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By using Doob’s martingale convergence theorem, this paper presents a class of strong limit
theorems for arbitrary stochastic sequence. Chow’s two strong limit theorems for martingale-
difference sequence and Loève’s and Petrov’s strong limit theorems for independent random
variables are the particular cases of the main results.

1. Introduction

Let {Xn,Fn, n ≥ 1} be a stochastic sequence on the probability space (Ω,F, P) that is, the
sequence of σ-fields {Fn, n ≥ 1} in F is increasing in n (that is Fn ↑), and {Fn} are adapted to
random variables {Xn}.

Almost sure behavior of partial sums of random variables has enjoyed both a rich
classical period and a resurgence of research activity. Some famous researchers, such as Borel,
Kolmogorov, Khintchine, Loève, Chung, and so on, were interested in convergence theorem
of partial sums of random variables and obtained lots of classical results for sequences of
independent random variables and martingale differences. For a detailed survey of strong
limit theorems of sequences for random variables, interested readers can refer to the books
[1, 2].

In recent years, some work has been done on the strong limit theorems for arbitrary
stochastic sequences. Liu and Yang [3] established two strong limit theorems for arbitrary
stochastic sequences, which generalized Chung’s [4] strong law of large numbers for
sequence of independent random variables as well as Chow’s [5] strong law of large numbers
for sequence of martingale differences. Then, Yang [6] established two more general strong
limit theorems in 2007, which generalized a result by Jardas et al. [7] for sequences of
independent random variables and the results by Liu and Yang [3] for arbitrary stochastic
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sequences in 2003. In 2008, W. Yang and X. Yang [8] proved two strong limit theorems for
stochastic sequences, which generalized results by Freedman [9], Isaac, [10] and Petrov [2].
Qiu and Yang [11] established another type strong limit theorem for stochastic sequence in
1999. Then,Wang andGuo [12] extended themain result of Qiu and Yang in 2009. In addition,
Wang and Yang [13] established a strong limit theorem for arbitrary stochastic sequences in
2005, which generalized Chow’s [5] series convergence theorem for sequence of martingale
differences. Then, Qiu [14] extended the result of Wang and Yang in 2008.

The purpose of this paper is to discuss further the strong limit theorems for arbitrary
stochastic sequences. By using Doob’s [1] convergence theorem for martingale-difference
sequence, we establish a class of new strong limit theorems for stochastic sequences. Chow’s
two strong limit theorems for martingale-difference sequence, Loève’s series convergence
theorem, and Petrov’s strong law of large numbers for sequences of independent random
variables are the particular cases of this paper. In addition, the main theorems of this paper
extend the main results by Wang and Guo in 2009, Qiu and Yang in 1999, and the result by
Wang and Yang in 2005, respectively. The remainder of this paper is organized as follows.
In Section 2, we present the main theorems of this paper. In Section 3, the proofs of the main
theorems in this paper are presented.

2. Main Theorems

In this section, we will introduce the main results of this paper.
Let {cn, n ≥ 1} be a positive real numbers sequence and a(x) and b(x) two positive

real-valued functions on [0,+∞) satisfying a(x) ≥ a > 0 when x ∈ [0, cn) and b(x) ≥ b > 0
when x ∈ (cn,+∞).

Theorem 2.1. Let {Xn,Fn, n ≥ 1} be a stochastic sequence defined as in Section 1 and {φn(x), n ≥ 1}
a sequence of nondecreasing and nonnegative Borel functions on [0,+∞). For some 1 ≤ p ≤ 2, suppose
that

hn(x) = a(x)xpI[0,cn](x) + b(x)I(cn,+∞)(x), n ≥ 1, (2.1)

where a(x), b(x) and cn defined as above. Assume that

φn(x) ≥ hn(x), x ∈ [0,+∞). (2.2)

Set

A =

{
ω :

∞∑
n=1

E
[
φn(|Xn|) | Fn−1

]
< ∞

}
. (2.3)

(i) If there exists some c > 0 such that

φn(x) ≥ cx (2.4)
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holds when x ∈ [0, cn), then

∞∑
n=1

Xn converges a.e. on A. (2.5)

(ii) If there exists some c > 0 such that (2.4) holds when x ∈ (cn,+∞), then

∞∑
n=1

(Xn − E[Xn | Fn−1]) converges a.e. on A. (2.6)

Corollary 2.2 (Chow). Let {Xn,Fn, n ≥ 1} be a LP martingale-difference sequence and {an, n ≥ 1}
be an increasing sequence of positive numbers. For 1 ≤ p ≤ 2, let

A =

{
ω :

∞∑
n=1

a
−p
n E

[|Xn|p | Fn−1
]
< ∞

}
. (2.7)

If an ↑ ∞, then

lim
n→∞

1
an

n∑
i=1

Xi = 0 a.e. on A. (2.8)

Proof. By using Kroncker’s lemma, it is a special case of Theorem 2.1 when the random
variables Xn are replaced by Xn/an and φn(x) = |x|p.

Theorem 2.3. Let {Xn, n ≥ 1} be a sequence of arbitrary random variables. Let Fn = σ(X0, . . . , Xn)
and F0 = {Ω,Φ}, n ≥ 1. Let φn and hn be defined as Theorem 2.1. If

∞∑
n=1

E
[
φn(|Xn|)

]
< ∞, (2.9)

then
∑∞

n=1 Xn and
∑∞

n=1(Xn −E[Xn | Fn−1]) converge a.e. under the same conditions (i) and (ii) as in
Theorem 2.1, respectively.

Corollary 2.4 (Loève). Let {Xn, n ≥ 1} be a sequence of independent random variables, and 0 <
rn ≤ 2. Suppose that

∞∑
n=1

E|Xn|rn < ∞. (2.10)

If 0 < rn ≤ 1, then
∑∞

n=1 Xn converges a.e. If 1 < rn ≤ 2, then
∑∞

n=1(Xn − E[Xn]) converges a.e.
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Corollary 2.5 (Petrov). Let {Xn, n ≥ 1} be a sequence of independent random variables. If 0 < an ↑
∞ and

∞∑
n=1

E|Xn|rn
arn
n

< ∞, (2.11)

then limn→∞(1/an)
∑n

i=1 Xi = 0 a.e. when 0 < rn < 1, and limn→∞(1/an)
∑n

i=1(Xi − E[Xi]) =
0 a.e. when 1 ≤ rn ≤ 2.

Theorem 2.6. Let {Xn,Fn, n ≥ 1} be a stochastic sequence defined as in Section 1 and {φn(x), n ≥
1} a sequence of nondecreasing and nonnegative Borel functions with φn(x/y) ≤ φn(x)/φn(y) on
[0,+∞). Let hn(x) be defined as Theorem 2.1 and

φn(x)
φn(dn)

≥ hn(x), x ∈ [0,+∞), (2.12)

where {dn, n ≥ 1} is a sequence of positive real numbers. Set

B =

{
ω :

∞∑
n=1

E
[
φn(|Xn|) | Fn−1

]
φn(dn)

< ∞
}
. (2.13)

Under the same conditions (i) and (ii) as in Theorem 2.1,
∑∞

n=1 d
−1
n Xn and

∑∞
n=1 d

−1
n (Xn − E[Xn |

Fn−1]) converge a.e. on B, respectively.

Remark 2.7. By using Kronecker’s lemma, if dn ↑ ∞, we have

lim
n→∞

1
dn

n∑
k=1

Xk = 0 a.e. on B, (2.14)

lim
n→∞

1
dn

n∑
k=1

(Xk − E[Xk | Fk−1]) = 0 a.e. on B, (2.15)

respectively.

Theorem 2.8. Let {Xn,Fn, n ≥ 1} be a stochastic sequence defined as in Section 1, {ξn, n ≥ 1} a
sequence of nonzero random variables such that ξn is Fn−1-measurable, and cn ≥ 1, (n ≥ 1) a sequence
of real numbers. Let φn(x), ϕn(x) be two sequences of nonnegative Borel functions onR. Suppose that
for p ≥ 2, φn(x)/xp does not decrease as x > 0, and for 0 < x1 < x2,

ϕn(x1)

x
p

1

≤ φn(x2)

x
p

2
(2.16)
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holds. Let

A =

{
ω :

∞∑
n=1

[
ξ2n

ϕn(|ξn|)

]
E
[
φn(|Xn|) | Fn−1

]
< ∞

}
,

B =

{
ω :

∞∑
n=1

ξ2n
c2n

< ∞
}
.

(2.17)

Then,

∞∑
n=1

c−1n (Xn − E[Xn | Fn−1]) converges a.e. on AB. (2.18)

Furthermore, if cn ↑ ∞, one has

lim
n→∞

1
cn

n∑
k=1

(Xk − E[Xk | Fk−1]) = 0 a.e. on AB. (2.19)

Corollary 2.9 (Chow). Let {Xn,Fn, n ≥ 1} be a sequence of martingale differences, and let {an, n ≥
1} be a sequence of positive real numbers with

∑∞
n=1 an < ∞. For p ≥ 2, let

∞∑
n=1

a
1−p/2
n E

[|Xn|p | Fn−1
]
< ∞. (2.20)

Then,

∞∑
n=1

Xn converges a.e. (2.21)

Corollary 2.10. Let {Xn,Fn, n ≥ 1} be an arbitrary stochastic sequence. For p ≥ 2, let

A =

{
ω :

∞∑
n=1

(
n logn

)p/2−1
E
[|Xn|p | Fn−1

]
< ∞

}
. (2.22)

Then,

∞∑
n=1

1
n
(Xn − E[Xn | Fn−1]) converges a.e. on A,

lim
n→∞

1
n

n∑
k=1

(Xk − E[Xk | Fk−1]) = 0 a.e. on A,

(2.23)

where the log is to the base 2.
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Proof. It is a special case of Theorem 2.8 when ξn =
√
logn, cn = n, φn(x) = |x|p, and ϕn(x) =

|x|p/np/2−1(logn)p−2 (here, we set ϕ1(x) = |x|p).

3. Proofs of Theorems

We first give a lemma.

Lemma 3.1 (see [1]). Let {Sn =
∑n

i=1 Xi,Fn, n ≥ 1} be a martingale. Then, for some 1 ≤ p ≤ 2, Sn

converges a.e. on the set {∑∞
i=1 E[X

p

i | Fi−1] < ∞}.

Proof of Theorem 2.1. Let X∗
n = XnI(|Xn|≤cn) and k a positive integer number. Let Zn = φn(|Xn|),

Ak =

{
ω :

∞∑
n=1

E[Zn | Fn−1] ≤ k

}
,

τk = min

{
n : n ≥ 1,

n+1∑
i=1

E[Zi | Fi−1] > k

}
,

(3.1)

where τk = +∞, if the right-hand side of (18) is empty. Then,
∑τk

n=1 Zn =
∑∞

n=1 I(τk≥n)Zn. Since
I(τk≥n) is measurable Fn−1, and Zn is nonnegative, we have

E

[
τk∑
n=1

Zn

]
= E

[ ∞∑
n=1

I(τk≥n)Zn

]

= E

{ ∞∑
n=1

E
[
I(τk≥n)Zn | Fn−1

]}

≤ E

{ ∞∑
n=1

E[Zn | Fn−1]

}
≤ k.

(3.2)

Since Ak = {τk = +∞}, we have by (3.2)

∞∑
n=1

∫
Ak

ZndP =
∞∑
n=1

E
[
I(Ak)Zn

]

≤ E

[
τk∑
n=1

Zn

]

≤ k.

(3.3)
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By (2.1), (2.2), and (3.3), we obtain

∞∑
n=1

P[Ak(X∗
n /=Xn)] =

∞∑
n=1

∫
Ak(X∗

n /=Xn)
dP

≤
∞∑
n=1

1
b

∫
Ak(|Xn|>cn)

b(|Xn|)dP

≤ 1
b

∞∑
n=1

∫
Ak(|Xn|>cn)

ZndP

≤ 1
b

∞∑
n=1

∫
Ak

ZndP

≤ k

b
.

(3.4)

It follows from Borel-Cantelli lemma and (3.4) that P(Ak(X∗
n /=Xn) i.o.) = 0 holds. Hence, we

have

∞∑
n=1

(Xn −X∗
n) converges a.e. on Ak. (3.5)

Since A =
⋃

k Ak, it follows from (3.5) that

∞∑
n=1

(Xn −X∗
n) converges a.e. on A. (3.6)

Let

Yn = X∗
n − E[X∗

n | Fn−1]. (3.7)

It is clear that {Yn,Fn, n ≥ 1} is a sequence for martingale difference. By using Cr inequality,
we have

E
[
Y

p
n | Fn−1

]
≤ 2pE

[
(X∗

n)
p | Fn−1

] ≤ 2pE
[|X∗

n|p | Fn−1
]

a.e. (3.8)

By using (2.1) and (2.2), we have

|X∗
n|p ≤ 1

a(|X∗|)φn(|X∗
n|) ≤

1
a
φn(|X∗

n|). (3.9)

Thus, the following inequality holds from (2.3), (3.8), and (3.9)

∞∑
n=1

E
[
Y

p
n | Fn−1

]
< ∞ a.e. on A. (3.10)
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By using Lemma 3.1, we obtain

∞∑
n=1

Yn converges a.e. on A. (3.11)

Hence, it follows from (3.6), (3.7), and (3.11) that

∞∑
n=1

(Xn − E[X∗
n | Fn−1]) converges a.e. on A. (3.12)

The following argument breaks down into two cases.

Case 1. If there exists some c > 0 such that (2.4) holds when 0 ≤ x ≤ cn, then

∞∑
n=1

E[X∗
n | Fn−1] ≤ 1

c

∞∑
n=1

E
[
φn(|X∗

n|) | Fn−1
]

≤ 1
c

∞∑
n=1

E
[
φn(|Xn|) | Fn−1

]
a.e.

(3.13)

By using (2.3) and (3.13), we obtain

∞∑
n=1

E[X∗
n | Fn−1] converges a.e. on A. (3.14)

It follows from (3.12) and (3.14) that (2.5) holds.

Case 2. If there exists some c > 0 such that the inequality (2.4) holds when x > cn, then

|E[Xn | Fn−1] − E[X∗
n | Fn−1]|

≤ E[|Xn −X∗
n| | Fn−1]

≤ E[|Xn| | Fn−1]

≤ 1
c
E
[
φn(|Xn|) | Fn−1

]
a.e.

(3.15)

By using (2.3) and (3.15), we obtain that

∞∑
n=1

(E[Xn | Fn−1] − E[X∗
n | Fn−1]) converges a.e. on A. (3.16)

It follows from (3.12) and (3.16) that (2.6) holds. The theorem is proved.
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Proof of Theorem 2.3. Since
∑∞

n=1 E[φn(|Xn|)] =
∑∞

n=1 E{E[φn(|Xn|) | Fn−1]}, we have by (2.9)

∞∑
n=1

E
{
E
[
φn(|Xn|) | Fn−1

]}
< ∞. (3.17)

It follows from the nonnegative property of φn(x) that

∞∑
n=1

E
[
φn(|Xn|) | Fn−1

]
converges a.e. (3.18)

That is P(A) = 1. By Theorem 2.1, the conclusion of Theorem 2.3 holds. The theorem is
proved.

Proof of Theorem 2.6. It is a similar way with Theorem 2.1 except Zn = φn(|Xn|)/φn(dn).

Proof of Theorem 2.8. For n ≥ 1, let Zn = Xn/cn, Yn = Zn − E[Zn | Fn−1]. Then, {Yn,Fn, n ≥ 1} is
a martingale-difference sequence. It follows from p ≥ 2 and Jensen’s inequality that

E
[
Y 2
n | Fn−1

]
= E

[
Z2

n | Fn−1
]
− E2[Zn | Fn−1]

≤ E
[
Z2

n | Fn−1
]

= E
[
|Zn|p·2/p | Fn−1

]
≤ E2/p[|Zn|p | Fn−1

]
a.e.

(3.19)

Furthermore,

E2/p[|Zn|p | Fn−1
]
= E2/p[|Zn|p | Fn−1

][
I(E2/p[|Zn|p |Fn−1]≤ξ2n/c2n) + I(E2/p[|Zn|p |Fn−1]>ξ2n/c2n)

]

≤ ξ2n
c2n

+ E2/p[|Zn|p | Fn−1
]
I
((
E2/p[|Zn|p | Fn−1]

ξ2n/c
2
n

)>1)

≤ ξ2n
c2n

+
ξ2n
c2n

(
E2/p[|Zn|p | Fn−1

]
ξ2n/c

2
n

)p/2

I
((
E2/p[|Zn|p | Fn−1]

ξ2n/c
2
n

)>1)

≤ ξ2n
c2n

+
ξ2n
c2n

E

[ |Xn|p
|ξn|p | Fn−1

]
a.e.

(3.20)

It follows from (2.16) that

|Xn|p
|ξn|p

≤ φn(|Xn|)
ϕn(|ξn|) (3.21)
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holds when |ξn| < |Xn|. By (3.21), we have

E

[ |Xn|p
|ξn|p

| Fn−1

]
= E

[( |Xn|p
|ξn|p

)
I(|Xn|≤|ξn|) | Fn−1

]

+E
[( |Xn|p

|ξn|p
)
I(|Xn|>|ξn|) | Fn−1

]

≤ 1 + E

[
φn(|Xn|)
ϕn(|ξn|) | Fn−1

]
a.e.

(3.22)

Note that cn ≥ 1, it follows from (3.19), (3.21), and (3.22) that

E
[
Y 2
n | Fn−1

]
≤ 2

ξ2n
c2n

+
ξ2n
c2n

E

[
φn(|Xn|)
ϕn(|ξn|) | Fn−1

]

≤ 2
ξ2n
c2n

+

[
ξ2n

ϕn(|ξn|)

]
E
[
φn(|Xn|) | Fn−1

]
a.e.

(3.23)

And it follows from (2.17) and (3.23) that

∞∑
n=1

E
[
Y 2
n | Fn−1

]
≤ 2

∞∑
n=1

ξ2n
c2n

+
∞∑
n=1

[
ξ2n

ϕn(|ξn|)

]
E
[
φn(|Xn|) | Fn−1

]
< ∞ a.e. on AB. (3.24)

It follows from Lemma 3.1 that (2.18) holds. Furthermore, when cn ↑ ∞, it follows from
Kronecker’s lemma that (2.19) holds. The theorem is proved.
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