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We establish a summability factor theorem for summability |A, δ|k , where A is lower triangular
matrix with nonnegative entries satisfying certain conditions. This paper is an extension of the
main result of the work by Rhoades and Savaş (2006) by using quasi f-increasing sequences.

1. Introduction

Recently, Rhoades and Savaş [1] obtained sufficient conditions for
∑

anλn to be summable
|A, δ|k, k ≥ 1 by using almost increasing sequence. The purpose of this paper is to obtain the
corresponding result for quasi f-increasing sequence.

A sequence {λn} is said to be of bounded variation (bv) if
∑

n |Δλn| < ∞. Let bv0 =
bv ∩ c0, where c0 denotes the set of all null sequences.

Let A be a lower triangular matrix, {sn} a sequence. Then

An :=
n∑

ν=0

anνsν. (1.1)

A series
∑

an, with partial sums (sn), is said to be summable |A|k, k ≥ 1 if

∞∑

n=1

nk−1|An −An−1|k < ∞, (1.2)

and it is said to be summable |A, δ|k, k ≥ 1 and δ ≥ 0 if (see, [2])

∞∑

n=1

nδk+k−1|An −An−1|k < ∞. (1.3)
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A positive sequence {bn} is said to be an almost increasing sequence if there exist an
increasing sequence {cn} and positive constants A and B such that Acn ≤ bn ≤ Bcn (see, [3]).
Obviously, every increasing sequence is almost increasing. However, the converse need not
be true as can be seen by taking the example, say bn = e(−1)

n

n.
A positive sequence γ := {γn} is said to be a quasi β-power increasing sequence if there

exists a constant K = K(β, γ) ≥ 1 such that

Knβγn ≥ mβγm (1.4)

holds for all n ≥ m ≥ 1. It should be noted that every almost increasing sequence is quasi
β-power increasing sequence for any nonnegative β, but the converse need not be true as can
be seen by taking an example, say γn = n−β for β > 0 (see, [4]). A sequence satisfying (1.4) for
β = 0 is called a quasi-increasing sequence. It is clear that if {γn} is quasi β-power increasing
then {nβγn} is quasi-increasing.

A positive sequence γ = {γn} is said to be a quasi-f-power increasing sequence if there
exists a constant K = K(γ, f) ≥ 1 such that Kfnγn ≥ fmγm holds for all n ≥ m ≥ 1, where
f := {fn} = {nβ(logn)μ}, μ > 0, 0 < β < 1, (see, [5]).

We may associate with A two lower triangular matrices A and Â as follows:

anv =
n∑

r=v
anr , n, v = 0, 1, . . . ,

ânv = anv − an−1,v, n = 1, 2, . . . ,

(1.5)

where

â00 = a00 = a00. (1.6)

Given any sequence {xn}, the notation xn � O(1) means that xn = O(1) and 1/xn =
O(1). For any matrix entry anv,Δvanv := anv − an,v+1.

Rhoades and Savaş [1] proved the following theorem for |A, δ|k summability factors
of infinite series.

Theorem 1.1. Let {Xn} be an almost increasing sequence and let {βn} and {λn} be sequences such
that

(i) |Δλn| ≤ βn,

(ii) lim βn = 0,

(iii)
∑∞

n=1 n|Δβn|Xn < ∞,

(iv) |λn|Xn = O(1).

Let A be a lower triangular matrix with nonnegative entries satisfying

(v) nann � O(1),

(vi) an−1,ν ≥ anν for n ≥ ν + 1,

(vii) an0 = 1 for all n,
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(viii)
∑n−1

ν=1 aννânν+1 = O(ann),

(ix)
∑m+1

n=ν+1 n
δk|Δνânν| = O(νδkaνν) and

(x)
∑m+1

n=ν+1 n
δkânν+1 = O(νδk).

If

(xi)
∑m

n=1 n
δk−1|tn|k = O(Xm), where tn := (1/(n + 1))

∑n
k=1 kak,

then the series
∑

anλn is summable |A, δ|k, k ≥ 1.

It should be noted that, if {Xn} is an almost increasing sequence, then condition (iv)
implies that the sequence {λn} is bounded. However, if {Xn} is a quasi β-power increasing
sequence or a quasi f-increasing sequence, (iv) does not imply that λ is bounded. For
example, the sequence {Xm} defined by Xm = m−β is trivially a quasi β-power increasing
sequence for each β > 0. If λ = {mδ}, for any 0 < δ < β, then λmXm = mδ−β = O(1), but λ is not
bounded, (see, [6, 7]).

The purpose of this paper is to prove a theorem by using quasi f-increasing sequences.
We show that the crucial condition of our proof, {λn} ∈ bv0, can be deduced from another
condition of the theorem.

2. The Main Results

We now will prove the following theorems.

Theorem 2.1. Let A satisfy conditions (v)–(x) and let {βn} and {λn} be sequences satisfying
conditions (i) and (ii) of Theorem 1.1 and

m∑

n=1

λn = o(m), m −→ ∞. (2.1)

If {Xn} is a quasi f-increasing sequence and condition (xi) and

∞∑

n=1

nXn

(
β, μ

)∣
∣Δβn

∣
∣ < ∞ (2.2)

are satisfied then the series
∑

anλn is summable |A, δ|k, k ≥ 1, where {fn} := {nβ(logn)μ}, μ ≥
0, 0 ≤ β < 1, and Xn(β, μ) := (nβ(logn)μXn).

The following theorem is the special case of Theorem 2.1 for μ = 0.

Theorem 2.2. Let A satisfy conditions (v)–(x) and let {βn} and {λn} be sequences satisfying
conditions (i), (ii), and (2.1). If {Xn} is a quasi β-power increasing sequence for some 0 ≤ β < 1
and conditions (xi) and

∞∑

n=1

nXn

(
β
)∣
∣Δβn

∣
∣ < ∞ (2.3)

are satisfied, where Xn(β) := (nβXn), then the series
∑

anλn is summable |A, δ|k, k ≥ 1.
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Remark 2.3. The conditions {λn} ∈ bv0, and (iv) do not appear among the conditions of
Theorems 2.1 and 2.2. By Lemma 3.3, under the conditions on {Xn}, {βn}, and {λn} as taken
in the statement of the Theorem 2.1, also in the statement of Theorem 2.2 with the special case
μ = 0, conditions {λn} ∈ bv0 and (iv) hold.

3. Lemmas

We will need the following lemmas for the proof of our main Theorem 2.1.

Lemma 3.1 (see [8]). Let {ϕn} be a sequence of real numbers and denote

Φn :=
n∑

k=1

ϕk, Ψn :=
∞∑

k=n

∣
∣Δϕk

∣
∣. (3.1)

If Φn = o(n) then there exists a natural number N such that

∣
∣ϕn

∣
∣ ≤ 2Ψn (3.2)

for all n ≥ N.

Lemma 3.2 (see [9]). If {Xn} is a quasi f-increasing sequence, where {fn} = {nβ(logn)μ}, μ ≥
0, 0 ≤ β < 1, then conditions (2.1) of Theorem 2.1,

m∑

n=1

|Δλn| = o(m), m −→ ∞, (3.3)

∞∑

n=1

nXn

(
β, μ

)|Δ|Δλn|| < ∞, (3.4)

where Xn(β, μ) = (nβ(logn)μXn), imply conditions (iv) and

λn −→ 0, n −→ ∞. (3.5)

Lemma 3.3 (see [7]). If {Xn} is a quasi f-increasing sequence, where {fn} = {nβ(logn)μ}, μ ≥
0, 0 ≤ β < 1, then under conditions (i), (ii), (2.1), and (2.2), conditions (iv) and (3.5) are satisfied.

Lemma 3.4 (see [7]). Let {Xn} be a quasi f-increasing sequence, where {fn} = {nβ(logn)μ}, μ ≥
0, 0 ≤ β < 1. If conditions (i), (ii), and (2.2) are satisfied, then

nβnXn = O(1), (3.6)

∞∑

n=1

βnXn < ∞. (3.7)
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4. Proof of Theorem 2.1

Proof. Let (yn) be the nth term of the A transform of the partial sums of
∑n

i=0 λiai. Then we
have

yn :=
n∑

i=0

anisi =
n∑

i=0

ani

i∑

ν=0

λνaν

=
n∑

ν=0

λνaν

n∑

i=ν

ani =
n∑

ν=0

anνλνaν,

(4.1)

and, for n ≥ 1, we have

Yn := yn − yn−1 =
n∑

ν=0

ânνλνaν. (4.2)

We may write (noting that (vii) implies that ân0 = 0),

Yn =
n∑

ν=1

(
ânνλν
ν

)

νaν

=
n∑

ν=1

(
ânνλν
ν

)[
ν∑

r=1

rar −
ν−1∑

r=1

rar

]

=
n−1∑

ν=1

Δν

(
ânνλν
ν

) ν∑

r=1

rar +
ânnλn
n

n∑

r=1

rar

=
n−1∑

ν=1

(Δνânν)λν
ν + 1
ν

tν +
n−1∑

ν=1

ân,ν+1(Δλν)
ν + 1
ν

tν

+
n−1∑

ν=1

ân,ν+1λν+1
1
ν
tν +

(n + 1)annλntn
n

= Tn1 + Tn2 + Tn3 + Tn4, say.

(4.3)

To complete the proof it is sufficient, by Minkowski’s inequality, to show that

∞∑

n=1

nδk+k−1|Tnr |k < ∞, for r = 1, 2, 3, 4. (4.4)

From the definition of Â and using (vi) and (vii) it follows that

ân,ν+1 ≥ 0. (4.5)
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Using Hölder’s inequality

I1 :=
m∑

n=1

nδk+k−1|Tn1|k =
m∑

n=1

nδk+k−1
∣
∣
∣
∣
∣

n−1∑

ν=1

Δνânνλν
ν + 1
ν

tν

∣
∣
∣
∣
∣

k

= O(1)
m+1∑

n=1

nδk+k−1
(

n−1∑

ν=1

|Δνânν||λν||tν|
)k

= O(1)
m+1∑

n=1

nδk+k−1
(

n−1∑

ν=1

|Δνânν||λν|k|tν|k
)(

n−1∑

ν=1

|Δνânν|
)k−1

,

Δνânν = ânν − ân,ν+1

= anν − an−1,ν − an,ν+1 + an−1,ν+1

= anν − an−1,ν ≤ 0.

(4.6)

Thus, using (vii),

n−1∑

ν=0
|Δνânν| =

n−1∑

ν=0
(an−1,ν − anν) = 1 − 1 + ann = ann. (4.7)

Since (λn) is bounded by Lemma 3.3, using (v), (ix), (xi), (i), and condition (3.7) of Lemma 3.4

I1 = O(1)
m+1∑

n=1

nδk(nann)k−1
n−1∑

ν=1

|λν|k|tν|k|Δνânν|

= O(1)
m+1∑

n=1

nδk

(
n−1∑

ν=1

|λν|k−1|λν||Δνânν||tν|k
)

= O(1)
m∑

ν=1

|λν||tν|k
m+1∑

n=ν+1

nδk|Δνânν|

= O(1)
m∑

ν=1

νδk|λν|aνν|tν|k

= O(1)
m∑

ν=1

νδk−1|λν||tν|k

= O(1)

[
m−1∑

ν=1

Δ(|λν|)
ν∑

r=1

rδk−1|tr |k + |λm|
m∑

r=1

rδk−1|tr |k
]

= O(1)
m−1∑

ν=1

|Δλν|Xν +O(1)|λm|Xm

= O(1)
m∑

ν=1

βνXν +O(1)|λm|Xm

= O(1).

(4.8)
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Using Hölder’s inequality,

I2 :=
m+1∑

n=2

nδk+k−1|Tn2|k =
m+1∑

n=2

nδk+k−1
∣
∣
∣
∣
∣

n−1∑

ν=1

ân,ν+1(Δλν)
ν + 1
ν

tν

∣
∣
∣
∣
∣

k

= O(1)
m+1∑

n=2

nδk+k−1
[
n−1∑

ν=1

ân,ν+1|Δλν||tν|
]k

= O(1)
m+1∑

n=2

nδk+k−1
[
n−1∑

ν=1

|Δλν||tν|kân,ν+1

][
n−1∑

ν=1

ân,ν+1|Δλν|
]k−1

.

(4.9)

By Lemma 3.1, condition (3.3), in view of Lemma 3.3 implies that

∞∑

n=1

|Δλn| ≤ 2
∞∑

n=1

∞∑

k=n

|Δ|Δλk|| = 2
∞∑

k=1

|Δ|Δλk|| (4.10)

holds. Thus by Lemma 3.3, (3.4) implies that
∑∞

n=1 |Δλn| converges. Therefore, there exists a
positive constantM such that

∑∞
n=1 |Δλn| ≤ M and from the properties of matrixA, we obtain

n−1∑

ν=1

ân,ν+1|Δλk| ≤ Mann. (4.11)

We have, using (v) and (x),

I2 = O(1)
m+1∑

n=2

nδk(nann)k−1
n−1∑

ν=1

ân,ν+1βν|tν|k

= O(1)
m∑

ν=1

βν|tν|k
m+1∑

n=ν+1

nδkân,ν+1.

(4.12)

Therefore,

I2 = O(1)
m∑

ν=1

νδkβν|tν|k

= O(1)
m∑

ν=1

νβν
|tν|k
ν

νδk.

(4.13)



8 Journal of Inequalities and Applications

Using summation by parts, (2.2), (xi), and condition (3.6) and (3.7) of Lemma 3.4

I2 := O(1)
m−1∑

ν=1

Δ
(
νβν

) ν∑

r=1

rδk−1|tr |k +O(1)mβm
m∑

r=1

rδk−1|tr |k

= O(1)
m−1∑

ν=1

ν
∣
∣Δ

(
βν
)∣
∣Xν +O(1)

m−1∑

ν=1

βν+1Xν+1 +O(1)

= O(1).

(4.14)

Using Hölder’s inequality and (viii),

m+1∑

n=2

nk−1|Tn3|k =
m+1∑

n=2

nδk+k−1
∣
∣
∣
∣
∣

n−1∑

ν=1

ân,ν+1λν+1
1
ν
tν

∣
∣
∣
∣
∣

k

≤
m+1∑

n=2

nδk+k−1
[
n−1∑

ν=1

|λν+1|
ân,ν+1

ν
|tν|

]k

= O(1)
m+1∑

n=2

nδk+k−1
[
n−1∑

ν=1

|λν+1|ân,ν+1|tν|aνν

]k

= O(1)
m+1∑

n=2

nδk+k−1
[
n−1∑

ν=1

|λν+1|kaνν|tν|kân,ν+1

][
n−1∑

ν=1

aνν|ân,ν+1|
]k−1

.

(4.15)

Using boundedness of {λn}, (v), (x), (xi), Lemmas 3.3 and 3.4

I3 = O(1)
m+1∑

n=2

nδk(nann)k−1
n−1∑

ν=1

|λν+1|kaνν|tν|kân,ν+1

= O(1)
m∑

ν=1

|λν+1|aνν|tν|k
m+1∑

n=ν+1

nδkân,ν+1

= O(1)
m∑

ν=1

|λν+1|νδkaνν|tν|k

= O(1)
m∑

v=1

|λv+1|(vavv)vδk−1|tv|k

= O(1)
m∑

v=1

|λv+1|vδk−1|tv|k.

(4.16)
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Using summation by parts

I3 = O(1)
m−1∑

v=1

|Δλv+1|
v∑

r=1

rδk−1|tr |k +O(1)|λm+1|
m∑

v=1

vδk−1|tv|k

= O(1)
m−1∑

v=1

|Δλv+1|
v+1∑

r=1

rδk−1|tr |k +O(1)|λm+1|
m+1∑

v=1

vδk−1|tv|k

= O(1)
m−1∑

v=1

|Δλv+1|Xv+1 +O(1)|λm+1|Xm+1

= O(1)
m−1∑

v=1

βv+1Xv+1 +O(1)|λm+1|Xm+1

= O(1).

(4.17)

Finally, using boundedness of {λn}, and (v) we have

m∑

n=1

nδk+k−1|Tn4|k =
m∑

n=1

nδk+k−1
∣
∣
∣
∣
(n + 1)annλntn

n

∣
∣
∣
∣

k

= O(1)
m∑

n=1

nδkann|λn||tn|k

= O(1),

(4.18)

as in the proof of I1.

5. Corollaries and Applications to Weighted Means

Setting δ = 0 in Theorem 2.1 and Theorem 2.2 yields the following two corollaries,
respectively.

Corollary 5.1. Let A satisfy conditions (v)–(viii) and let {βn} and {λn} be sequences satisfying
conditions (i), (ii), and (2.1). If {Xn} is a quasi f-increasing sequence, where {fn} :=
{nβ(logn)μ}, μ ≥ 0, 0 ≤ β < 1, and conditions (2.2) and

m∑

n=1

1
n
|tn|k = O(Xm), m −→ ∞, (5.1)

are satisfied then the series
∑

anλn is summable |A|k, k ≥ 1.

Proof. If we take δ = 0 in Theorem 2.1 then condition (xi) reduces condition (5.1).

Corollary 5.2. Let A satisfy conditions (v)–(viii) and let {βn} and {λn} be sequences satisfying
conditions (i), (ii), and (2.1). If {Xn} is a quasi β-power increasing sequence for some 0 ≤ β < 1 and
conditions (2.3) and (5.1) are satisfied then the series

∑
anλn is summable |A|k, k ≥ 1.
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Corollary 5.3. Let {pn} be a positive sequence such that Pn :=
∑n

i=0 pi → ∞, as n → ∞ satisfies

npn � O(Pn), as n −→ ∞, (5.2)

m+1∑

n=v+1

nδk pn
PnPn−1

= O

(
vδk

Pv

)

(5.3)

and let {βn} and {λn} be sequences satisfying conditions (i), (ii), and (2.1). If {Xn} is a quasi f-
increasing sequence, where {fn} := {nβ(logn)μ}, μ ≥ 0, 0 ≤ β < 1, and conditions (xi) and (2.2) are
satisfied then the series,

∑
anλn is summable |N,pn, δ|k for k ≥ 1.

Proof. In Theorem 2.1, set A = (N,pn). Conditions (i) and (ii) of Corollary 5.3 are,
respectively, conditions (i) and (ii) of Theorem 2.1. Condition (v) becomes condition (5.2) and
conditions (ix) and (x) become condition (5.3) for weighted mean method. Conditions (vi),
(vii), and (viii) of Theorem 2.1 are automatically satisfied for anyweightedmeanmethod.

The following Corollary is the special case of Corollary 5.3 for μ = 0.

Corollary 5.4. Let {pn} be a positive sequence satisfying (5.2), (5.3) and let {Xn} be a quasi β-power
increasing sequence for some 0 ≤ β < 1. Then under conditions (i), (ii), (xi), (2.1), and (2.3),

∑
anλn

is summable |N,pn, δ|k, k ≥ 1.
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