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1. Introduction

The system of generalized implicit vector quasivariational inequality problems generalizes
the generalized implicit vector quasivariational inequality problems, and the latter had
been studied in [1–3]. In this paper, we study the system of generalized implicit vector
quasivariational inequality problems and prove a new existence result of its solutions by
Kakutani-Fan-Glicksberg’s fixed points theorem. For other existence results with respect to
the system of generalized implicit vector quasivariational inequality problems, we refer the
reader to [4–6] and references therein.

Let I be an index set (finite or infinite). For each i ∈ I, let Xi and Yi be two
Hausdorff topological vector spaces, Ki a nonempty subset of Xi, and Ci a closed, convex
and pointed cone of Yi with intCi /= ∅, where intCi denotes the interior of Ci. Denote that
K

̂i =
∏

j∈I,j /= iKj ,K =
∏

i∈IKi = Ki ×K
̂i, X =

∏

i∈IXi. For each x ∈ K, we can write x = (xi, x̂i).
For each i ∈ I, let Di be a nonempty subset of the continuous linear operators space L(Xi, Yi)
from Xi into Yi and let F : Di × Ki × Ki −→ Yi, Gi : K −→ 2Ki , Ti : K −→ 2Di be three
set-valued maps, where 2Di and 2Ki denote the family of all nonempty subsets of Di and Ki,
respectively. The system of generalized implicit vector quasivariational inequality problems
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(briefly, SGIVQIP) is as follows: find x = (xi, x̂i) ∈ K such that for each i ∈ I, xi ∈ Gi(x), and

∀yi ∈ Gi(x), ∃ui ∈ Ti(x), Fi

(

ui, xi, yi

)

/⊂ − intCi. (1.1)

x = (xi, x̂i) is said to be a solution of the SGIVQIP. An SGIVQIP is usually denoted by
{Ki,Di, Gi, Ti, Fi}i∈I .

If I is a singleton, then the SGIVQIP coincides with the generalized implicit vector
quasivariational inequality problems (briefly, GIVQIP). A GIVQIP is usually denoted by
{K,D,G, T, F}.

Throughout this paper, unless otherwise specified, assume that for each i ∈ I, Ki is a
nonempty convex compact subset of a Banach space Xi, Yi is a Hausdorff topological vector
space, and Ci is a closed, convex, and pointed cone of Yi with intCi /= ∅, where intCi denotes
the interior of Ci.

2. Preliminaries

In this section, we introduce some useful notations and results.

Definition 2.1. Let X and Y be two topological spaces and K a nonempty convex subset of X.
F : K −→ 2Y is a set-valued map.

(1) F is called upper semicontinuous at x0 ∈ K if, for any open set G ⊃ F(x0), there
exists an open neighborhood U of x0 in K such that for all x ∈ U,

G ⊃ F(x); (2.1)

and upper semicontinuous on K if it is upper semicontinuous at every point of K.

(2) F is called lower semicontinuous at x0 ∈ K if, for any open set G ∩ F(x0)/= ∅, there
exists an open neighborhood U of x0 in K such that for all x ∈ U,

G ∩ F(x)/= ∅; (2.2)

and lower semicontinuous on K if it is lower semicontinuous at every point of K.

(3) F is called continuous at x0 ∈ K if, it is both upper semicontinuous and lower
semicontinuous at x0; and continuous on K if it is continuous at every point of K.

Definition 2.2. LetX and Y be two topological vector spaces andK a nonempty convex subset
of X.Also F : K −→ 2Y is a set-valued map.

(1) F is called upper C-semicontinuous at x0 ∈ K if, for any open neighborhood V of
the zero element θ in Y , there exists an open neighborhood U of x0 in K such that,
for all x ∈ U,

F(x) ⊂ F(x0) + V + C; (2.3)

and upper C-semicontinuous on K if it is upper C-semicontinuous at every point
of K.



Journal of Inequalities and Applications 3

(2) F is called lower C-semicontinuous at x0 ∈ K if, for any open neighborhood V of
the zero element θ in Y , there exists an open neighborhood U of x0 in K such that,
for all x ∈ U,

F(x) ∩ (F(x0) + V + C)/= ∅; (2.4)

and lower C-semicontinuous onK if it is lower C-semicontinuous at every point of
K.

(3) F is called C-continuous at x0 ∈ K if it is upper C-semicontinuous and lower C-
semicontinuous at x0 ∈ K; and C-continuous on K if it is C-continuous at every
point of K.

Definition 2.3. LetX and Y be two topological vector spaces andK a nonempty convex subset
of X. Let F : K → 2Y be a set-valued map.

(1) F is called C-convex if, for each x1, x2 ∈ K, t ∈ [0, 1],

F(tx1 + (1 − t)x2) ⊂ [tF(x1) + (1 − t)F(x2)] − C; (2.5)

and C-concave if −F is C-convex.

(2) F is called C-quasiconvex-like if, for each x1, x2 ∈ K, t ∈ [0, 1],

either F(tx1 + (1 − t)x2) ⊂ F(x1) − C or F(tx1 + (1 − t)x2) ⊂ F(x2) − C; (2.6)

and C-quasiconcave-like if −F is C-quasiconvex-like.

Lemma 2.4 ([7, Theorem1]). Let K be a nonempty paracompact subset of a Hausdorff topological
space X and, Z be a nonempty subset of a Hausdorff topological vector space Y . Suppose that S, T :
K 
→ 2Z be two set-valued maps with following conditions:

(1) for each x ∈ K, coS(x) ⊂ T(x);

(2) for each y ∈ Z, S−1(y) = {x ∈ K : y ∈ S(x)} is open.

Then T has a continuous selection, that is, there is a continuous map f : K 
→ Z such that f(x) ∈ T(x)
for each x ∈ K.

3. Existence of Solutions to the SGIVQIP

Lemma 3.1. Let D,W,X be three Hausdorff topological spaces, Z a topological vector space, and C
a closed, convex, and pointed cone of Z. Let T : W × X 
→ 2D and F : D × W × W 
→ 2Z be two
set-valued maps. Assume that (w,x, y) ∈ W ×X ×W and

(1) T(·, ·) is upper semicontinuous onW ×X with nonempty and compact values;

(2) F(·, ·, ·) is upper C-semicontinuous on D ×W ×W with nonempty and compact values;

(3) for each u ∈ T(w,x), F(u,w, y) ⊂ − intC.
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Then there exist open neighborhood U(w) of w and open neighborhood U(x) of x, and open
neighborhood U(y) of y such that {F(u,w′, y′) : u ∈ T(w′, x′)} ⊂ − intC whenever w′ ∈ U(w),
x′ ∈ U(x), y′ ∈ U(y).

Proof. By (3) and compactness of F(u,w, y), there exists an open neighborhood V (u) of the
zero element θ ofZ such that F(u,w, y)+V (u) ⊂ − intC. By (2), there exist open neighborhood
O(u) of u and open neighborhood Ou(w) of w, open neighborhood Ou(y) of y such that
F(u′, w′, y′) ⊂ F(u,w, y)+V (u)−C ⊂ − intC−C ⊂ − intCwhenever u′ ∈ O(u), w′ ∈ Ou(w), y′ ∈
Ou(y). Since T(w,x) is compact and ∪u∈T(w,x)O(u) ⊃ T(w,x), there exist finite u1, u2, . . . , uM ∈
T(w,x) such that

⋃M
j=1 O(uj) ⊃ T(w,x). Taking

O(w) = ∩M
j=1Ouj (w), U

(

y
)

= ∩M
j=1Ouj

(

y
)

. (3.1)

Clearly, O(w) and U(y) are open neighborhood of w and y, respectively. Thus for each u ∈
∪M
j=1O(uj), we have F(u,w′, y′) ⊂ − intC whenever w′ ∈ O(w), y′ ∈ U(y). By (1), there exist

open neighborhood U(w) of w with U(w) ⊂ O(w) and open neighborhood U(x) of x such
that T(w′, x′) ⊂ ∪M

j=1O(uj) whenever w′ ∈ U(w), x′ ∈ U(x), which implies that

{

F
(

u,w′, y′) : u ∈ T
(

w′, x′)} ⊂
{

F
(

u,w′, y′) : u ∈ ∪M
j=1O

(

uj
)}

⊂ − intC. (3.2)

whenever w′ ∈ U(w), x′ ∈ U(x), y′ ∈ U(y).
The proof is finished.

By Lemma 3.1, we obtain the following result.

Theorem 3.2. Consider an SGIVQIP {Ki,Di, Gi, Ti, Fi}i∈I . For each i ∈ I, assume that

(1) Gi(·) is continuous on K with convex compact values and for each x ∈ K, intGi(x)/= ∅;

(2) Ti(·) is upper semicontinuous on K with nonempty and compact values;

(3) Fi(·, ·, ·) is upper Ci- semicontinuous on Di ×Ki ×Ki with nonempty and compact values;

(4) for each x ∈ K and each ui ∈ Ti(x), Fi(ui, xi, ·) is Ci- convex or Ci- quasiconvex-like;

(5) for each x ∈ K and each ui ∈ Ti(x), if xi ∈ intGi(x), then Fi(ui, xi, xi)/⊂−int Ci, where xi

is the ith component of x.

Then the SGIVQIP has a solution, that is, there exists x = (xi, x̂i) ∈ K such that for each
i ∈ I, xi ∈ Gi(x), and

∀yi ∈ Gi(x), ∃ui ∈ Ti(x), Fi

(

ui, xi, yi

)

/⊂ − intCi. (3.3)
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Proof. For each i ∈ I, define a set-valued map Si : K → 2Ki ∪ {∅} by

Si(x) =
{

yi ∈ Ki : Fi

(

ui, xi, yi

) ⊂ − intCi, ∀ui ∈ Ti(x)
}

. (3.4)

Step 1. We prove that the set Ji = {x ∈ K : Gi(x) ∩ Si(x) = ∅} is closed. For any sequence
xn ∈ Ji = {x ∈ K : Gi(x) ∩ Si(x) = ∅} with xn → x0, we have

∀yn
i ∈ Gi(xn), ∃un

i ∈ Ti(xn), Fi

(

un
i , x

n
i , y

n
i

)

/⊂ − intCi. (3.5)

If x0 /∈ Ji, then there exists z0i ∈ Gi(x0) such that for each ui ∈ Ti(x0), Fi(ui, x
0
i , z

0
i ) ⊂ − intCi.

By Lemma 3.1, there exist open neighborhood U(x0) of x0 and open neighborhood U(z0i )
of z0i , such that {F(ui, x

′
i, z

′
i) : ui ∈ T(x′)} ⊂ − intCi whenever x′ ∈ U(x0), z′i ∈ U(z0i ). By

(1), there exist zni ∈ Gi(xn) such that zni → z0i (n → +∞), which implies that there exists
a positive integer N such that xn ∈ U(x0), zni ∈ U(z0i ) whenever n > N. Thus we have
Fi(ui, x

n, zni ) ⊂ − intCi, for all ui ∈ Ti(xn) whenever n > N, a contradiction. This shows that
Ji is closed,that is, Wi = {x ∈ K : Gi(x) ∩ Si(x)/= ∅} is open.

Without loss of generality, assume that Wi /= ∅.
Define a set-valued map Pi : K 
→ 2Ki ∪ {∅} by

Pi(x) = intGi(x) ∩ Si(x) for each x ∈ K. (3.6)

Step 2. We prove that for each x ∈ Wi, Pi(x) is nonempty and convex.
For each yi ∈ Si(x), we have Fi(ui, xi, yi) ⊂ − intCi, for all ui ∈ Ti(x). By Lemma 3.1,

there exists an open neighborhood U(yi) of yi such that {Fi(ui, xi, y
′
i) : ui ∈ Ti(x)} ⊂ −intCi

whenever y′
i ∈ U(yi), which implies thatU(yi) ⊂ Si(x), that is, Si(x) is open. By (4), it is easy

to verify that Si(x) is convex.
Since Gi(x) is convex and intGi(x)/= ∅, then for each x ∈ Wi, Pi(x) is nonempty and

convex.

Step 3. We prove that Pi|Wi
has a continuous selection fi : Wi 
→ 2Ki .

For each y0
i ∈ Pi(x), we have y0

i ∈ intGi(x) and y0
i ∈ Si(x). By y0

i ∈ intGi(x), there
exists ε0 > 0 such that y0

i +ε0 ⊂ intGi(x), where y0
i +ε0 = {zi ∈ Ki : di(zi, y0

i ) < ε0}. SinceGi(x)
is continuous with convex compact values, then there exists an open neighborhood O(x) of
x such that

Gi(x) ⊂ Gi

(

x′) +
1
2
ε0, (3.7)

whenever x′ ∈ O(x), where Gi(x′) + (1/2)ε0 = {zi ∈ Ki : di(zi, Gi(x′)) < (1/2)ε0}. Thus
y0
i + ε0 ⊂ intGi(x) ⊂ Gi(x) ⊂ Gi(x′) + (1/2)ε0 whenever x′ ∈ O(x), which implies that

y0
i + (1/2)ε0 ⊂ Gi(x′) whenever x′ ∈ O(x), that is, y0

i ∈ intGi(x′) whenever x′ ∈ O(x). This
shows that the set {x ∈ K : y0

i ∈ intGi(x)} is open. By y0
i ∈ Si(x), we have Fi(ui, xi, y

0
i ) ⊂

− intCi, ∀ui ∈ Ti(x). By Lemma 3.1, there exists an open neighborhood O(x) of x such that

{

Fi

(

ui, x
′
i, y

0
i

)

: ui ∈ Ti
(

x′)
}

⊂ − intCi, (3.8)
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whenever x′ ∈ O(x), which implies that O(x) ⊂ {x ∈ K : y0
i ∈ Si(x)}, that is, {x ∈ K : y0

i ∈
Si(x)} is open. Hence, for each yi ∈ Pi(x), the set P−1

i (yi) = {x ∈ K : yi ∈ intGi(x) ∩ Si(x)} is
open.

By Lemma 2.4, Pi|Wi
has a continuous selection fi : Wi 
→ 2Ki .

Step 4. We prove that the SGIVQIP has a solution.
For each i ∈ I, define the set-valued map Hi : K 
→ 2Ki by

Hi(x) =

⎧

⎨

⎩

fi(x), if x ∈ Wi,

Gi(x), if x ∈ Ji.
(3.9)

Note thatHi(x) is upper semicontinuous when x ∈ int Ji andHi(x) is upper semicontinuous
when x ∈ Wi, and it is easy to verify that Hi(x) is also upper semicontinuous when x ∈ ∂Ji,
where ∂Ji denotes the boundary of Ji. Thus, Hi(x) is upper semicontinuous with nonempty
convex compact values. By [8, Theorem 7.1.15], the set-valued map H : K 
→ 2K defined
byH(x) =

∏

i∈IHi(x) is closed with nonempty convex values. By Kakutani-Fan-Glicksberg’s
fixed points theorem (see [9, pages 550]), H has a fixed point, that is, there exists x ∈ H(x).
The condition (5) implies that for each i ∈ I, xi /∈ intGi(x) ∩ Si(x), that is, xi /= fi(x) for each
i ∈ I. Thus we have that for each i ∈ I, xi ∈ Gi(x), and

∀yi ∈ Gi(x), ∃ui ∈ Ti(x), Fi

(

ui, xi, yi

)

/⊂ − intCi. (3.10)

The proof is finished.

If I is a singleton, we obtain the following existence result of solutions to the GIVQIP
by Theorem 3.2.

Corollary 3.3. Consider a GIVQIP {K,D,G, T, F}. Assume that

(1) G(·) is continuous on K with convex compact values and for each x ∈ K, intG(x)/= ∅;
(2) T(·) is upper semicontinuous on K with nonempty and compact values;

(3) F(·, ·, ·) is upper C-semicontinuous on D ×K ×K with nonempty and compact values;

(4) for each x ∈ K and each u ∈ T(x), F(u, x, ·) is C-convex or C-quasiconvex-like;
(5) for each x ∈ K and each u ∈ T(x), if x ∈ intG(x), then F(u, x, x)/⊂ − intC.

Then the GIVQIP has a solution, that is, there exists x ∈ K such that x ∈ G(x),

∀y ∈ G(x), ∃u ∈ T(x), F
(

u, x, y
)

/⊂ − int C. (3.11)

Remark 3.4. Theorem 3.2, Corollary 3.3, and each corresponding result in literatures [1–6] do
not include each other as a special case.
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