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1. Introdution
In 2000, Zeng and Chen [1] introduced the Durrmeyer-Bézier operators Dn,α which are
defined as follows:

Dn,α

(
f, x

)
= (n + 1)

n∑

k=0

Q
(α)
nk (x)

∫1

0
f(t)pnk(t)dt, (1.1)

where f is defined on [0, 1], α ≥ 1, Q(α)
nk (x) = Jαnk(x) − Jαn,k+1(x), Jnk(x) =

∑n
j=k pnj(x),

k = 0, 1, 2, . . . , n are Bézier basis functions, and pnk(x) = (n!/k!(n − k)!)(xk (1 − x)n−k),
k = 0, 1, 2, . . . , n are Bernstein basis functions.

When α = 1, Dn,1(f) is just the well-known Durrmeyer operator

Dn,1
(
f, x

)
= (n + 1)

n∑

k=0

pnk(x)
∫1

0
f(t)pnk(t)dt. (1.2)

Concerning the approximation properties of operators Dn,1(f) and some results on
approximation of functions of bounded variation by positive linear operators, one can refer
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to [2–7]. Authors of [1] studied the rate of convergence of the operatorsDn,α(f) for functions
of bounded variation and presented the following important result.

Theorem A. Let f be a function of bounded variation on [0, 1], (f ∈ BV[0, 1]), α ≥ 1, then for every
x ∈ (0, 1) and n ≥ 1/x(1 − x)one has

∣
∣
∣
∣Dn,α

(
f, x

) −
[

1
α + 1

f(x+) +
α

α + 1
f(x−)

]∣∣
∣
∣ ≤

8α
nx(1 − x)

n∑

k=1

x+(1−x)/
√
k∨

x−x/
√
k

(
gx

)

+
2α

√
nx(1 − x)

∣
∣f(x+) − f(x−)∣∣,

(1.3)

where
∨b

a(gx) is the total variation of gx on [a, b] and

gx(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t) − f(x+), x < t ≤ 1,

0, t = x,

f(t) − f(x−), 0 ≤ t < x.

(1.4)

Since the Durrmeyer-Bézier operators Dn,α are an important approximation operator
of new type, the purpose of this paper is to continue studying the approximation properties
of the operators Dn,α for functions of bounded variation, and give a better estimate than that
of Theorem A by means of some probabilistic methods and inequality techniques. The result
of this paper is as follows.

Theorem 1.1. Let f be a function of bounded variation on [0, 1], (f ∈ BV[0, 1]), α ≥ 1, then for
every x ∈ (0, 1) and n > 1 one has

∣∣∣∣Dn,α

(
f, x

) −
[

1
α + 1

f(x+) +
α

α + 1
f(x−)

]∣∣∣∣ ≤
4α + 1

nx(1 − x)

n∑

k=1

x+(1−x)/
√
k∨

x−x/
√
k

(
gx

)

+
α

√
(n + 1)x(1 − x)

∣∣f(x+) − f(x−)∣∣,
(1.5)

where gx(t) is defined in (1.4).

It is obvious that the estimate (1.5) is better than the estimate (1.3). More important,
the estimate (1.5) is true for all n > 1. This is an important improvement comparing with the
fact that estimate (1.3) holds only for n ≥ 1/x(1 − x).

2. Some Lemmas

In order to prove Theorem 1.1, we need the following preliminary results.

Lemma 2.1. Let {ξk}∞k=1 be a sequence of independent and identically distributed random variables,
ξ1 is a random variable with two-point distribution P(ξ1 = i) = xi(1−x)1−i (i = 0, 1, and x ∈ [0, 1] is
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a parameter). Set ηn =
∑n

k=1ξk,with the mathematical expectation E(ηn) = μn ∈ (−∞,+∞), and with
the variance D(ηn) = σ2

n > 0. Then for k = 1, 2, . . . , n + 1,one has

∣∣P
(
ηn ≤ k − 1

) − P
(
ηn+1 ≤ k

)∣∣ ≤ σn+1

μn+1
, (2.1)

∣
∣P

(
ηn ≤ k

) − P
(
ηn+1 ≤ k

)∣∣ ≤ σn+1(
n + 1 − μn+1

) . (2.2)

Proof. Since ηn =
∑n

k=1ξk, from the distribution series of ξk, by convolution computation we
get

P
(
ηn = j

)
=

n!
j!
(
n − j

)
!
xj(1 − x)n−j , 0 ≤ j ≤ n. (2.3)

Furthermore by direct computations we have

μn+1 = (n + 1)x,

P
(
ηn = j − 1

)
=

j

(n + 1)x
P
(
ηn+1 = j

)
, 1 ≤ j ≤ n + 1.

(2.4)

Thus we deduce that

∣∣P
(
ηn ≤ k − 1

) − P
(
ηn+1 ≤ k

)∣∣ =

∣∣∣∣∣∣

k∑

j=1

P
(
ηn = j − 1

) −
k∑

j=1

P
(
ηn+1 = j

) − P
(
ηn+1 = 0

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣

k∑

j=0

(
j

(n + 1)x
− 1

)
P
(
ηn+1 = j

)
∣∣∣∣∣∣

≤ 1
(n + 1)x

k∑

j=0

∣
∣j − (n + 1)x

∣∣P
(
ηn+1 = j

)

≤ 1
(n + 1)x

n+1∑

j=0

∣∣j − (n + 1)x
∣∣P

(
ηn+1 = j

)

≤ 1
μn+1

E
∣∣ηn+1 − μn+1

∣∣.

(2.5)

By Schwarz’s inequality, it follows that

1
μn+1

E
∣∣ηn+1 − μn+1

∣∣ ≤

√
E
(
ηn+1 − μn+1

)2

μn+1
=

σn+1

μn+1
. (2.6)

The inequality (2.1) is proved.
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Similarly, by using the identities

n + 1 − μn+1 = (n + 1)(1 − x),

P
(
ηn = j

)
=

(n + 1) − j

(n + 1)(1 − x)
P
(
ηn+1 = j

)
, 1 ≤ j ≤ n + 1,

(2.7)

we get the inequality (2.2). Lemma 2.1 is proved.

Lemma 2.2. Let α ≥ 1, k = 0, 1, 2, . . . , n, pnk(x) = (n!/k!(n−k)!)xk (1 − x)n−k be Bernstein basis
functions, and let Jnk(x) =

∑n
j=kpnj(x) be Bézier basis functions, then one has

∣
∣
∣Jαnk(x) − Jαn+1,k+1(x)

∣
∣
∣ ≤ α

√
(n + 1)x(1 − x)

,

∣∣∣Jαnk(x) − Jαn+1,k(x)
∣∣∣ ≤ α

√
(n + 1)x(1 − x)

.

(2.8)

Proof. Note that 0 ≤ Jnk(x), Jn+1,k+1(x) ≤ 1, μn+1 = (n + 1)x, σ2
n+1 = (n + 1)x(1 − x), and α ≥ 1.

Thus

∣∣∣Jαnk(x) − Jαn+1,k+1(x)
∣∣∣ ≤ α|Jnk(x) − Jn+1,k+1(x)|

= α

∣∣∣∣∣∣

n∑

j=k

pnj −
n+1∑

j=k+1

pn+1,j

∣∣∣∣∣∣

= α

∣∣∣∣∣∣

⎛

⎝1 −
n∑

j=k

pnj

⎞

⎠ −
⎛

⎝1 −
n+1∑

j=k+1

pn+1,j

⎞

⎠

∣∣∣∣∣∣

= α
∣∣P

(
ηn ≤ k − 1

) − P
(
ηn+1 ≤ k

)∣∣.

(2.9)

Now by inequality (2.1) of Lemma 2.1 we obtain

∣∣∣Jαnk(x) − Jαn+1,k+1(x)
∣∣∣ ≤ α

1 − x
√
(n + 1)x(1 − x)

≤ α
√
(n + 1)x(1 − x)

. (2.10)

Similarly, by using inequality (2.2), we obtain

∣∣∣Jαnk(x) − Jαn+1,k(x)
∣∣∣ ≤ α

x
√
(n + 1)x(1 − x)

≤ α
√
(n + 1)x(1 − x)

. (2.11)

Thus Lemma 2.2 is proved.
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3. Proof of Theorem 1.1

Let f satisfy the conditions of Theorem 1.1, then f can be decomposed as

f(t) =
1

α + 1
f(x+) +

α

α + 1
f(x−) + gx(t)

+
f(x+) − f(x−)

2

(
sgn(t − x) +

α − 1
α + 1

)

+ δx(t)
(
f(x) − 1

2
f(x+) − 1

2
f(x−)

)
,

(3.1)

where

sgn(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, t > 0

0, t = 0,

−1, t < 0,

δx(t) =

⎧
⎨

⎩

0, t /=x,

1, t = x.
(3.2)

Obviously Dn,α(δx, x) = 0, thus from (3.1) we get

∣∣∣∣Dn,α

(
f, x

) −
(

1
α + 1

f(x+) +
α

α + 1
f(x−)

)∣∣∣∣

≤ ∣∣Dn,α

(
gx,, x

)∣∣ +
∣∣∣∣
f(x+) − f(x−)

2

(
Dn,α

(
sgn(t − x), x

)
+
α − 1
α + 1

)∣∣∣∣.

(3.3)

We first estimate |Dn,α(sgn(t−x), x)+(α−1)/(α+1)|, from [1, page 11]we have the following
equation:

Dn,α

(
sgn(t − x), x

)
+
α − 1
α + 1

= 2
n+1∑

k=0

pn+1,k(x)J
α
nk(x) − 2

n+1∑

k=0

pn+1,k(x)γαnk(x), (3.4)

where Jα
n+1,k+1(x) < γα

nk
(x) < Jα

n+1,k(x).
Thus by Lemma 2.2, we get |Jα

nk
(x) − γα

nk
(x)| ≤ α/

√
(n + 1)x(1 − x). Note that

∑n+1
k=0 pn+1,k(x) = 1, we have

∣∣∣∣Dn,α

(
sgn(t − x), x

)
+
α − 1
α + 1

∣∣∣∣ =

∣∣∣∣∣
2
n+1∑

k=0

pn+1,k(x)
(
Jαnk(x) − γαnk(x)

)
∣∣∣∣∣
≤ 2α

√
(n + 1)x(1 − x)

. (3.5)

Next we estimate |Dn,α(gx, x)|. From (15) of [1], it follows the inequality

∣∣Dn,α

(
gx, x

)∣∣ ≤ 4α
nx(1 − x) + 1

n2x2(1 − x)2

n∑

k=1

x+(1−x)/
√
k∨

x−x/
√
k

(
gx

)
. (3.6)
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That is,

n2x2(1 − x)2
∣
∣Dn,α

(
gx, x

)∣∣ ≤ 4α(nx(1 − x) + 1)
n∑

k=1

x+(1−x)/
√
k∨

x−x/
√
k

(
gx

)
. (3.7)

On the other hand, note that gx(x) = 0, we have

∣
∣Dn,α

(
gx, x

)∣∣ ≤ Dn,α

(∣∣gx(t) − gx(x)
∣
∣, x

)

≤
1∨

0

(
gx

)
Dn,α(1, x)

=
1∨

0

(
gx

) ≤
n∑

k=1

x+(1−x)/
√
k∨

x−x/
√
k

(
gx

)
.

(3.8)

From (3.7) and (3.8) we obtain

∣∣Dn,α

(
gx, x

)∣∣ ≤ 4αnx(1 − x) + 4α + 4α

n2x2(1 − x)2 + 4α

n∑

k=1

x+(1−x)/
√
k∨

x−x/
√
k

(
gx

)
. (3.9)

Using inequality

n2x2(1 − x)2 + 16α2 + 4α > 8αnx(1 − x), (3.10)

we get

4αnx(1 − x) + 4α + 4α

n2x2(1 − x)2 + 4α
<

4α + 1
nx(1 − x)

, ∀n > 1. (3.11)

Thus from (3.9) we obtain

∣∣Dn,α

(
gx, x

)∣∣ ≤ 4α + 1
nx(1 − x)

n∑

k=1

x+(1−x)/
√
k∨

x−x/
√
k

(
gx

)
. (3.12)

Theorem 1.1 now follows by collecting the estimations (3.3), (3.5), and (3.12).
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