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Let {Q(α,β)
n (x)}n≥0 denote the sequence of polynomials orthogonal with respect to the non-discrete

Sobolev inner product 〈f, g〉 =
∫1
−1 f(x)g(x)dμα,β(x) + λ

∫1
−1 f

′(x)g ′(x)dμα+1,β(x), where λ > 0
and dμα,β(x) = (1 − x)α(1 + x)βdx with α > −1, β > −1. In this paper, we prove a Cohen

type inequality for the Fourier expansion in terms of the orthogonal polynomials {Q(α,β)
n (x)}n.

Necessary conditions for the norm convergence of such a Fourier expansion are given. Finally, the
failure of almost everywhere convergence of the Fourier expansion of a function in terms of the
orthogonal polynomials associated with the above Sobolev inner product is proved.

1. Introduction

Let dμα,β(x) = (1 − x)α(1 + x)βdx with α, β > −1 be the Jacobi measure supported on the
interval [−1, 1]. We say that f ∈ Lp(dμα,β) if f is measurable on [−1, 1] and ‖f‖Lp(dμα,β) < ∞,

where

∥∥f
∥∥
Lp(dμα,β)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∫1

−1

∣∣f(x)
∣∣pdμα,β(x)

)1/p

, if 1 ≤ p < ∞,

esssup
−1<x<1

∣∣f(x)
∣∣, if p = ∞.

(1.1)
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Let us introduce the Sobolev-type spaces (see, for instance, [1, Chapter III], in a more general
framework) as follows:

S
α,β
p =
{
f :
∥
∥f
∥
∥p
S
α,β
p

=
∥
∥f
∥
∥p
Lp(dμα,β) + λ

∥
∥f ′∥∥p

Lp(dμα+1,β) < ∞
}
, 1 ≤ p < ∞,

S
α,β
∞ =
{
f :
∥
∥f
∥
∥
S
α,β
∞

= max
{∥
∥f
∥
∥
L∞(dμα,β)

,
∥
∥f ′∥∥

L∞(dμα+1,β)

}
< ∞
}
,

(1.2)

where λ > 0, as well as the linear space [Sα,β
p ] of all bounded linear operators T : Sα,β

p → S
α,β
p ,

with the usual operator norm

‖T‖[Sα,β
p ] = sup

0/= f∈Sα,β
p

∥
∥T
(
f
)∥∥

S
α,β
p∥

∥f
∥
∥
S
α,β
p

. (1.3)

Let f and g be in S
α,β

2 . Let us consider the following Sobolev-type inner product:

〈
f, g
〉
=
∫1

−1
f(x)g(x)dμα,β(x) + λ

∫1

−1
f ′(x)g ′(x)dμα+1,β(x), (1.4)

where λ > 0. Let {Q(α,β)
n (x)}∞n=0 denote the sequence of polynomials orthogonal with respect to

(1.4), normalized by the condition thatQ(α,β)
n has the same leading coefficient as the following

classical Jacobi polynomial:

P
(α,β−1)
n (x) =

1
2n

(
2n + α + β − 1

n

)
xn + lower degree terms. (1.5)

We call them the Jacobi-Sobolev orthogonal polynomials.
The measures μα,β and μα+1,β constitute a particular case of the so-called coherent pairs

of measures studied in [2]. In [3] (see also [4]), the authors established the asymptotics of the
zeros of such Jacobi-Sobolev polynomials.

The aim of our contribution is to obtain a lower bound for the norm of the partial sums
of the Fourier expansion in terms of Jacobi-Sobolev polynomials, the well-known Cohen type
inequality in the framework of Approximation Theory. A Cohen type inequality has been
established in other contexts, for example, on compact groups or for classical orthogonal
expansions. See [5–10] and references therein.

Throughout the paper, positive constants are denoted by c, c1, . . . and they may vary
at every occurrence. The notation un

∼= vn means that the sequence un/vn converges to 1 and
un ∼ vn means c1un ≤ vn ≤ c2un for sufficiently large n, where c1 and c2 are positive real
numbers.

The structure of the paper is as follows. In Section 2, we introduce the basic
background about Jacobi polynomials to be used in the paper. In particular, we focus our
attention in some estimates and the strong asymptotics on [−1, 1] for such polynomials as
well as the Mehler-Heine formula. In Section 3, we analyze the polynomials orthogonal with
respect to the inner product (1.4). Their representation in terms of Jacobi polynomials yields
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estimates, inner strong asymptotics, and a Mehler-Heine type formula. Some estimates of the
weighted p Sobolev norm of these polynomials will be needed in the sequel and we show
them in Proposition 3.12. In Section 4, a Cohen-type inequality, associated with the Fourier
expansions in terms of the Jacobi-Sobolev orthogonal polynomials, is deduced. In Section 5,
we focus our attention in the norm convergence of the above Fourier expansions. Finally,
Section 6 is devoted to the analysis of the divergence almost everywhere of such expansions.

2. Jacobi Polynomials

For α, β > −1, we denote by {P (α,β)
n (x)}∞n=0 the sequence of Jacobi polynomials which are

orthogonal on [−1, 1] with respect to the measure dμα,β. They are normalized in such a way

that P (α,β)
n (1) = ( n+α

n ). We denote the nth monic Jacobi polynomial by

P̂
(α,β)
n (x) =

(
h
α,β
n

)−1
P
(α,β)
n (x), (2.1)

where (see [11, formula (22.3.1)])

h
α,β
n =

1
2n

(
2n + α + β

n

)
. (2.2)

Now,we list some basic properties of Jacobi polynomials whichwill be used in the sequel. The
following integral formula for Jacobi polynomials holds (see (2.1) and [11, formula (22.2.1)]):

∫1

−1

[
P̂
(α,β)
n (x)

]2
dμα,β(x)

= 22n+α+β+1
Γ(n + 1)Γ(n + α + 1)Γ

(
n + β + 1

)
Γ
(
n + α + β + 1

)

Γ
(
2n + α + β + 1

)
Γ
(
2n + α + β + 2

) .

(2.3)

They satisfy a connection formula (see [11, formula (22.7.19)], [3, formula (2.5)]) as
follows:

P̂
(α, β−1)
n (x) = P̂

(α, β)
n (x) + an−1

(
α, β
)
P̂
(α, β)
n−1 (x), (2.4)

where

an

(
α, β
)
=

2(n + 1)(n + α + 1)
(
2n + α + β + 1

)(
2n + α + β + 2

) , n ≥ 0, (2.5)

as well as the following relation for the derivatives (see [12, formula (4.21.7)]):

d

dx
P
(α, β−1)
n (x) =

n + α + β

2
P
(α+1, β)
n−1 (x). (2.6)
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The following estimate for P (α,β)
n holds (see [12, formula (7.32.6)], [13]):

∣
∣
∣P

(α,β)
n (x)

∣
∣
∣ ≤ cn−1/2(1 − x)−α/2−1/4(1 + x)−β/2−1/4, (2.7)

where x ∈ (−1, 1) and α, β ≥ −1/2.
The formula of Mehler-Heine for Jacobi orthogonal polynomials is (see [12, Theorem

8.1.1]) as follows:

lim
n→∞

n−αP (α,β)
n

(
cos

z

n

)
=
(z
2

)−α
Jα(z), (2.8)

where α, β are real numbers, and Jα(z) is the Bessel function. This formula holds locally
uniformly, that is, on every compact subset of the complex plane.

The inner strong asymptotics of P (α,β)
n , for θ ∈ [ε, π − ε] and ε > 0, are read as follows

(see [12, Theorem 8.21.8]):

P
(α,β)
n (cos θ) = π−1/2n−1/2

[(
sin

θ

2

)−α−1/2(
cos

θ

2

)−β−1/2
cos
(
kθ + γ
)
+O
(
n−1
)]

, (2.9)

where k = n + (α + β + 1)/2, and γ = −(α + 1/2)π/2.
For α, β, μ > −1 and 1 ≤ q ≤ ∞ (see [12, page 391. Exercise 91], as well as [10, (2.2)])

(∫1

0
(1 − x)μ

∣∣∣P
(α,β)
n (x)

∣∣∣
p
dx

)1/p

∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−1/2, if 2μ > pα − 2 +
p

2
,

n−1/2(logn)1/p, if 2μ = pα − 2 +
p

2
,

nα−(2μ+2)/p, if 2μ < pα − 2 +
p

2
.

(2.10)

3. Asymptotics of Jacobi-Sobolev Orthogonal Polynomials

Let us denote by Q̂
(α, β)
n the monic Jacobi-Sobolev polynomial of degree n, that is, Q̂(α, β)

n (x) =
(hα, β−1

n )−1Q(α,β)
n (x). From (2.4) and [3, formula (2.7)] (see also [4, 14] in a more general

framework), we have the following relation between the Jacobi-Sobolev and Jacobi monic
orthogonal polynomials.

Proposition 3.1. For α, β > −1,

P̂
(α,β)
n (x) + an−1

(
α, β
)
P̂
(α,β)
n−1 (x) = Q̂

(α,β)
n (x) + d̂n−1(λ)Q̂

(α,β)
n−1 (x), n ≥ 1, (3.1)

where an−1(α, β) is given in (2.5) and

d̂n(λ) = an

(
α, β
)

∥∥∥P̂
(α,β)
n

∥∥∥
2

L2(dμα,β)
∥∥∥Q̂

(α,β)
n

∥∥∥
2

Sα
2

, n ≥ 0. (3.2)
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Proposition 3.2. One gets:

∥
∥
∥Q̂

(α,β)
n

∥
∥
∥
2

S
α,β

2

∼= λn2
∥
∥
∥P̂

(α+1,β)
n−1
∥
∥
∥
2

L2(dμα+1,β)
. (3.3)

In particular, for d̂n(λ) defined in (3.2) one obtains

d̂n(λ) ∼= 1
4λn2

. (3.4)

Proof. We apply the same argument as in the proof of Theorem 2 in [15]. Using the extremal
property

∥∥∥P̂
(α,β)
n

∥∥∥
2

L2(dμα,β)
= inf
{
‖P‖2

L2(dμα,β) : degP = n, P monic
}
, (3.5)

we get the following:

∥∥∥Q̂
(α,β)
n

∥∥∥
2

S
α,β

2

=
∥∥∥∥Q̂n

(α,β)
∥∥∥∥

2

L2(dμα,β)
+ λ

∥∥∥∥Q̂
′
n

(α,β)
∥∥∥∥

2

L2(dμα+1,β)
≥
∥∥∥P̂

(α,β)
n

∥∥∥
2

L2(dμα,β)
+ λn2
∥∥∥P̂

(α+1,β)
n−1
∥∥∥
2

L2(dμα+1,β)
.

(3.6)

On the other hand, from the extremal property of ‖Q̂(α,β)
n ‖2Sα,β

2
, (2.4), and (2.6), we have

∥∥∥Q̂
(α,β)
n

∥∥∥
2

S
α,β

2

≤
∥∥∥P̂

(α,β)
n + an−1(α, β)P̂

(α,β)
n−1
∥∥∥
2

S
α,β

2

=
∥∥∥P̂

(α,β)
n + an−1(α, β)P̂

(α,β)
n−1
∥∥∥
2

L2(dμα,β)
+ λn2
∥∥∥P̂

(α+1,β)
n−1
∥∥∥
2

L2(dμα+1,β)

≤
∥∥∥P̂

(α,β)
n

∥∥∥
2

L2(dμα,β)
+
(
an−1
(
α, β
))2∥∥∥P̂

(α,β)
n−1
∥∥∥
2

L2(dμα,β)
+ λn2
∥∥∥P̂

(α+1,β)
n−1
∥∥∥
2

L2(dμα+1,β)
.

(3.7)

Since by (2.3) and (2.5) we have ‖P̂ (α,β)
n ‖L2(dμα,β)

∼= ‖P̂ (α+1,β)
n−1 ‖

L2(dμα+1,β)
and an(α, β) ∼= 1/2, then

(3.6) and (3.7) yield (3.3).

As a straightforward consequence of Propositions 3.1 and 3.2, using (2.1) we deduce
the following.

Corollary 3.3. For α, β > −1,

n + α + β

2n + α + β
P
(α,β)
n (x) +

n + α

2n + α + β
P
(α,β)
n−1 (x) = Q

(α,β)
n (x) + dn−1(λ)Q

(α,β)
n−1 (x), (3.8)
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where n ≥ 1 and

dn(λ) = d̂n(λ)
h
α,β−1
n

h
α,β−1
n−1

∼= 1
2λn2

. (3.9)

Corollary 3.4. For α > −1 and β > 0,

P
(α,β−1)
n (x) = Q

(α,β)
n (x) + dn−1(λ)Q

(α,β)
n−1 (x), n ≥ 1, (3.10)

and for α, β > −1,

n + α + β

2
P
(α+1,β)
n−1 (x) =

(
Q

(α,β)
n (x)

)′
+ dn−1(λ)

(
Q

(α,β)
n−1 (x)

)′
, n ≥ 1. (3.11)

Proof. The first statement follows from Proposition 3.1 and (2.4). The second one follows by
taking derivatives in (3.10) and using (2.6).

Using (3.10) in a recursive way, the representation of the polynomials Q(α,β)
n in terms

of the elements of the sequence {P (α,β−1)
n (x)}∞n=0 becomes

Q
(α,β)
n (x) =

n∑

k=0

(−1)kb(n)k (λ)P (α,β−1)
n−k (x), (3.12)

where b(n)
k

(λ) =
∏k

j=1dn−j(λ) and b
(n)
0 (λ) = 1.

Proposition 3.5. There exists a constant c > 1 such that the coefficients b(n)
k

(λ) in (3.11) satisfy

b
(n)
k (λ) < c(1/n2k) for all n ≥ 1 and 1 ≤ k ≤ n.

Proof. From (3.9), we have limn2(n + 1)dn(λ) = 0. Thus, there exist n0 ∈ N and a constant
c > 1 such that 2(n + 1)dn(λ) < 1 for all n ≥ n0 and 2(n + 1)dn(λ) < c for n = 1, . . . , n0 − 1.
Therefore, for 1 ≤ k ≤ n − n0,

b
(n)
k (λ) =

k∏

j=1

dn−j(λ) <
1

n2k
, (3.13)

and for n − n0 ≤ k ≤ n,

b
(n)
k (λ) =

n−n0∏

j=1

dn−j(λ)
k∏

j=n−n0+1

dn−j(λ)

≤ 1
n2n−n0

(c
2

)k−n+n0

= ck−n+n0
1

n2k
≤ cn0

1
n2k

.

(3.14)



Journal of Inequalities and Applications 7

Proposition 3.6. (a) For the polynomials Q(α,β)
n , one obtains

∣∣
∣Q

(α,β)
n (x)

∣∣
∣ ≤ cn−1/2(1 − x)−α/2−1/4(1 + x)−β/2+1/4, (3.15)

for x ∈ (−1, 1), α ≥ −1/2, and β ≥ 1/2.

(b) For the polynomials Q′(α,β)
n , one has the following estimate:

∣
∣
∣Q′

n
(α,β)(x)

∣
∣
∣ ≤ cn1/2(1 − x)−α/2−3/4(1 + x)−β/2−1/4, (3.16)

for x ∈ (−1, 1), α > −1, and β ≥ −1/2.
Proof. (a) Using (3.12), we have the following:

∣∣∣Q
(α,β)
n (cos θ)

∣∣∣ ≤
n∑

k=0

b
(n)
k (λ)
∣∣∣P

(α,β−1)
n−k (cos θ)

∣∣∣. (3.17)

From (2.7), it is straightforward to prove that, for α, β ≥ −1/2 and k = 0, 1, . . . , n − 1,

∣∣∣P
(α,β)
n−k (cos θ)

∣∣∣ ≤ c

√
n

n − k
n−1/2θ−α−1/2(π − θ)−β−1/2. (3.18)

Thus, according to Proposition 3.5,

∣∣∣Q
(α,β)
n (cos θ)

∣∣∣ ≤
n∑

k=0

b
(n)
k (λ)
∣∣∣P

(α,β−1)
n−k (cos θ)

∣∣∣

≤ cb
(n)
n (λ) + cn−1/2θ−α−1/2(π − θ)−β+1/2

n−1∑

k=0

1
2k

≤ cn−1/2θ−α−1/2(π − θ)−β+1/2.

(3.19)

On the other hand, from (3.11), the proof of the case (b) can be done in a similar
way.

Proposition 3.7. Let α, β > −1, then

∣∣∣Q
(α,β)
n (x)

∣∣∣ ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cnα, for x ∈ [0, 1], α ≥ −1
2
,

cnβ−1, for x ∈ [−1, 0], β ≥ 1
2
,

cn−1/2, for x ∈ [−1, 1], α ≤ −1
2
, β ≤ 1

2
,

∣∣∣Q′
n
(α,β)(x)

∣∣∣ ≤

⎧
⎪⎨

⎪⎩

cnα+1, for x ∈ [0, 1], α > −1,

cnβ+1, for x ∈ [−1, 0], β ≥ −1
2
.

(3.20)
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Proof. Taking into account that the Jacobi polynomials satisfy the following (see [12,
paragraph below Theorem 7.32.1]):

∣
∣
∣P

(α,β)
n (x)

∣
∣
∣ ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cnα, for x ∈ [0, 1], α ≥ −1
2
,

cnβ, for x ∈ [−1, 0], β ≥ −1
2
,

cn−1/2, for x ∈ [−1, 1], α ≤ −1
2
, β ≤ −1

2
,

(3.21)

for n ≥ 1, thus, for 0 ≤ j ≤ n − 1,

∣∣∣P
(α,β)
n−j (x)

∣∣∣ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

(
n − j

n

)α
nα, for x ∈ [0, 1], α ≥ −1

2
,

c

(
n − j

n

)β
nβ, for x ∈ [−1, 0], β ≥ −1

2
,

c

(
n − j

n

)−1/2
n−1/2, for x ∈ [−1, 1], α ≤ −1

2
, β ≤ −1

2
.

(3.22)

As a consequence, the statement follows from the latter estimates and arguments similar to
those we used in the proof of Proposition 3.6.

Corollary 3.8. For α ≥ −1/2 and β ≥ 1/2,

∣∣∣Q
(α,β)
n (cos θ)

∣∣∣ ≤ cA
(
n, α, β − 1, θ

)
, (3.23)

and for α > −1 and β ≥ −1/2,

∣∣∣Q′
n
(α,β)(cos θ)

∣∣
∣ ≤ cA
(
n, α + 1, β, θ

)
, (3.24)

where

A
(
n, α, β, θ

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−1/2
(
θ−α−1/2(π − θ)−β−1/2

)
, if

c

n
≤ θ ≤ π − c

n
,

nα, if 0 ≤ θ ≤ c

n
,

nβ, if π − c

n
≤ θ ≤ π.

(3.25)

Proof. The inequality

nα ≤ cn−1/2θ−α−1/2 (3.26)
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holds for θ ∈ (0, c/n], as well as

nβ ≤ cn−1/2(π − θ)−β−1/2 (3.27)

holds for θ ∈ [π −c/n, π). Therefore, the statement follows from Propositions 3.6 and 3.7.

Next, we show that the Jacobi-Sobolev polynomial Q(α,β)
n (x) attains its maximum in

[−1, 1] at the end points. To be more precise, consider the following.

Proposition 3.9. (a) For α ≥ −1/2, β ≥ 1/2, and q = max{α, β − 1},

max
−1≤x≤1

∣
∣∣Q

(α,β)
n (x)

∣
∣∣ =
∣
∣∣Q

(α,β)
n (a)

∣
∣∣ ∼ nq, (3.28)

where a = 1 if q = α, and a = −1 if q = β − 1.
(b) For α > −1, β ≥ −1/2, and q = max{α + 1, β},

max
−1≤x≤1

∣∣∣Q′
n
(α,β)(x)

∣∣∣ =
∣∣∣Q′

n
(α,β)(b)
∣∣∣ ∼ nq+1, (3.29)

where b = 1 if q = α + 1, and b = −1 if q = β.

Proof. (a)We will prove only the case q = α. If q = β − 1, the the proof can be done in a similar
way. From (3.9), (3.10), and Proposition 3.7,

Q
(α,β)
n (x) = P

(α,β−1)
n (x) − dn−1(λ)Q

(α,β)
n−1 (x) = P

(α,β−1)
n (x) −O

(
nα−2
)
. (3.30)

Now, from [12, Theorem 7.32.1] and Proposition 3.7, the result follows.
Taking into account (2.6), the case (b) can be proved in a similar way.

Next, we deduce a Mehler-Heine type formula for Q(α,β)
n and (Q(α,β)

n )
′
.

Proposition 3.10. Let α, β > −1. Uniformly on compact subsets of C, one gets
(a)

lim
n→∞

n−αQ(α,β)
n

(
cos

z

n

)
=
(z
2

)−α
Jα(z), (3.31)

(b)

lim
n→∞

n−α−2Q′
n
(α,β)
(
cos

z

n

)
=
(z
2

)−(α+1)
Jα+1(z). (3.32)

Proof. (a) Multiplying in (3.8) by (n + 1)−α,we obtain

Vn(z) = Yn(z) +Dn−1(λ)Yn−1(z), (3.33)
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where Vn(z) = (n+1)−α[(n + α + β)/(2n + α + β)P (α,β)
n (cos(z/n)) + ((n + α)/(2n + α + β))P (α,β)

n−1
×(cos(z/n))], Yn(z) = (n + 1)−αQ(α,β)

n (cos(z/n)) and Dn−1(λ) = dn−1(λ)(n/(n + 1))α ∼= c/n2

according to (3.9).
Using the above relation in a recursive way, we obtain

Yn(z) =
n∑

k=0

(−1)kB(n)
k (λ)Vn−k(z), (3.34)

where B
(n)
k (λ) =

∏k
j=1Dn−j(λ) and B

(n)
0 (λ) = 1. Moreover, by using the same argument as in

Proposition 3.5, we have B(n)
k

(λ) < c(1/n2k) for every n ≥ 1 and 1 ≤ k ≤ n. Thus,

|Yn(z)| ≤
n∑

k=0

B
(n)
k (λ)|Vn−k(z)|. (3.35)

On the other hand, from (2.8), we have that {Vn(z)}∞n=0 is uniformly bounded on
compact subsets of C. Thus, for a fixed compact set K ⊂ C, there exists a constant C,
depending only on K, such that when z ∈ K,

|Vn(z)| < C, n ≥ 1. (3.36)

Thus, the sequence {Yn(z)}∞n=0 is uniformly bounded on K ⊂ C. As a conclusion,

Yn(z) = Vn(z) +O
(
n−2
)
, z ∈ K, (3.37)

and using (2.8), we obtain the result.
(b) Since we have uniform convergence in (3.31), taking derivatives and using some

properties of Bessel functions, we obtain (3.32).

Now, we give the inner strong asymptotics of Q(α,β)
n on (−1, 1).

Proposition 3.11. Let θ ∈ [ε, π − ε] and ε > 0. For α ≥ −1/2, β ≥ 1/2, one has

Q
(α,β)
n (cos θ) = π−1/2n−1/2

[(
sin

θ

2

)−α−1/2(
cos

θ

2

)−β+1/2
cos
(
k1θ + γ

)
+O
(
n−1
)]

, (3.38)

and for α > −1, β ≥ −1/2, one has

Q′
n
(α,β)(cos θ)

= π−1/2
(
n + α + β + 1

)
(n − 1)−1/2

2

[(
sin

θ

2

)−α−3/2(
cos

θ

2

)−β−1/2
cos
(
k1θ + γ1

)
+O
(
n−1
)]

,

(3.39)

where k1 = n + (α + β)/2, γ = −(α + 1/2)π/2, and γ1 = −(α + 3/2)π/2.
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Proof. From Proposition 3.6(a), the sequence {n1/2Q
(α,β)
n (x)}∞n=1 is uniformly bounded on

compact subsets of (−1, 1). Multiplication by n1/2 in (3.10) yields

n1/2Q
(α,β)
n (x) = n1/2P

(α,β−1)
n (x) − dn−1(λ)

√
n

n − 1
(n − 1)1/2Q(α,β)

n−1 (x). (3.40)

Since

dn−1(λ)
√

n

n − 1
= O

(
1
n2

)
, (3.41)

we have

n1/2Q
(α,β)
n (x) = n1/2P

(α,β−1)
n (x) +O

(
n−2
)
. (3.42)

Now, (3.38) follows from (2.9).
Concerning (3.39), it can be obtained in a similar way by using (3.11) and

Proposition 3.6(b).

Next, we obtain an estimate for the Sobolev norms of the Jacobi-Sobolev polynomials.

Proposition 3.12. For α > −1/2, α + 1 ≥ β ≥ −1/2, and 1 ≤ p ≤ ∞, one has

∥∥∥Q
(α,β)
n

∥∥∥
S
α,β
p

∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n1/2, if
4(α + 2)
2α + 3

> p,

n1/2 logn, if
4(α + 2)
2α + 3

= p,

nα+2−(2α+4)/p, if
4(α + 2)
2α + 3

< p.

(3.43)

Notice that if p = ∞, then we have Proposition 3.9(b). Thus, in the proof we will
assume 1 ≤ p < ∞.

Proof. In order to establish the upper bound in (3.38), it is enough to prove that

∥∥∥Q
(α,β)
n

∥∥∥
S
α,β
p

≤ cn
∥∥∥P

(α+1,β)
n

∥∥∥
Lp(dμα+1,β)

. (3.44)

Using (3.8) in a recurrence way and then Minkowski’s inequality, we obtain

∥∥∥Q
(α,β)
n

∥∥∥
Lp(dμα,β)

≤ c
n∑

k=0

b
(n)
k (λ)
∥∥∥P

(α,β)
n−k
∥∥∥
Lp(dμα,β)

+ c
n∑

k=0

b
(n)
k (λ)
∥∥∥P

(α,β)
n−k−1
∥∥∥
Lp(dμα,β)

. (3.45)
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On the other hand, for α, β > −1 and k = 0, 1, . . . , n, (2.10) implies

(n − k)1/2
∥∥
∥P

(α,β)
n−k
∥∥
∥
Lp(dμα,β)

≤ cn1/2
∥∥
∥P

(α,β)
n

∥∥
∥
Lp(dμα,β)

. (3.46)

Thus,

∥
∥∥P

(α,β)
n−k
∥
∥∥
Lp(dμα,β)

≤
√

n

n − k

∥
∥∥P

(α,β)
n

∥
∥∥
Lp(dμα,β)

, 0 ≤ k ≤ n − 1. (3.47)

On the other hand, from Proposition 3.5,

n∑

k=0

b
(n)
k (λ)
∥∥∥P

(α,β)
n−k
∥∥∥
Lp(dμα,β)

≤ cb
(n)
n (λ) +

n−1∑

k=0

b
(n)
k (λ)
∥∥∥P

(α,β)
n−k
∥∥∥
Lp(dμα,β)

≤ c
∥∥∥P

(α,β)
n−1
∥∥∥
Lp(dμα,β)

n−1∑

i=0

1
2k

≤ c
∥∥∥P

(α,β)
n

∥∥∥
Lp(dμα,β)

.

(3.48)

Thus,

∥∥∥Q
(α,β)
n

∥∥∥
Lp(dμα,β)

≤ c
∥∥∥P

(α,β)
n

∥∥∥
Lp(dμα,β)

≤ cn
∥∥∥P

(α+1,β)
n

∥∥∥
Lp(dμα+1,β)

. (3.49)

In the same way as above, we conclude that

∥∥
∥Q′

n
(α,β)
∥∥∥
Lp(dμα+1,β)

≤ cn
n∑

k=0

b
(n)
k (λ)
∥∥∥P

(α+1,β)
n−k−1
∥∥∥
Lp(dμα+1,β)

≤ cn
∥∥∥P

(α+1,β)
n

∥∥∥
Lp(dμα+1,β)

. (3.50)

Thus, (3.44) follows from (3.49) and (3.50).
In order to prove the lower bound in relation (3.43), we will need the following.

Proposition 3.13. For α > −1 and 1 ≤ p < ∞, one has

∥∥∥Q′
n
(α,β)
∥∥∥
Lp(dμα+1,β)

≥ c

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n1/2, if
4(α + 2)
2α + 3

> p,

n1/2 logn, if
4(α + 2)
2α + 3

= p,

nα+2−(2α+4)/p, if
4(α + 2)
2α + 3

< p.

(3.51)



Journal of Inequalities and Applications 13

Proof. We will use a technique similar to [12, Theorem 7.34]. According to (3.11),

∫π/2

0
θ2α+3
∣
∣
∣Q′

n
(α,β)(cos θ)

∣
∣
∣
p
dθ >

∫ω/n

0
θ2α+3
∣
∣
∣Q′

n
(α,β)(cos θ)

∣
∣
∣
p
dθ

≥ cn−2α−4
∫ω

0
t2α+3
∣
∣
∣
∣Q

′
n
(α,β)
(
cos

t

n

)∣∣
∣
∣

p

dt

∼= cnp(α+2)−2α−4
∫ω

0
t2α+3
∣
∣∣t−(α+1)Jα+1(t)

∣
∣∣
p
dt

= cnp(α+2)−2α−4
∫ω

0
t2α+3−p(α+1)|Jα+1(t)|pdt.

(3.52)

On the other hand, Stempak’s lemma (see [16, Lemma 2.1]), for γ > −1 − pα and 1 ≤ p < ∞,
implies

∫ω

0
tγ |Jα+1(t)|pdt ∼

⎧
⎪⎨

⎪⎩

c, if γ <
p

2
− 1,

c logω, if γ =
p

2
− 1.

(3.53)

Thus, for 4(α + 2)/(2α + 3) ≤ p and ω large enough, (3.51) follows.
Finally, from (3.39)we obtain the following:

∫π/2

0
θ2α+3
∣∣∣Q′

n
(α,β)(cos θ)

∣∣∣
p
dθ >

∫π/2

π/4
θ2α+3
∣∣∣Q′

n
(α,β)(cos θ)

∣∣∣
p
dθ ∼ np/2. (3.54)

For the proof of Proposition 3.12, from (3.51), for α > −1 and 1 ≤ p < ∞,we get

∥∥∥Q
(α,β)
n

∥∥∥
S
α,β
p

≥ c

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n1/2, if
4(α + 2)
2α + 3

> p,

n1/2 logn, if
4(α + 2)
2α + 3

= p,

nα+2−(2α+4)/p, if
4(α + 2)
2α + 3

< p.

(3.55)

Thus, using (3.44) and (3.55), the statement follows.

4. A Cohen Type Inequality for Jacobi-Sobolev Expansions

For f ∈ S
α,β

1 , its Fourier expansion in terms of Jacobi-Sobolev polynomials is

∞∑

k=0

f̂(k)Q(α,β)
k (x), (4.1)



14 Journal of Inequalities and Applications

where

f̂(k) =
(∥
∥
∥Q

(α,β)
k

∥
∥
∥
2

S
α,β

2

)−1〈
f,Q

(α,β)
k

〉
, k = 0, 1, . . . . (4.2)

The Cesàro means of order δ of the expansion (4.1) is defined by (see [17, pages 76-
77]),

σδ
nf(x) =

n∑

k=0

Cδ
n−k
Cδ

n

f̂(k)Q(α,β)
k (x), (4.3)

where Cδ
k =
(
k+δ
k

)
.

For a function f ∈ S
α,β
p and a fixed sequence {ck,n}nk=0, n ∈ N ∪ {0}, of real numbers

with cn−1,n = o(n2cn,n),we define the operators Tα,β
n by

T
α,β
n

(
f
)
=

n∑

k=0

ck,nf̂(k)Q
(α,β)
k . (4.4)

Let q0 = (4α+ 8)/(2α+ 3) and let p0 be the conjugate of q0.Now, we can state our main
result.

Theorem 4.1. For α > −1/2 and α + 1 ≥ β ≥ −1/2, one has

∥∥∥T
α,β
n

∥∥∥
[Sα

p]
≥ c|cn,n|

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n(2α+4)/p−(2α+5)/2, if 1 ≤ p < p0,

(logn)(2α+3)/(4α+8), if p = p0, p = q0,

n(2α+3)/2−(2α+4)/p, if q0 < p ≤ ∞.

(4.5)

Corollary 4.2. Let α, β, p0, q0, and p be as in Theorem 4.1. For ck,n = 1, k = 0, . . . , n, and for p
outside the interval (p0, q0), one has

∥∥∥σ0
n

∥∥∥
[Sα,β

p ]
−→ ∞, n −→ ∞. (4.6)

For ck,n = Cδ
n−k/C

δ
n, 0 ≤ k ≤ n, Theorem 4.1 yields the following.

Corollary 4.3. For α > −1/2 and α + 1 ≥ β ≥ −1/2, one has

0 < δ <
2α + 4

p
− 2α + 5

2
, if 1 ≤ p < p0,

0 < δ <
2α + 3

2
− 2α + 4

p
, if q0 < p ≤ ∞,

(4.7)
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and p /∈ [p0, q0],

∥
∥
∥σδ

n

∥
∥
∥
[Sα,β

p ]
−→ ∞, n −→ ∞. (4.8)

We will use the following as test functions (see [10, formula (2.8)], and [11, formula
(22.7.19)]):

g
α,β−1,j
n (x) = (1 − x2)

j
P
(α+j,β−1+j)
n (x) =

2j∑

m=0

cm,j

(
α, β − 1, n

)
P
(α,β−1)
n+m (x)

=
2j∑

m=0

cm,j

(
α, β − 1, n

)(
An+m
(
α, β
)
P
(α,β)
n+m (x) + Bn+m

(
α, β
)
P
(α,β)
n+m−1(x)

)
,

(4.9)

where j ∈ N \ {1}, and

c0,j
(
α, β, n
)
=

4jΓ
(
n + α + j + 1

)
Γ
(
n + β + j + 1

)
Γ
(
2n + α + β + 2

)

Γ(n + α + 1)Γ
(
n + β + 1

)
Γ
(
2n + α + β + 2j + 2

) ,

c1,j
(
α, β, n
)
= − 4jA−j−1

1 (n + 1)Γ
(
n + α + j + 1

)
Γ
(
n + β + j + 1

)
Γ
(
2n + α + β + 3

)

(
2n + α + β + j + 2

)
Γ(n + α + 1)Γ

(
n + β + 2

)
Γ
(
2n + α + β + 2j + 2

)

+
4jA−j−1

1 (n + 1)Γ
(
n + α + j + 1

)
Γ
(
n + β + j + 2

)
Γ
(
2n + α + β + 4

)

(
2n + α + β + j + 3

)
Γ(n + α + 2)Γ

(
n + β + 2

)
Γ
(
2n + α + β + 2j + 3

) ,

c2j,j
(
α, β, n
)
=

(−4)jΓ(n + 2j + 1
)
Γ
(
2n + 2j + α + β + 1

)

Γ(n + 1)Γ
(
2n + 4j + α + β + 1

) ,

An

(
α, β
)
=

n + α + β

2n + α + β
, Bn

(
α, β
)
=

n + α

2n + α + β
.

(4.10)

Applying the operator Tα,β
n to g

α,β−1,j
n , for some j > α + 5/2 − 2(α + 2)/p,we get

T
α,β
n

(
g
α,β−1,j
n

)
=

n∑

k=0

ck,n
(
g
α,β−1,j
n

)
̂(k)Q(α,β)

k , (4.11)

where

(
g
α,β−1,j
n

)
̂(k) =

(∥∥∥Q
(α,β)
k

∥∥∥
2

S
α,β

2

)−1〈
g
α,β−1,j
n , Q

(α,β)
k

〉
, k = 0, 1, . . . , n, (4.12)

and using (2.3) and (3.3), we deduce

∥∥∥Q
(α,β)
n

∥∥∥
2

S
α,β

2

∼= λ2α+βn. (4.13)
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Taking into account (4.9), for 0 ≤ k ≤ n − 2,

∫1

−1
g
α,β−1,j
n (x)Q(α,β)

k (x)dμα,β(x) = 0. (4.14)

If k = n − 1, then we get

∫1

−1
g
α,β−1,j
n (x)Q(α,β)

n−1 (x)dμα,β(x) = c0,j
(
α, β, n
)
An−1
(
α, β
)
Bn

(
α, β
)
,

×
∫1

−1
P
(α,β)
n−1 (x)P (α,β)

n−1 (x)dμα,β(x) ∼= 2α+β+2j−2n−1.

(4.15)

If k = n, then

∫1

−1
g
α,β−1,j
n (x)Q(α,β)

n (x)dμα,β(x)

= c0,j
(
α, β, n
)(
An

(
α, β
))2
∫1

−1
P
(α,β)
n (x)P (α,β)

n (x)dμα,β(x)

+ c0,j
(
α, β, n
)(
Bn

(
α, β
))2
∫1

−1
P
(α,β)
n−1 (x)P (α,β)

n−1 (x)dμα,β(x)

− c0,j
(
α, β, n
)
An−1
(
α, β
)
Bn

(
α, β
)
b
(n)
1 (λ)
∫1

−1
P
(α,β)
n−1 (x)P (α,β)

n−1 (x)dμα,β(x)

+ c1,j
(
α, β, n
)
An

(
α, β
)
Bn+1
(
α, β
)
∫1

−1
P
(α,β)
n (x)P (α,β)

n (x)dμα,β(x) ∼= 2α+β+2j−1n−1.

(4.16)

On the other hand, for 0 ≤ k ≤ n − 1,

∫1

−1

(
g
α,β−1,j
n (x)

)′(
Q

(α,β)
k (x)

)′
dμα+1,β(x) = 0, (4.17)

and for k = n,

∫1

−1

(
g
α,β−1,j
n (x)

)′(
Q

(α,β)
n (x)

)′
dμα+1,β(x)

=
(
n + α + β

2

)2
c0,j
(
α, β − 1, n

)
∫1

−1
P
(α+1,β)
n−1 (x)P (α+1,β)

n−1 (x)dμα+1,β(x)

∼= 2α+β+2j−1n.

(4.18)
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Thus,

〈
g
α,β−1,j
n , Q

(α,β)
k

〉
= 0, if 0 ≤ k ≤ n − 2,

〈
g
α,β−1,j
n , Q

(α,β)
n−1
〉 ∼= 2α+β+2j−2n−1,

〈
g
α,β−1,j
n , Q

(α,β)
n

〉 ∼= 2α+β+2j−1n.

(4.19)

As a conclusion,

(
g
α,β−1,j
n

)
̂(k) = 0, if 0 ≤ k ≤ n − 2,

(
g
α,β−1,j
n

)
̂(n − 1) ∼= 22j−2

λn2
,

(
g
α,β−1,j
n

)
̂(n) ∼= 22j−2

λ
.

(4.20)

Now, we will estimate

∥∥∥g
α,β−1,j
n

∥∥∥
p

S
α,β
p

=
∥∥∥g

α,β−1,j
n

∥∥∥
p

Lp(dμα,β)
+ λ

∥∥∥∥
(
g
α,β−1,j
n

)′∥∥∥∥
p

Lp(dμα+1,β)
. (4.21)

From [10, formula (3.1)],

∥∥∥g
α,β−1,j
n

∥∥∥
p

Lp(dμα,β)
≤ cn−p/2, (4.22)

for j > α + 1/2 − (2α + 2)/p ≥ β − 1/2 − (2β + 2)/p.
On the other hand, from (2.6), (4.9), and [12, formula (4.5.4)], one has

(
g
α,β−1,j
n (x)

)′
=
((

1 − x2
)j
P
(α+j,β−1+j)
n (x)

)′

= −2j
(
1 − x2
)j−1

xP
(α+j,β−1+j)
n (x) +

n + α + β + 2j
2

(
1 − x2
)j
P
(α+1+j,β+j)
n (x)

=
4j
(
n + α + j

)

2n + α + β + 2j

(
1 − x2
)j−1

P
(α−1+j,β−1+j)
n (x)

− 4j(n + 1)
2n + α + β + 2j

(
1 − x2
)j−1

P
(α−1+j,β−1+j)
n+1 (x)

− 2j
(
1 − x2
)j−1

P
(α+j,β−1+j)
n (x) +

n + α + β + 2j
2

(
1 − x2
)j
P
(α+1+j,β+j)
n (x).

(4.23)
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From (2.10), for j > max{α + 3/2 − (2α + 4)/p, β + 3/2 − (2β + 2)/p},
∥
∥
∥
∥
(
1 − x2
)j−1

P
(α−1+j,β−1+j)
n

∥
∥
∥
∥
Lp(dμα+1,β)

∼ n−1/2, (4.24)

for α + 1 ≥ β and j > α + 5/2 − (2α + 4)/p,

∥
∥
∥(1 − x2)

j−1
P
(α+j,β−1+j)
n

∥
∥
∥
Lp(dμα+1,β)

∼ n−1/2, (4.25)

and for α + 1 ≥ β and j > α + 3/2 − (2α + 4)/p,

∥
∥∥∥
(
1 − x2
)j
P
(α+1+j,β+j)
n

∥
∥∥∥
Lp(dμα+1,β)

∼ n−1/2. (4.26)

Thus, for α + 1 ≥ β and j > α + 5/2 − (2α + 4)/p,

∥∥∥∥
(
g
α,β−1,j
n

)′∥∥∥∥
Lp(dμα+1,β)

≤ cn1/2. (4.27)

By using (4.22) and (4.27), we find from (4.21) that

∥∥∥g
α,β−1,j
n

∥∥∥
S
α,β
p

≤ cn1/2, (4.28)

for α + 1 ≥ β and j > α + 5/2 − (2α + 4)/p.
Now, we can prove our main result.

Proof of Theorem 4.1. By duality, it is enough to assume that q0 ≤ p ≤ ∞. From (4.11), (4.20),
and (4.28), one has

∥∥∥T
α,β
n

∥∥∥
S
α,β
p

≥
[∥∥∥g

(α,β−1,j)
n

∥∥∥
S
α,β
p

]−1∥∥∥T
α,β
n

(
g
(α,β−1,j)
n

)∥∥∥
S
α,β
p

≥ cn−1/2
∣∣∣cn,n
(
g
α,β−1,j
n

)
̂(n)
∣∣∣
∥∥∥Q

(α,β)
n

∥∥∥
S
α,β
p

− cn−1/2
∣∣∣cn−1,n
(
g
α,β−1,j
n

)
̂(n − 1)

∣∣∣
∥∥∥Q

(α,β)
n−1
∥∥∥
S
α,β
p

∼ cn−1/2|c1cn,n|
∥∥∥Q

(α,β)
n

∥∥∥
S
α,β
p

(
1 −
∣∣∣∣
c2cn−1,n
c1n2cn,n

∣∣∣∣

)
.

(4.29)

Now from Proposition 3.12, the statement of the theorem follows.
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5. Necessary Conditions for the Norm Convergence

The problem of the convergence in the norm of partial sums of the Fourier expansions in
terms of Jacobi polynomials has been discussed by many authors. See, for instance, [18–20]
and the references therein.

Let q(α,β)n be the Jacobi-Sobolev orthonormal polynomials, that is,

q
(α,β)
n (x) =

(∥
∥
∥Q

(α,β)
n

∥
∥
∥
S
α,β

2

)−1
Q

(α,β)
n (x). (5.1)

For f ∈ S
α,β

1 , the Fourier expansion in terms of Jacobi-Sobolev orthonormal poly-
nomials is

∞∑

k=0

f̂(k)q(α,β)k (x), (5.2)

where

f̂(k) =
〈
f, q

(α,β)
k

〉
, k = 0, 1, . . . . (5.3)

Let Snf be the nth partial sum of the expansion (5.2) as follows:

Sn

(
f, x
)
=

n∑

k=0

f̂(k)q(α,β)k (x). (5.4)

Theorem 5.1. Let α > −1/2, α + 1 ≥ β ≥ −1/2, and 1 < p < ∞. If there exists a constant c > 0 such
that

∥∥Snf
∥∥
S
α,β
p

≤ c
∥∥f
∥∥
S
α,β
p
, (5.5)

for every f ∈ S
α,β
p , then p ∈ (p0, q0).

Proof. For the proof, we apply the same argument as in [19]. Assume that (5.5) holds, then

∥∥∥
〈
f, q

(α,β)
n

〉
q
(α,β)
n (x)

∥∥∥
S
α,β
p

=
∥∥Snf − Sn−1f

∥∥
S
α,β
p

≤ 2c
∥∥f
∥∥
S
α,β
p
. (5.6)

Therefore,

∥∥∥q
(α,β)
n (x)

∥∥∥
S
α,β
p

∥∥∥q
(α,β)
n (x)

∥∥∥
Sα
q

< ∞, (5.7)

where p is the conjugate of q.
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On the other hand, from (3.43) we obtain the Sobolev norms of Jacobi-Sobolev
orthonormal polynomials as follows:

∥
∥
∥q

(α,β)
n

∥
∥
∥
S
α,β
p

∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c, if p < q0,

logn, if p = q0,

nα+3/2−(2α+4)/p, if p > q0,

(5.8)

for α > −1/2, α + 1 ≥ β ≥ −1/2, and 1 ≤ p ≤ ∞. Now, from (5.8) it follows that the inequality
(5.7) holds if and only if p ∈ (p0, q0).

The proof of Theorem 5.1 is complete.

6. Divergence Almost Everywhere

For λ = 0 and α = β = 0, Pollard [21] showed that for each p < 4/3 there exists a function
f ∈ Lp(dx) such that its Fourier expansion (4.27) diverges almost everywhere on [−1, 1]. Later
on, Meaney [22] extended the result to p = 4/3. Furthermore, he proved that this is a special
case of a divergence result for the Fourier expansion in terms of Jacobi polynomials. The
failure of almost everywhere convergence of the Fourier expansions associated with systems
of orthogonal polynomials on [−1, 1] and Bessel systems has been discussed in [16, 23].

If the sequence {Sn(f)}n≥0 is uniformly bounded on a set, say E, of positive measure
in [−1, 1], then

∥∥∥f̂(n)q
(α,β)
n (x)

∥∥∥
S
α,β
∞ ,E

< c, n ∈ N, x ∈ E. (6.1)

Therefore,

∥∥∥f̂(n)q′n
(α,β)(x)

∥∥∥ < c, n ∈ N, (6.2)

almost everywhere on E. From Egorov’s Theorem, it follows that there is a subset E1 ⊂ E of
positive measure such that

∥∥∥f̂(n)q′n
(α,β)(x)

∥∥∥ < c, (6.3)

uniformly for x ∈ E1. On the other hand, from (3.39)

∣∣∣f̂(n)
(
cos
(
k1θ + γ1

)
+O
(
n−1
))∣∣∣ < c, (6.4)

uniformly for cos θ ∈ E1. Using the Cantor-Lebesgue Theorem, as described in [24, Section
1.5], (see also [17, page 316]), we obtain

∣∣∣f̂(n)
∣∣∣ < c. (6.5)
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Theorem 6.1. Let α > −1/2 and α + 1 ≥ β ≥ −1/2. There is an f ∈ S
α,β
p , 1 ≤ p ≤ p0, whose Fourier

expansion (5.2) diverges almost everywhere on [−1, 1] in the norm of Sα,β
∞ .

Proof. Consider the linear functionals

Tn
(
f
)
= f̂(n) =

〈
f, q

(α,β)
n

〉
, (6.6)

on S
α,β
p , 1 ≤ p ≤ p0. By using [1, Theorem 3.8], we have

‖Tn‖ =
∥
∥
∥q

(α,β)
n

∥
∥
∥
S
α,β
p

, q0 ≤ p ≤ ∞. (6.7)

Thus, from (5.8),

sup
n

‖Tn‖ = ∞. (6.8)

As a consequence of the Banach-Steinhaus theorem, there exists f ∈ S
α,β
p , 1 ≤ p ≤ p0, such that

sup
n

∣∣Tn
(
f
)∣∣ = ∞. (6.9)

Since this result contradicts (6.5), then for this f the Fourier series diverges almost
everywhere on [−1, 1] in the norm of Sα,β

∞ .
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[15] A. Martı́nez-Finkelshtein, J. J. Moreno-Balcázar, and H. Pijeira-Cabrera, “Strong asymptotics for
Gegenbauer-Sobolev orthogonal polynomials,” Journal of Computational and Applied Mathematics, vol.
81, no. 2, pp. 211–216, 1997.

[16] K. Stempak, “On convergence and divergence of Fourier-Bessel series,” Electronic Transactions on
Numerical Analysis, vol. 14, pp. 223–235, 2002.

[17] A. Zygmund, Trigonometric Series: Vols. I, II, Cambridge University Press, London, UK, 2nd edition,
1968.

[18] B. Muckenhoupt, “Mean convergence of Jacobi series,” Proceedings of the American Mathematical
Society, vol. 23, pp. 306–310, 1969.

[19] J. Newman and W. Rudin, “Mean convergence of orthogonal series,” Proceedings of the American
Mathematical Society, vol. 3, pp. 219–222, 1952.

[20] H. Pollard, “The mean convergence of orthogonal series. III,” Duke Mathematical Journal, vol. 16, pp.
189–191, 1949.

[21] H. Pollard, “The convergence almost everywhere of Legendre series,” Proceedings of the American
Mathematical Society, vol. 35, pp. 442–444, 1972.

[22] C. Meaney, “Divergent Jacobi polynomial series,” Proceedings of the American Mathematical Society, vol.
87, no. 3, pp. 459–462, 1983.
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[24] Ch. Meaney, “Divergent Cesàro and Riesz means of Jacobi and Laguerre expansions,” Proceedings of
the American Mathematical Society, vol. 131, no. 10, pp. 3123–3218, 2003.


	1. Introduction
	2. Jacobi Polynomials
	3. Asymptotics of Jacobi-Sobolev Orthogonal Polynomials
	4. A Cohen Type Inequality for Jacobi-Sobolev Expansions
	5. Necessary Conditions for the Norm Convergence
	6. Divergence Almost Everywhere
	Acknowledgments
	References

