)
]

+ 2
q∑

l=1

φ̃T
l (t)Υ

−1
[ ˙̂φl(t) − ΥΨT

l (x(t − τ)) × Pe(t) exp(κt)
]

=
r∑

i=1

r∑

j=1

hi(ω)hj(ω) exp(κt)

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

e(t)

e(t − τ)
∫ t

t−τ
e(σ)dσ

⎤
⎥⎥⎥⎥⎦

T⎡
⎢⎢⎢⎢⎣

(1, 1) PAi W

A
T

i P − exp(−κτ)R −W

W −W κW − 1
τ
Q

⎤
⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎣

e(t)

e(t − τ)
∫ t

t−τ
e(σ)dσ

⎤
⎥⎥⎥⎥⎦
− eT(t)Se(t)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ 2
p∑

k=1

θ̃T
k (t)Γ

−1
[ ˙̂θk(t) − ΓΦT

k(x(t))Pe(t) exp(κt)
]

+ 2
q∑

l=1

φ̃T
l (t)Υ

−1
[ ˙̂φl(t) − ΥΨT

l (x(t − τ))Pe(t) exp(κt)
]
,

(3.10)

where

(1, 1) = AT
i P + PAi + PKj +KT

j P + κP +
exp(κτ) − 1

κ
Q + R + S. (3.11)
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If the adaptive laws (3.3) are used and the following matrix inequality is satisfied:

⎡
⎢⎢⎢⎢⎣

(1, 1) PAi W

A
T

i P − exp(−κτ)R −W

W −W κW − 1
τ
Q

⎤
⎥⎥⎥⎥⎦

< 0, (3.12)

for i, j = 1, 2, . . . , r, then we have

V̇ (t) < −
r∑

i=1

r∑

j=1

hi(ω)hj(ω) exp(κt)eT(t)Se(t)

= − exp(κt)eT(t)Se(t).

(3.13)

That is, V̇ (t) < 0 for all e(t)/= 0. Thus, it implies that V (t) < V (0) for any t ≥ 0. In addition,
from (3.7), one has

V (t) < V (0)

= eT(0)Pe(0) +
∫0

−τ
exp

(
−κβ

) ∫0

β

exp(κα)eT (α)Qe(α)dαdβ

+
∫0

−τ
exp(κ(σ))eT(σ)Re(σ)dσ +

[∫0

−τ
e(σ)dσ

]T
W

[∫0

−τ
e(σ)dσ

]
+

p∑

k=1

θ̃T
k (0)Γ

−1θ̃k(0)

+
q∑

l=1

φ̃T
l (0)Υ

−1φ̃l(0).

(3.14)

Also, we have

V (t) ≥ λmin(P) exp(κt)‖e(t)‖2, (3.15)
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where λmin(P) is the minimum eigenvalue of the matrix P . It follows immediately from (3.14)
and (3.15) that

‖e(t)‖ <
1

√
λmin(P) exp(κt)

×
{
eT (0)Pe(0) +

∫0

−τ
exp

(
−κβ

) ∫0

β

exp(κα)eT(α)Qe(α)dαdβ

+
∫0

−τ
exp(κ(σ))eT(σ)Re(σ)dσ +

[∫0

−τ
e(σ)dσ

]T
W

[∫0

−τ
e(σ)dσ

]

+
q∑

l=1

φ̃T
l (0)Υ

−1φ̃l(0) +
p∑

k=1

θ̃T
k (0)Γ

−1θ̃k(0)

}1/2

=
1

√
λmin(P)

×
{
eT (0)Pe(0) +

∫0

−τ
exp

(
−κβ

) ∫0

β

exp(κα)eT(α)Qe(α)dαdβ

+
∫0

−τ
exp(κ(σ))eT(σ)Re(σ)dσ +

[∫0

−τ
e(σ)dσ

]T
W

[∫0

−τ
e(σ)dσ

]

+
q∑

l=1

φ̃T
l (0)Υ

−1φ̃l(0) +
p∑

k=1

θ̃T
k (0)Γ

−1θ̃k(0)

}1/2

exp
(
−κ

2
t
)
.

(3.16)

If we let

M =
1

√
λmin(P)

×
{
eT(0)Pe(0) +

∫0

−τ
exp

(
−κβ

) ∫0

β

exp(κα)eT (α)Qe(α)dαdβ +
∫0

−τ
exp(κ(σ))

× eT (σ)Re(σ)dσ +

[∫0

−τ
e(σ)dσ

]T
W

[∫0

−τ
e(σ)dσ

]

+
q∑

l=1

φ̃T
l (0)Υ

−1φ̃l(0) +
p∑

k=1

θ̃T
k (0)Γ

−1 × θ̃k(0)

}1/2

> 0,

N =
κ

2
> 0,

(3.17)

we obtain (2.7). If we let Mj = PKj , (3.12) is equivalently changed into the LMI (3.1), then the
gain matrix of the control input u(t) is given by Kj = P−1Mj . This completes the proof.
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Remark 3.2. Various efficient convex optimization algorithms can be used to check whether
the LMI (3.1) is feasible. In this paper, in order to solve the LMI, we utilize MATLAB LMI
Control Toolbox [35], which implements state-of- the-art interior-point algorithms.

4. Numerical Example

Consider the following time delayed Lorenz system [36]:

ẋ1(t) = −10x1(t) + 10x2

(
t − 1

6

)
,

ẋ2(t) = 28x1(t) − x2(t) − x1(t)x3(t),

ẋ3(t) = x1(t)x2(t) − χx3

(
t − 1

6

)
.

(4.1)

The parameter χ is assumed unknown. By defining two fuzzy sets, we can obtain the
following fuzzy drive system that exactly represents the nonlinear equation of the time
delayed Lorenz system under the assumption that x1(t) ∈ [−d, d] with d = 20:

ẋ(t) =
2∑

i=1

hi(ω)
[
Aix(t) +Aix

(
t − 1

6

)
+ ηi + Ψ1

(
x

(
t − 1

6

))
φ1

]
, (4.2)

where

A1 =

⎡
⎢⎢⎣

−10 0 0

28 −1 −d
0 d 0

⎤
⎥⎥⎦, A2 =

⎡
⎢⎢⎣

−10 0 0

28 −1 d

0 −d 0

⎤
⎥⎥⎦, φ1 = χ,

A1 = A2 =

⎡
⎢⎢⎣

0 10 0

0 0 0

0 0 0

⎤
⎥⎥⎦, η1 = η2 =

⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦, Ψ1

(
x

(
t − 1

6

))
=

⎡
⎢⎢⎢⎢⎣

0

0

−x3

(
t − 1

6

)

⎤
⎥⎥⎥⎥⎦
.

(4.3)

The membership functions are

h1(ω) =
1
2

(
1 +

x1(t)
d

)
, h2(ω) =

1
2

(
1 − x1(t)

d

)
. (4.4)
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Figure 1: State trajectories.

For the numerical simulation, we use parameters κ = 0.05, φ1 = 8/3, and Υ = 10. Applying
Theorem 3.1 to the fuzzy system (4.2) yields

P =

⎡
⎢⎢⎣

0.0109 0.0009 0.0000

0.0009 1.0117 0.0000

0.0000 0.0000 1.0117

⎤
⎥⎥⎦, M1 =

⎡
⎢⎢⎣

−1.4994 −112.5918 −8.6076

84.2734 −0.5964 −0.3152

8.6076 0.3152 −1.6045

⎤
⎥⎥⎦,

M2 =

⎡
⎢⎢⎣

−1.4994 −42.5072 −0.4721

14.1889 −0.5964 0.2439

0.4721 −0.2439 −1.6045

⎤
⎥⎥⎦.

(4.5)
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Figure 2: Synchronization errors.
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Figure 1 shows state trajectories when the initial conditions are given by (x1(0), x2(0), x3(0)) =
(10,−6.2, 5.1), (x̂1(0), x̂2(0), x̂3(0)) = (8.6,−4.41, 7), and φ̂1(0) = 0. From Figure 1, it can be seen
that drive and response systems are indeed achieving chaos synchronization. Figure 2 plots
the time responses of synchronization errors. The estimate φ̂1(t) of the uncertain parameter
φ1 is illustrated at Figure 3, which shows that the estimate φ̂1(t) approaches rapidly to target
value 8/3. Simulation results reveal that the response system controlled using the proposed
synchronization method performs well. The effectiveness and accuracy of the proposed
method is demonstrated.

5. Conclusion

In this paper, a new fuzzy adaptive exponential synchronization scheme, which consists
of time delayed fuzzy drive and response systems, is proposed for time delayed chaotic
systems with unknown parameters. Based on Lyapunov-Krasovskii stability theory and LMI
formulation, the proposed scheme can guarantee the adaptive exponential synchronization.
The synchronization problem for the time delayed Lorenz system is given to illustrate the
effectiveness of the proposed scheme. Finally, the proposed synchronization method has the
advantage that it can be effectively used to adaptive exponential control and synchronization
of other uncertain time delayed nonlinear systems described by a T-S fuzzy model.

Acknowledgment

This work was supported by the grant of the Korean Ministry of Education, Science
and Technology (The Regional Core Research Program/Center for Healthcare Technology
Development).

References

[1] H. Fujisaka and T. Yamada, “Stability theory of synchronized motion in coupled-oscillator systems,”
Progress of Theoretical Physics, vol. 69, no. 1, pp. 32–47, 1983.

[2] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64,
no. 8, pp. 821–824, 1990.

[3] G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, vol. 24 of World
Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, World Scientific, River Edge,
NJ, USA, 1998.

[4] C.-C. Wang and J.-P. Su, “A new adaptive variable structure control for chaotic synchronization and
secure communication,” Chaos, Solitons and Fractals, vol. 20, no. 5, pp. 967–977, 2004.

[5] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp.
1196–1199, 1990.

[6] X.-S. Yang and G. Chen, “Some observer-based criteria for discrete-time generalized chaos
synchronization,” Chaos, Solitons and Fractals, vol. 13, no. 6, pp. 1303–1308, 2002.

[7] E.-W. Bai and K. E. Lonngren, “Synchronization of two Lorenz systems using active control,” Chaos,
Solitons and Fractals, vol. 8, no. 1, pp. 51–58, 1997.

[8] J. Hu, S. Chen, and L. Chen, “Adaptive control for anti-synchronization of Chua’s chaotic system,”
Physics Letters A, vol. 339, no. 6, pp. 455–460, 2005.

[9] C. K. Ahn, “An H∞ approach to anti-synchronization for chaotic systems,” Physics Letters A, vol. 373,
no. 20, pp. 1729–1733, 2009.

[10] C. K. Ahn, “A passivity approach to synchronization for time-delayed chaotic systems,” Modern
Physics Letters B, vol. 23, no. 29, pp. 3531–3541, 2009.



14 Journal of Inequalities and Applications

[11] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science, vol. 197,
no. 4300, pp. 287–289, 1977.

[12] J. D. Farmer, “Chaotic attractors of an infinite-dimensional dynamical system,” Physica D, vol. 4, no.
3, pp. 366–393, 1981/82.

[13] H. Lu, “Chaotic attractors in delayed neural networks,” Physics Letters A, vol. 298, no. 2-3, pp. 109–116,
2002.

[14] Y.-C. Tian and F. Gao, “Adaptive control of chaotic continuous-time systems with delay,” Physica D,
vol. 117, no. 1–4, pp. 1–12, 1998.

[15] J. H. Park and O. M. Kwon, “Guaranteed cost control of time-delay chaotic systems,” Chaos, Solitons
and Fractals, vol. 27, no. 4, pp. 1011–1018, 2006.

[16] B. Chen, X. Liu, and S. Tong, “Guaranteed cost control of time-delay chaotic systems via memoryless
state feedback,” Chaos, Solitons and Fractals, vol. 34, no. 5, pp. 1683–1688, 2007.

[17] X. Guan, G. Feng, C. Chen, and G. Chen, “A full delayed feedback controller design method for time-
delay chaotic systems,” Physica D, vol. 227, no. 1, pp. 36–42, 2007.

[18] M. Chen and W.-H. Chen, “Robust adaptive neural network synchronization controller design for a
class of time delay uncertain chaotic systems,” Chaos, Solitons and Fractals, vol. 41, no. 5, pp. 2716–2724,
2009.

[19] W. Zhu, D. Xu, and Y. Huang, “Global impulsive exponential synchronization of time-delayed
coupled chaotic systems,” Chaos, Solitons and Fractals, vol. 35, no. 5, pp. 904–912, 2008.

[20] X. Liu, “Impulsive synchronization of chaotic systems subject to time delay,” Nonlinear Analysis:
Theory, Methods and Applications, vol. 71, no. 12, pp. e1320–e1327, 2009.

[21] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and
control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

[22] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and
Systems, vol. 45, no. 2, pp. 135–156, 1992.

[23] K. Tanaka, T. Ikeda, and H. O. Wang, “A unified approach to controlling chaos via an LMI-based fuzzy
control system design,” IEEE Transactions on Circuits and Systems. I, vol. 45, no. 10, pp. 1021–1040, 1998.

[24] K.-Y. Lian, C.-S. Chiu, T.-S. Chiang, and P. Liu, “LMI-based fuzzy chaotic synchronization and
communications,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 539–553, 2001.

[25] K.-Y. Lian, T.-S. Chiang, C.-S. Chiu, and P. Liu, “Synthesis of fuzzy model-based designs to
synchronization and secure communications for chaotic systems,” IEEE Transactions on Systems, Man,
and Cybernetics Part B, vol. 31, no. 1, pp. 66–83, 2001.

[26] J.-H. Kim, C.-W. Park, E. Kim, and M. Park, “Adaptive synchronization of T-S fuzzy chaotic systems
with unknown parameters,” Chaos, Solitons and Fractals, vol. 24, no. 5, pp. 1353–1361, 2005.

[27] J.-H. Kim, C.-H. Hyun, E. Kim, and M. Park, “Adaptive synchronization of uncertain chaotic systems
based on T-S fuzzy model,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 359–369, 2007.

[28] R. D. Traub, R. Miles, and R. K. S. Wong, “Model of the origin of rhythmic population oscillations in
the hippocampal slice,” Science, vol. 243, no. 4896, pp. 1319–1325, 1989.

[29] J. Foss, A. Longtin, B. Mensour, and J. Milton, “Multistability and delayed recurrent loops,” Physical
Review Letters, vol. 76, no. 4, pp. 708–711, 1996.

[30] K. Pyragas, “Synchronization of coupled time-delay systems: analytical estimations,” Physical Review
E, vol. 58, no. 3, pp. 3067–3071, 1998.

[31] K. Pyragas, “Transmission of signals via synchronization of chaotic time-delay systems,” International
Journal of Bifurcation and Chaos, vol. 8, pp. 1839–1842, 1998.

[32] C. Masoller, “Spatiotemporal dynamics in the coherence collapsed regime of semiconductor lasers
with optical feedback,” Chaos, vol. 7, no. 3, pp. 455–462, 1997.

[33] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control
Theory, vol. 15 of SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1994.

[34] E. Noldus, “Stabilization of a class of distributional convolution equations,” International Journal of
Control, vol. 41, no. 4, pp. 947–960, 1985.

[35] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox, The Mathworks, 1995.
[36] L. Li, H. Peng, Y. Yang, and X. Wang, “On the chaotic synchronization of Lorenz systems with time-

varying lags,” Chaos, Solitons and Fractals, vol. 41, no. 2, pp. 783–794, 2009.


	1. Introduction
	2. Problem Formulation
	3. An LMI-Based Fuzzy Adaptive Exponential Synchronization
	4. Numerical Example
	5. Conclusion
	Acknowledgment
	References

