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Let wρ(x) := |x|ρexp(−Q(x)), ρ > −1/2, where Q ∈ C2 : (−∞,∞) → [0,∞) is an even function. In
2008 we have a relation of the orthonormal polynomial pn(w2

ρ;x)with respect to the weightw2
ρ(x);

p′n(x) = An(x)pn−1(x) − Bn(x)pn(x) − 2ρnpn(x)/x, where An(x) and Bn(x) are some integrating
functions for orthonormal polynomials pn(w2

ρ;x). In this paper, we get estimates of the higher
derivatives of An(x) and Bn(x), which are important for estimates of the higher derivatives of
pn(w2

ρ;x).
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1. Introduction and Results

Let R = (−∞,∞). Let Q ∈ C2 : R → R
+ = [0,∞) be an even function, and let w(x) =

exp(−Q(x)) be such that
∫∞
0 x

nw2(x)dx < ∞ for all n = 0, 1, 2, . . . . For ρ > −1/2, we set

wρ(x) := |x|ρw(x), x ∈ R. (1.1)

Then we can construct the orthonormal polynomials pn,ρ(x) = pn(w2
ρ;x) of degree n with

respect to w2
ρ(x). That is,

∫∞

−∞
pn,ρ(x)pm,ρ(x)w2

ρ(x)dx = δmn (Kronecker’s delta),

pn,ρ(x) = γnx
n + · · · , γn = γn,ρ > 0.

(1.2)
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A function f : R+ → R
+ is said to be quasi-increasing if there exists C > 0 such that

f(x) ≤ Cf(y) for 0 < x < y. For any two sequences {bn}∞n=1 and {cn}∞n=1 of nonzero real
numbers (or functions), we write bn � cn if there exists a constant C > 0 independent of n (or
x) such that bn ≤ Ccn for n large enough. We write bn ∼ cn if bn � cn and cn � bn. We denote
the class of polynomials of degree at most n by Pn.

Throughout C,C1, C2, . . . denote positive constants independent of n, x, t, and
polynomials of degree at most n. The same symbol does not necessarily denote the same
constant in different occurrences.

We will be interested in the following subclass of weights from [1].

Definition 1.1. Let Q : R → R
+ be even and satisfy the following properties.

(a) Q
′
(x) is continuous in R, with Q(0) = 0.

(b) Q
′′
(x) exists and is positive in R \ {0}.

(c)

lim
x→∞

Q(x) = ∞. (1.3)

(d) The function

T(x) :=
xQ

′
(x)

Q(x)
, x /= 0 (1.4)

is quasi-increasing in (0,∞)with

T(x) ≥ Λ > 1, x ∈ R
+ \ {0}. (1.5)

(e) There exists C1 > 0 such that

Q
′′
(x)

|Q′(x)| ≤ C1

∣∣∣Q
′
(x)

∣∣∣

Q(x)
, a.e. x ∈ R \ {0}. (1.6)

Then we write w ∈ F(C2). If there also exist a compact subinterval J(	 0) of R and C2 > 0
such that

Q
′′
(x)

|Q′(x)| ≥ C2

∣∣∣Q
′
(x)

∣∣∣

Q(x)
, a.e. x ∈ R \ J, (1.7)

then we write w ∈ F(C2+).

In the following we introduce useful notations.

(a) Mhaskar-Rahmanov-Saff (MRS) numbers ax are defined as the positive roots of the
following equations:

x =
2
π

∫1

0

axuQ
′
(axu)

(1 − u2)1/2
du, x > 0. (1.8)
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(b) Let

ηx = (xT(ax))
−2/3, x > 0. (1.9)

(c) The function ϕu(x) is defined as follows:

ϕu(x) =

⎧
⎪⎪⎨

⎪⎪⎩

a2
2u − x2

u[(au + x + auηu)(au − x + auηu)]
1/2

, |x| ≤ au,

ϕu(au), au < |x|.
(1.10)

In the rest of this paper we often denote pn,ρ(x) simply by pn(x). Let ρn = ρ if n is odd,
ρn = 0 otherwise and define the integrating functions An(x) and Bn(x) with respect to pn(x)
as follows:

An(x) := 2bn

∫∞

−∞
p2n(u)Q(x, u)w2

ρ(u)du,

Bn(x) := 2bn

∫∞

−∞
pn(u)pn−1(u)Q(x, u)w2

ρ(u)du,

(1.11)

where Q(x, u) = (Q
′
(x) −Q

′
(u))/(x − u) and bn = γn−1/γn. Then in [2, Theorem 4.1] we have

a relation of the orthonormal polynomial pn(x) with respect to the weight w2
ρ(x):

p′n(x) = An(x)pn−1(x) − Bn(x)pn(x) − 2ρn
pn(x)
x

, ρn =

⎧
⎨

⎩

ρ, n is odd,

0, n is even,
(1.12)

and in [2, Theorem 4.2] we already have the estimates of the integrating functions An(x)
and Bn(x) with respect to pn(x). So, in this paper we will estimate the higher derivatives of
An(x) and Bn(x) for the estimates of the higher derivatives of pn(w2

ρ;x), because the higher
derivatives of pn,ρ(x) play an important role in approximation theory such as investigating
convergence of Hermite-Fejér and Hermite interpolation based on the zeros of pn(w2

ρ;x) (see
[3, 4]).

To estimate of the higher derivatives ofAn(x) and Bn(x)we need further assumptions
for Q(x) as follows.

Definition 1.2. Let w(x) = exp(−Q(x)) ∈ F(C2+), and let ν be a positive integer. Assume that
Q(x) is ν−times continuously differentiable on R and satisfies the followings.

(a) Q(ν+1)(x) exists and Q(i)(x), i = 0, 1, . . . , ν + 1 are nonnegative for x > 0.
(b) There exist positive constants Ci > 0 such that for x ∈ R \ {0}

∣∣∣Q(i+1)(x)
∣∣∣ ≤ Ci

∣∣∣Q(i)(x)
∣∣∣

∣∣∣Q
′
(x)

∣∣∣

Q(x)
, i = 1, . . . ν. (1.13)
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(c) There exist constants 0 ≤ δ < 1 and c1 > 0 such that on (0, c1]

Q(ν+1)(x) ≤ C

(
1
x

)δ

. (1.14)

Then we write w(x) ∈ Fν(C2+).

Let ν be a positive integer. Define form + α − ν > 0, m ≥ 0, l ≥ 1, and α ≥ 0,

Ql,α,m(x) := |x|m(expl

(|x|α) − α∗expl(0)
)
, (1.15)

where α∗ = 0 if α = 0, otherwise α∗ = 1 and define

Qα(x) := (1 + |x|)|x|α − 1, α > 1. (1.16)

Here we let exp0(x) := x and for l ≥ 1, expl(x) := exp(exp(· · · (exp(x)) · · · )) denotes the
lth iterated exponential. In particular, expl(x) = exp(expl−1(x)). Then exp(−Ql,α,m(x)) and
exp(−Qα(x)) are typical examples of Fν(C2+) (see [5]).

In the following we improve the inequality (4.3) in [2, Theorem 4.2].

Theorem 1.3. Let ρ > −1/2 and w(x) = exp(−Q(x)) ∈ F(C2+). Additionally assume that Q
′′
(x)

is nondecreasing. Then for |x| ≤ εan with 0 < ε < 1/2 one has

|Bn(x)| < λ(ε, n)An(x), (1.17)

where

lim
ε→ 0

lim
n→∞

λ(ε, n) = 0. (1.18)

In this paper our main theorem is as follows.

Theorem 1.4. Let ρ > −1/2 andw(x) = exp(−Q(x)) ∈ Fν(C2+) for positive integer ν ≥ 2. Assume
that 1 + 2ρ − δ ≥ 0 for ρ < 0 and

an � n1/(1+ν−δ), (1.19)

where 0 ≤ δ < 1 is defined in (1.14).
(a) If Q

′
(x)/Q(x) is quasi-increasing on [c2,∞), then one has for |x| ≤ an(1 + ηn) and

j = 0, . . . , ν − 1

∣∣∣A
(j)
n (x)

∣∣∣ � An(x)
(
T(an)
an

)j

,
∣∣∣B

(j)
n (x)

∣∣∣ � An(x)
(
T(an)
an

)j

. (1.20)
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Moreover, for any 0 < ε < 1/2 there exists ε∗(ε, n) > 0 such that for |x| ≤ εan and j = 1, . . . , ν − 1,

∣
∣
∣A

(j)
n (x)

∣
∣
∣ ≤ ε∗(ε, n)An(x)

(
n

an

)j

,
∣
∣
∣B

(j)
n (x)

∣
∣
∣ ≤ ε∗(ε, n)An(x)

(
n

an

)j

, (1.21)

with ε∗(ε, n) → 0 as n → ∞.
(b) IfQ(ν+1)(x) is non-decreasing on [c2,∞), then one has (1.20) and (1.21) for the respective

ranges of x.
(c) If there exists a constant 0 ≤ δ < 1 such that Q(ν+1)(x) ≤ C(1/x)δ on [c2,∞), then one

has (1.20) and (1.21) for the respective ranges of x.

The examples satisfying the conditions (a), (b), or (c) of Theorem 1.4 are given in [5].

Remark 1.5. Under the assumptions of Theorem 1.4, we have from [2, Theorem 4.2] that there
exists C, n0 > 0 such that for n ≥ n0 and |x| ≤ an(1 + Lηn),

An(x)
2bn

∼ ϕn(x)
−1
(
a2
n(1 + 2Lηn)

2 − x2
)−1/2

, |Bn(x)| � An(x), (1.22)

because w(x) = exp(−Q(x)) ∈ Fν(C2+) for positive integer ν ≥ 1 and 1 + 2ρ − δ ≥ 0 for ρ < 0.

In addition, for our future work we estimate at and T(at) using λ = C1 in (1.6) for the
weight class F(C2+).

Theorem 1.6. Let w(x) = exp(−Q(x)) ∈ F(C2+), and we assume

Q
′′
(x)

|Q′(x)| ≤ λ

∣∣∣Q
′
(x)

∣∣∣

Q(x)
, |x| ≥ b > 0, (1.23)

where b > 0 is large enough.
(a) Assume that T(x) is unbounded. Then for any η > 0 there exists C(η) > 0 such that for

t ≥ 1,

at ≤ C
(
η
)
tη. (1.24)

(b) Suppose that there exist constants η > 0 and C2 > 0 such that at ≤ C2t
η. Then there exists

a constant C depending only on λ, η, and C2 such that for at ≥ 1, if λ > 1

T(at) ≤ Ct2(η+λ−1)/(λ+1), (1.25)

and if 0 < λ ≤ 1,

T(at) ≤ Ctη. (1.26)
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Remark 1.7. (a) Levin and Lubinsky showed the following [1, Lemma 3.7]: there exists C > 0
such that for some ε > 0, and for large enough t,

T(at) ≤ Ct2−ε. (1.27)

If from (1.25) and (1.26)we set for any 0 < η < 2

ε =

⎧
⎪⎪⎨

⎪⎪⎩

2 − η, 0 < λ ≤ 1,

2
(
2 − η

)

(λ + 1)
, λ > 1,

(1.28)

then we have (1.27) in Levin and Lubinsky’s lemma.
(b) If T(x) is unbounded, then (1.19) is trivially satisfied by (1.24).

2. Proof of Theorems

In this section we will prove the theorems of Section 1.

Lemma 2.1. Let ρ > −1/2 and let w(x) ∈ F(C2). Then uniformly for n ≥ 1,
(a)

sup
x∈R

∣∣pn,ρ(x)w(x)
∣∣
(
|x| + an

n

)ρ∣∣∣x2 − a2
n

∣∣∣
1/4 ∼ 1. (2.1)

(b)

sup
x∈R

∣∣pn,ρ(x)w(x)
∣∣
(
|x| + an

n

)ρ

∼ a−1/2
n (nT(an))

1/6. (2.2)

(c)Markov inequality. Let 0 < p ≤ ∞. For any polynomial P ∈ Pn

∥∥∥∥(P
′
w)(x)

(
|x| + an

n

)ρ∥∥∥∥
Lp(R)

� nT(an)
1/2

an

∥∥∥∥(Pw)(x)
(
|x| + an

n

)ρ∥∥∥∥
Lp(R)

. (2.3)

(d) Let β ∈ R, 0 < p ≤ ∞, and r > 1. Then there exist positive constants L, δ, and C2 such
that for any polynomial P ∈ Pn

∥∥∥∥∥
(Pw)(x)

(
|x| + an

n

)β
∥∥∥∥∥
Lp(arn≤|x|)

� exp
(
−C2n

δ
)
∥∥∥∥∥
(Pw)(x)

(
|x| + an

n

)β
∥∥∥∥∥
Lp(Lan/n≤|x|≤an(1−Lηn))

.

(2.4)



Journal of Inequalities and Applications 7

Proof. (a) follows from [2, Theorem 2.3]. (b) follows from [2, Theorem 2.4]. (c) follows form
[6, Theorem 2.1(b)]. (d) follows form [6, Theorem 2.3].

Lemma 2.2. Let ρ > −1/2 and let w(x) ∈ F(C2). Then one has for c > 0,

∫

0≤u≤c
(pnwρ)

2(u)du � 1
an

. (2.5)

Proof. For ρ ≥ 0, the results are immediate from Lemma 2.1(a). So we assume −1/2 < ρ < 0.
First we see

∫

0≤u≤an/n
(pnwρ)

2(u)du =
∫

0≤u≤an/n
(pnw)2(u)

(
|u| + an

n

)2ρ |u|2ρ
(|u| + an/n)

2ρ
du

≤ C
1
an

∫

0≤u≤an/n

|u|2ρ
(|u| + an/n)

2ρ
du

≤ C
1
an

(
n

an

)2ρ∫

0≤u≤an/n
|u|2ρdu

≤ C
1
an

(
n

an

)2ρ(an

n

)1+2ρ

≤ C
1
n
,

(2.6)

because we know that an = o(n) from [1, Lemma 3.5(c)]. Next we see by Lemma 2.1(a)

∫

an/n≤u≤c
(pnwρ)

2(u)du ≤ C
1
an

. (2.7)

Therefore, we have the result.

Lemma 2.3. Let ρ > −1/2 and let w(x) ∈ F(C2). Then
(a) one has

∫

0≤u≤∞

(
pnw

)2(u)
(
|u| + an

n

)2ρ

Q
′
(u)du ∼ n

an
, (2.8)

(b) for x ∈ [0, an/2] one has

Q
′
(x) ≤ C

n

an

(
x

an

)Λ−1
. (2.9)

Proof. (a) It is from [2, Lemma 4.3(d)]. (b) It is from [1, Lemma 3.8 (3.42)].
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Proof of Theorem 1.3. Since Bn(x) is an odd function, we prove only for 0 ≤ x ≤ εan. Let θ :=
ε(Λ−1)/2Λ. Then we have the following two lemmas.

Lemma 2.4. Uniformly for θ and n

∣
∣
∣
∣
∣

∫

|u|≤θan
pn(u)pn−1(u)w2

ρ(u)Q(x, u)du

∣
∣
∣
∣
∣
�

(
1
nθ

+ 1
)
θΛ−1 n

a2
n

. (2.10)

Proof. For |u| ≤ θan, we have by Lemma 2.1(a)

p2n(u)w
2
ρ(u) � 1

√
a2
n − (θan)

2

|u|2ρ
(|u| + an/n)

2ρ
� 1

an

|u|2ρ
(|u| + an/n)

2ρ
. (2.11)

Since Q
′′
(x) is nondecreasing and 1 − (1/2)(Λ+1)/2Λ ≤ (θ − ε)/θ ≤ 1, we have using

Lemma 2.3(b):

Q(x, u) ≤ Q
′
(θan) −Q

′
(x)

θan − x
� Q

′
(θan)

(θ − ε)an
� θΛ−2 n

a2
n

. (2.12)

Moreover we know that for ρ > −1/2,

∫θan

0

|u|2ρ
(|u| + an/n)

2ρ
dx =

∫

|u|≤an/n
+
∫

an/n≤|u|≤θan
� an

n
+ θan. (2.13)

Therefore, we have

∣∣∣∣∣

∫

|u|≤θan
p2n(u)w

2
ρ(u)Q(x, u)du

∣∣∣∣∣
�

(
1
nθ

+ 1
)
θΛ−1 n

a2
n

. (2.14)

Consequently, we have the result using Cauchy-Schwartz inequality

∣∣∣∣∣

∫

|u|≤θan
pn(u)pn−1(u)w2

ρ(u)Q(x, u)du

∣∣∣∣∣
�

(
1
nθ

+ 1
)
θΛ−1 n

a2
n

. (2.15)

Lemma 2.5. Uniformly for θ = ε(Λ−1)/2Λ and for n

∣∣∣∣∣

∫

θan≤|u|≤a2n
pn(u)pn−1(u)w2

ρ(u)Q(x, u)du

∣∣∣∣∣
�

(
ε(1−1/Λ)(Λ−1) + ε1/Λ

) n

a2
n

. (2.16)
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Proof. For θan ≤ |u| ≤ a2n, we have similarly to [2, (4.6)]

∣
∣∣Q(x, u) −Q(x,−u)

∣
∣∣ = 2

∣
∣
∣∣
∣
uQ

′
(x) − xQ

′
(u)

x2 − u2

∣
∣
∣∣
∣

�
an

∣
∣
∣Q

′
(εan)

∣
∣
∣ + εan

∣
∣
∣Q

′
(u)

∣
∣
∣

(θan)
2

� ε(1−1/Λ)(Λ−1) n

a2
n

+
ε1/Λ

an

∣
∣
∣Q

′
(u)

∣
∣
∣

(2.17)

(see Lemma 2.3(b)). Therefore, we have by Lemma 2.3(a),

∣
∣∣∣∣

∫

θan≤|u|≤a2n
pn(u)pn−1(u)w2

ρ(u)Q(x, u)du

∣
∣∣∣∣

≤
∫

θan≤|u|≤a2n

∣∣∣pn(u)pn−1(u)w2
ρ(u)

∣∣∣
∣∣∣Q(x, u) −Q(x,−u)

∣∣∣du

� ε(1−1/Λ)(Λ−1) n

a2
n

∫

θan≤|u|≤a2n

∣∣pn(u)pn−1(u)
∣∣w2

ρ(u)du

+
ε1/Λ

an

∫

θan≤|u|≤a2n

∣∣pn(u)pn−1(u)
∣∣w2

ρ(u)
∣∣∣Q

′
(u)

∣∣∣du

� ε(1−1/Λ)(Λ−1) n

a2
n

+ ε1/Λ
n

a2
n

.

(2.18)

Here we used Lemma 2.1(b).

Since for a constant C > 0

∣∣∣
∣∣

∫

a2n≤|u|
pn(u)pn−1(u)w2

ρ(u)Q(x, u)du

∣∣∣
∣∣
� O

(
e−n

C
)
, (2.19)

(see [2, page 233]), there exists λ(n) > 0 such that

∣∣∣∣∣

∫

a2n≤|u|
pn(u)pn−1(u)w2

ρ(u)Q(x, u)du

∣∣∣∣∣
� λ(n)

n

a2
n

, (2.20)

and λ(n) → 0 as n → ∞. We know from [2, Lemma 4.7] that bn = γn−1/γn ∼ an. From
(1.22)we have An(x)/bn ∼ n/a2

n for |x| ≤ εan and from the preceding considerations and the
definition of Bn(x) it follows that for |x| ≤ εan

|Bn(x)|
bn

� λ(ε, n)n
a2
n

∼ λ(ε, n)An(x)
bn

, (2.21)
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where for some positive constant C > 0

λ(ε, n) := C ·max
{(

1
nθ

+ 1
)
θΛ−1, ε(1−1/Λ)(Λ−1), ε1/Λ, λ(n)

}
. (2.22)

Consequently, (1.17) is proved, and we can obtain that limε→ 0 limn→∞ λ(ε, n) = 0. Now, we
have for |x| ≤ εan

An(x) ∼ n

an
, |Bn(x)| < λ(ε, n)

n

an
. (2.23)

Proof of Theorem 1.4. First, we see that for 1 ≤ j ≤ ν − 1

A
(j)
n (x) = 2bn

∫∞

−∞
(pnwρ)

2(u)
dj

dxj
Q(x, u)du. (2.24)

We split proof of (1.20) into some lemmas as follows:

(1) Lemma 2.6 is for 0 ≤ x ≤ an(1 + ηn), a4n ≤ u, and 1 ≤ j ≤ ν − 1;

(2) Lemma 2.9 is for an/2 ≤ x ≤ an(1 + ηn), 0 ≤ u ≤ a4n, and j = ν − 1;

(3) Lemma 2.10 is for 0 ≤ x ≤ an/2, 0 ≤ u ≤ a4n, and j = ν − 1;

(4) Lemma 2.11 is for 0 ≤ x ≤ an(1 + ηn), 0 ≤ u ≤ a4n, and 1 ≤ j ≤ ν − 2;

on the other hand, (1.21)will be proved by Lemmas 2.13 and 2.6.
For 1 ≤ j ≤ ν − 1 there exists η between u and x such that

dj

dxj
Q(x, u) =

j!

(x − u)j+1

(
j∑

k=0

(−1)k Q
(j+1−k)(x)
(
j − k

)
!

(x − u)j−k + (−1)j+1Q′
(u)

)

=
Q(j+1)(x) −Q(j+1)(η

)

x − u
.

(2.25)

Then for x ≥ 0 and u ≥ 0, since Q(j+1)(u) is increasing for 1 ≤ j ≤ ν − 1, we have

0 ≤ dj

dxj
Q(x, u) ≤ Q(j+1)(x) −Q(j+1)(u)

x − u
. (2.26)

If u < 0 and x > 0, then since |Q(j+1)(η)| ≤ Q(j+1)(−u) for η < 0,

∣∣∣∣∣
dj

dxj
Q(x, u)

∣∣∣∣∣
=

∣∣∣∣∣
Q(j+1)(x) −Q(j+1)(η

)

x − u

∣∣∣∣∣

≤ Q(j+1)(x) +Q(j+1)(−u)
x + (−u)

≤ Q(j+1)(x) −Q(j+1)(−u)
x − (−u) + 2

Q(j+1)(−u) −Q(j+1)(0)
−u − 0

.

(2.27)
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So, for this case we can prove the result similarly to the case x, u > 0. For the other cases,
we can prove it by the symmetry of Q, similarly. Therefore, we assume that u and x are
nonnegative, and we will prove this theorem only for nonnegative x and u. Moreover, for
simplicity, we let c1 = c2 without loss of generality, because we know by (1.13) that Q(ν+1)(u)
is bounded for any u between c1 and c2.

On the other hand, if Q(j+2)(u) is increasing, then

Q(j+1)(u) −Q(j+1)(x)
u − x

(2.28)

is also increasing for u because there exists a point ξ between x and u such that

d

du

(
Q(j+1)(u) −Q(j+1)(x)

u − x

)

=
Q(j+2)(u) − (

Q(j+1)(u) −Q(j+1)(x)
)
/(u − x)

u − x

=
Q(j+2)(u) −Q(j+2)(ξ)

u − x
≥ 0.

(2.29)

Moreover, if Q(ν+1)(t) ≤ C(1/t)δ for t between x and u, then we see

Q(ν)(u) −Q(ν)(x)
u − x

=
1

u − x

∫u

x

Q(ν+1)(t)dt ≤ C

u − x

(
u1−δ − x1−δ

)
≤ C

(
1
u

)δ

. (2.30)

To complete the proof of Theorem 1.4 we prove a series of lemmas.

Lemma 2.6. Let 0 ≤ x ≤ an(1 + ηn) and 1 ≤ j ≤ ν − 1:

∫

a4n<u

(pnwρ)
2(u)

dj

dxj
Q(x, u)du �

(
T(an)
an

)j An(x)
an

. (2.31)

Proof. Since

A
(j)
n (x)
2bn

=

(∫

0≤u≤a4n
+
∫

a4n<u

)
(
pnwρ

)2(u)
dj

dxj
Q(x, u)du, (2.32)

we have to estimate

∫

a4n<u

(pnwρ)
2(u)

dj

dxj
Q(x, u)du =:

∫

a4n<u

. (2.33)

First, we see for x > 0 large enough,

Q(j+1)(x)e−Q(x) (2.34)
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is decreasing because

(
Q(j+1)(x)e−Q(x)

)′

=
(
Q(j+2)(x) −Q(j+1)(x)Q

′
(x)

)
e−Q(x), (2.35)

and so from our assumption,

Q(j+2)(x) −Q(j+1)(x)Q
′
(x) ≤ CQ(j+1)(x)

Q
′
(x)

Q(x)
−Q(j+1)(x)Q

′
(x)

= Q(j+1)(x)Q
′
(x)

(
C

Q(x)
− 1

)
< 0,

(2.36)

if C < Q(x). We use this fact. Let 2ρ = β + i where β < 0, and let i be a nonnegative integer,
and let P(u) = p2n(u)u

i. Let u > 0. Then since

Q(j+1)(a4n)
Q(a4n)

≤ C

(
T(an)
an

)j

, (2.37)

by (1.13), we have for some ξ between x and u

∫

a4n<u

=
∫

a4n<u

(pnwρ)
2(u)Q(j+2)(ξ)du

≤
∫

a4n<u

(pnwρ)
2(u)Q(j+2)(u)du

≤ C
Q(j+1)(a4n)w(a4n)

Q(a4n)
a
β

4n

∫

a4n<u

P(u)w(u)Q
′
(u)du

(
by(2.34)

)

≤
(
T(an)
an

)j

w(a4n)a
β

4n

∫∞

a4n

− P(u)
d

du
w(u)du,

∫∞

a4n

P(u)
d

du
w(u)du = (Pw)(a4n) −

∫∞

a4n

P
′
(t)w(u)du.

(2.38)

Applying Lemma 2.1(d) with L∞, L1-norm and Lemma 2.1(c),

|(Pw)(a4n)| ≤ exp(−C2n
α)‖(Pw)(x)‖L∞(Lan/n≤|x|≤an(1−Lηn)),

∫∞

a4n

∣∣∣P
′
(u)w(u)

∣∣∣du ≤ exp(−C2n
α)
∥∥∥
(
P

′
w
)
(x)

∥∥∥
L1(Lan/n≤|x|≤an(1−Lηn))

≤ exp(−C2n
α)
nT(an)

1/2

an
‖(Pw)(x)‖L1(Lan/n≤|x|≤an(1−Lηn)).

(2.39)
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Therefore,

∫∞

a4n

∣
∣
∣P(u)w(u)Q

′
(u)

∣
∣
∣du ≤ exp(−C2n

α)‖(Pw)(x)‖L∞(Lan/n≤|x|≤an(1−Lηn))

+ exp(−C2n
α)
nT(an)

1/2

an
‖(Pw)(x)‖L1(Lan/n≤|x|≤an(1−Lηn)).

(2.40)

Consequently we have

(
T(an)
an

)j

w(a4n)a
β

4n

∫

a4n<u

∣
∣
∣P(u)w(u)Q

′
(u)

∣
∣
∣du

≤
(
T(an)
an

)j

exp(−C2n
α)
∥∥∥p2nw

2
ρ

∥∥∥
L∞(Lan/n≤|x|≤an(1−Lηn))

+
(
T(an)
an

)j nT(an)
1/2

an
exp(−C2n

α)
∥∥∥p2nw

2
ρ

∥∥∥
L1(Lan/n≤|x|≤an(1−Lηn))

≤ O
(
e−n

d3
)(T(an)

an

)j

�
(
T(an)
an

)j An(x)
an

.

(2.41)

Lemma 2.7. If Q
′
(x)/Q(x) is quasi-increasing on [c1,∞) or if Q(ν+1)(x) is nondecreasing on

[c1,∞), then one has

Q(ν)(x) −Q(ν)(u)
x − u

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
(
T(an)
an

)ν−1 n

a2
n

, 0 ≤ u ≤ c1, c1 ≤ x ≤ an

2
,

1 +
(
T(an)
an

)ν−1 n

a2
n

, c1 ≤ u ≤ 2c1, 0 ≤ x ≤ c1,

(
T(an)
an

)ν−1 n

a2
n

, 2c1 ≤ u ≤ an

3
, 0 ≤ x ≤ c1,

(
T(an)
an

)ν−1 n

a2
n

, c1 ≤ u ≤ an

3
, c1 ≤ x ≤ an

2
.

(2.42)

Proof. Case (a-1). 0 ≤ u ≤ c1 and c1 ≤ x ≤ an/2. Let

Q(ν)(u) −Q(ν)(x)
u − x

≤ Q(ν)(u) −Q(ν)(c1)
u − c1

+
Q(ν)(c1) −Q(ν)(x)

c1 − x
=: Q1(u) +Q2(x). (2.43)
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Then we haveQ1(u) � 1 from (2.30). Then ifQ
′
(x)/Q(x) is quasi-increasing on [c1,∞), there

exists a point ξ ∈ [c1, x] such that by (1.13)

Q2(x) =

∣
∣
∣
∣
∣
Q(ν+1)(ξ)
Q′′(ξ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Q

′
(x) −Q

′
(c1)

x − c1

∣
∣
∣
∣
∣

�
(

Q
′
(ξ)

Q(ξ)

)ν−1∣∣
∣
∣
∣
Q

′
(an/2) −Q

′
(c1)

an/2 − c1

∣
∣
∣
∣
∣

�
(

Q
′
(an/2)

Q(an/2)

)ν−1∣∣
∣
∣
∣
Q

′
(an/2)
an

∣
∣
∣
∣
∣

�
(
T(an)
an

)ν−1 n

a2
n

.

(2.44)

IfQ(ν+1)(x) is nondecreasing on [c1,∞), there exists a point ξ ∈ [c1, x] such that by (2.28) and
(1.13)

Q2(x) ≤ Q(ν)(an/2) −Q(ν)(c1)
an/2 − c1

� Q(ν)(an/2)
Q′(an/2)

Q
′
(an/2) −Q

′
(c1)

an/2 − c1

�
(

Q
′
(an/2)

Q(an/2)

)ν−1∣∣∣∣∣
Q

′
(an/2)
an

∣∣∣∣∣

�
(
T(an)
an

)ν−1 n

a2
n

.

(2.45)

Case (a-2). For c1 ≤ u ≤ 2c1 and 0 ≤ x ≤ c1, we have similarly to Case (a-1),

Q2(x) � 1, Q1(u) �
(
T(an)
an

)ν−1 n

a2
n

. (2.46)

Case (b). 2c1 ≤ u ≤ an/3 and 0 ≤ x ≤ c1. Using the method of Case (a-1), and similarly
to Case (a-2),

Q(ν)(u) −Q(ν)(x)
u − x

∼ Q(ν)(u) −Q(ν)(c1)
u − c1

�
(
T(an)
an

)ν−1 n

a2
n

. (2.47)
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Case (c). c1 ≤ u ≤ an/3 and c1 ≤ x ≤ an/2. We can prove similarly to Q1(u) and Q2(x)
of Case (a-1). IfQ

′
(x)/Q(x) is quasi-increasing on [c1,∞), there exists a point ξ ∈ [c1, x] such

that by (1.13)

Q(ν)(x) −Q(ν)(u)
x − u

=

∣
∣
∣
∣
∣
Q(ν+1)(ξ)
Q′′(ξ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Q

′
(x) −Q

′
(u)

x − u

∣
∣
∣
∣
∣

�
(

Q
′
(an/2)

Q(an/2)

)ν−1∣∣
∣
∣
∣
Q

′
(an/2)
an

∣
∣
∣
∣
∣

∼
(
T(an)
an

)ν−1 n

a2
n

.

(2.48)

If Q(ν+1)(x) is nondecreasing on [c1,∞), there exists a point ξ ∈ [c1, x] such that by (1.13)

Q(ν)(x) −Q(ν)(u)
x − u

≤ Q(ν)(an/2) −Q(ν)(u)
an/2 − u

�
(

|Q′
(an/2)|

Q(an/2)

)ν−1∣∣∣∣∣
Q

′
(an/2)
an

∣∣∣∣∣

∼
(
T(an)
an

)ν−1 n

a2
n

.

(2.49)

Lemma 2.8. One has

Q(ν)(x) −Q(ν)(u)
x − u

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
uδ

, 0 ≤ u ≤ c1, 0 ≤ x ≤ c1,

(
T(an)
an

)ν−1
Q(x, u), 0 ≤ u ≤ a4n,

an

2
≤ x ≤ an

(
1 + ηn

)
,

(
T(an)
an

)ν−1
Q(x, u)

an

3
≤ u ≤ a4n, 0 ≤ x ≤ an

2
.

(2.50)

Proof. Case (a). 0 ≤ u ≤ c1 and 0 ≤ x ≤ c1. From (2.30) and (1.14)

Q(ν)(u) −Q(ν)(x)
u − x

≤ C

(
1
u

)δ

. (2.51)

Case (b-1). 0 ≤ u ≤ an/3 and an/2 ≤ x ≤ an(1 + ηn). Since by [1, page 64, Lemma
3.2(a)]

Q
′
(an/2)

Q′(an/3)
≥
(
3
2

)Λ−1
, (2.52)
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we have

Q
′
(x) −Q

′
(u) ≥ Q

′
(x)

(

1 − Q
′
(an/3)

Q′(an/2)

)

≥ Q
′
(x)

(

1 −
(
2
3

)Λ−1)

. (2.53)

Therefore, since for this case

(
Q

′
(x) −Q

′
(u)

)
∼ Q

′
(x), (2.54)

we have

Q(ν)(x) −Q(ν)(u)
x − u

=
Q(ν)(x) −Q(ν)(u)
Q′(x) −Q′(u)

Q(x, u)

�
∣∣∣∣∣
Q(ν)(x)
Q′(x)

∣∣∣∣∣
Q(x, u)

�
(
T(an)
an

)ν−1
Q(x, u).

(2.55)

Case (b-2). an/3 ≤ u ≤ a4n and an/2 ≤ x ≤ an(1 + ηn). There exists a point ξ between x
and u such that by (1.13)

Q(ν)(x) −Q(ν)(u)
x − u

=
Q(ν)(x) −Q(ν)(u)
Q′(x) −Q′(u)

Q(x, u)

�
∣∣∣∣∣
Q(ν+1)(ξ)
Q′′(ξ)

∣∣∣∣∣
Q(x, u)

�
(
T(ξ)
ξ

)ν−1
Q(x, u)

�
(
T(an)
an

)ν−1
Q(x, u).

(2.56)

Case (c). an/3 ≤ u ≤ a4n and 0 ≤ x ≤ an/4. By the same method as Case (b), we have

Q(ν)(x) −Q(ν)(u)
x − u

�
(
T(an)
an

)ν−1
Q(x, u). (2.57)

Lemma 2.9. Let an/2 ≤ x ≤ an(1 + ηn). Then

∫

0≤u≤a4n
(pnwρ)

2(u)
dν−1

dxν−1Q(x, u)du �
(
T(an)
an

)ν−1An(x)
an

. (2.58)

Proof. It is trivial from (2.26) and Lemma 2.8.
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Lemma 2.10. Let 0 ≤ x ≤ an/2.
(a) If 0 ≤ x ≤ c1, then

∫

0≤u≤c1
(pnwρ)

2(u)
dν−1

dxν−1Q(x, u)du � 1
an

. (2.59)

Moreover, one knows that

1
an

�
(
T(an)
an

)ν−1An(x)
an

. (2.60)

(b) IfQ
′
(x)/Q(x) is quasi-increasing on [c1,∞), or ifQ(ν+1)(x) is nondecreasing on [c1,∞),

then

∫

0≤u≤a4n
(pnwρ)

2(u)
dν−1

dxν−1Q(x, u)du �
(
T(an)
an

)ν−1An(x)
an

. (2.61)

(c) If there exists a constant 0 ≤ δ < 1 such that Q(ν+1)(x) ≤ C(1/x)δ on (0,∞), then one
has (2.61).

Proof. (a) For 0 ≤ x ≤ c1 we have from Lemmas 2.8, 2.1(a), and 2.2

∫

0≤u≤c1
(pnwρ)

2(u)
dν−1

dxν−1Q(x, u)du �
∫

0≤u≤c1
(pnwρ)

2(u)u−δdu

�

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
an

, ρ ≥ 0,

1
an

(
n

an

)2ρ∫

0≤u≤c1
u2ρ−δ � 1

an

(
n

an

)2ρ

, ρ < 0

� 1
an

,

(2.62)

because 1+ 2ρ−δ ≥ 0 for ρ < 0. On the other hand, from (1.19)we see aν
n ≤ nν/(1+ν−δ) ≤ n, and

from (1.22) we see An(x) ∼ n/an for 0 ≤ x ≤ c1. So we have

1
an

� n

aν+1
n

� n

a2
n

(
T(an)
an

)ν−1
∼ An(x)

an

(
T(an)
an

)ν−1
. (2.63)
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(b) For 0 ≤ x ≤ c1, we have from (a), Lemmas 2.7, and 2.8

∫

0≤u≤a4n
(pnwρ)

2(u)
dν−1

dxν−1Q(x, u)du �
∫

0≤u≤c1
+
∫

c1≤u≤2c1
+
∫

2c1≤u≤an/3
+
∫

an/3≤u≤a4n

�
(
T(an)
an

)ν−1An(x)
an

.

(2.64)

Similarly, for c1 ≤ x ≤ an/2 we have from Lemmas 2.7 and 2.8

∫

0≤u≤a4n
(pnwρ)

2(u)
dν−1

dxν−1Q(x, u)du �
∫

0≤u≤c1
+
∫

c1≤u≤an/3
+
∫

an/3≤u≤a4n

� An(x)
an

(
T(an)
an

)ν−1
.

(2.65)

(c) Then by (2.26) and Lemma 2.1(a)

∫

0≤u≤a4n
(pnwρ)

2(u)
dν−1

dxν−1Q(x, u)du �
∫

0≤u≤a4n
(pnwρ)

2(u)u−δdu

�
∫

0≤u≤a4n

u2ρ−δ

(u + an/n)
2ρ
√
u2 − a2

n

du

�
∫

0<u<an/n
+
∫

an/n≤u≤an/2
+
∫

an/2≤u≤a4n

� 1

aδ
n

� n

a2
n

(
1
an

)ν−1

� An(x)
an

(
T(an)
an

)ν−1
.

(2.66)

Here, we use the fact 1/aδ
n < n/aν+1

n from (1.19) for the last inequality.

Lemma 2.11. Let 0 ≤ x ≤ an(1 + ηn). Then for 1 ≤ j ≤ ν − 2,

∫

0≤u≤a4n
(pnwρ)

2(u)
dj

dxj
Q(x, u)du � An(x)

an

(
T(an)
an

)j

. (2.67)

Proof. By the same reason as the proof of Lemma 2.10 when Q(ν+1)(x) is nondecreasing on
[c1,∞), it is proved.
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To prove (1.21)we need some lemmas.

Lemma 2.12. Let 0 < ε < 1 and |x| ≤ εan.
(a) For some C > 0 one has

Q
′
(εan)

Q(εan)
≤ C

εΛ−1

Q(εan)
n

an
. (2.68)

(b) For any 0 < ε < 1, there exists ε1(ε, n) > 0 such that for 2εan ≤ u

dj

dxj
Q(x, u) ≤ ε1(ε, n)

An(x)
an

(
n

an

)j

+
Q(x, u)

(εan)j
, (2.69)

and ε1(ε, n) → 0 as n → ∞.

Proof. (a) It follows from Lemma 2.3(b). (b) By (2.25), Lemma 2.3(b), and (a), we have

dj

dxj
Q(x, u) ≤ C

j−1∑

k=0

Q(j+1−k)(x)

(εan)
k+1

+
Q(x, u)

(εan)
j

≤ C
j−1∑

k=0

Q
′
(εan)

(εan)
k+1

(
εΛ−1

Q(εan)
n

an

)j−k
+
Q(x, u)

(εan)
j

≤ C
j−1∑

k=0

εΛ−1

(εan)
k+1

n

an

(
εΛ−1

Q(εan)
n

an

)j−k
+
Q(x, u)

(εan)
j

≤ C
n

a2
n

(
n

an

)j j−1∑

k=0

εΛ−k−2
(

εΛ−1

Q(εan)

)j−k(
1
n

)k

+
Q(x, u)

(εan)
j

≤ ε1(ε, n)
An(x)
an

(
n

an

)j

+
Q(x, u)

(εan)j
,

(2.70)

where we let

ε1(ε, n) := C
j−1∑

k=0

εΛ−k−2
(

εΛ−1

Q(εan)

)j−k(
1
n

)k

−→ 0 (2.71)

as n → ∞. Therefore, this lemma is proved.

Lemma 2.13. Suppose that the one of the three conditions (a), (b), and (c) in Theorem 1.4 is satisfied.
Then for any 0 < ε < 1/2, there exists ε2(ε, n) > 0 such that for |x| ≤ εan and j = 1, . . . , ν − 1,

∫

0≤u≤a4n
(pnwρ)

2(u)
dj

dxj
Q(x, u)du � ε2(ε, n)

An(x)
an

(
n

an

)j

, (2.72)

with ε2(ε, n) → 0 as n → ∞.
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Proof. First, we consider the case of which (c) in Theorem 1.4 is satisfied. Then the lemma
follows from (2.66)with ε2(ε, n) := (1/n)ν−1. Now, we consider the other cases. If we consider
only for |x| ≤ εan and |u| ≤ 2εan in proving Lemmas 2.7 and 2.8, then we know that for
|x| ≤ εan and j = 1, . . . , ν − 1

dj

dxj
Q(x, u) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + u−δ +
(
Q′(εan)
Q(εan)

)j Q′(εan)
εan

, 0 ≤ u ≤ 2c1,

(
Q′(εan)
Q(εan)

)j Q′(εan)
εan

, 2c1 ≤ u ≤ ε

2
an,

(
Q′(εan)
Q(εan)

)j Q′(εan)
εan

,
ε

2
an ≤ u ≤ 2εan.

(2.73)

Then we have by Lemma 2.12(a)

∫

0≤u≤2εan
(pnwρ)

2(u)
dj

dxj
Q(x, u)du �

∫

0≤u≤2c1
+
∫

2c1≤u≤2εan

� 1

aδ
n

+

(
Q

′
(εan)

Q(εan)

)j
Q

′
(εan)
εan

�

⎛

⎝a
2+j−δ
n

n1+j
+ εΛ−2

(
εΛ−1

Q(εan)

)j
⎞

⎠An(x)
an

(
n

an

)j

,

(2.74)

and we can see that

ε3(ε, n) :=
a
2+j−δ
n

n1+j
+ εΛ−2

(
εΛ−1

Q(εan)

)j

−→ 0 as n −→ ∞. (2.75)

Finally, we estimate
∫
2εan≤u≤a4n . By Lemma 2.12(b)we have

∫

2εan≤u≤a4n
(pnwρ)

2(u)
dj

dxj
Q(x, u)du

≤
∫

2εan≤u≤a4n

(

ε1(ε, n)
An(x)
an

(
n

an

)j

+
1

(εan)
j
Q(x, u)

)

(pnwρ)
2(u)du

≤
(

ε1(ε, n) +
1

(εn)j

)
An(x)
an

(
n

an

)j

.

(2.76)



Journal of Inequalities and Applications 21

Therefore, if we let ε2(ε, n) := ε3(ε, n) + ε1(ε, n) + 1/(εn)j , then

∫

0≤u≤a4n
(pnwρ)

2(u)
dj

dxj
Q(x, u)du � ε2(ε, n)

An(x)
an

(
n

an

)j

, (2.77)

and ε2(ε, n) → 0 as n → ∞ by (2.75) and (2.76).

From the proof of Lemma 2.6, we have the following. There exists ε4(n) > 0 satisfying
ε4(n) → 0 as n → ∞ such that

∫

u≥a4n
(pnwρ)

2(u)
dj

dxj
Q(x, u)du ≤ ε4(n)

An(x)
an

(
n

an

)j

. (2.78)

Therefore, from Lemmas 2.6, 2.9, 2.10, and 2.11 we obtain the estimate for A(j)
n (x) in (1.20),

and from Lemma 2.13 and (2.78) we have the estimate for A(j)
n (x) in (1.21). Using Cauchy-

Schwarz Inequality we also have the estimate for B(j)
n (x) in (1.20) and (1.21). Consequently,

we proved Theorem 1.4, completely.

Proof of Theorem 1.6. (a) (1.24) follows from [1, (3.45)] easily.
(b) Suppose that (1.23) is satisfied on |x| ≥ D for some D > 0 large enough. Let x > D.

From (1.23) we have for large x > D

ln

(
Q

′
(x)

Q′(D)

)

≤ ln
(
Q(x)
Q(D)

)λ

, (2.79)

and we have for large x > D

Q
′
(x)

Q′(D)
≤
(
Q(x)
Q(D)

)λ

. (2.80)

Case λ > 1. Then we can see by [1, Lemma 3.4 (3.18)] and (2.80)

T(at) =
atQ

′
(at)

Q(at)
≤ Q

′
(D)

Q(D)λ
atQ(at)

λ−1 ≤ Cat

(
t

√
T(at)

)λ−1
. (2.81)

Therefore from the assumption at ≤ C2t
η we have for any η > 0

T(at) ≤ C
(
λ, η

)
t2(η+λ−1)/(λ+1). (2.82)

Case 0 < λ ≤ 1. Then we have by (2.80)

T(x) =
xQ

′
(x)

Q(x)
≤ x

Q
′
(D)

Q(D)λ
Q(x)λ−1 ≤ x

Q
′
(D)

Q(D)
. (2.83)
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Therefore, from the assumption at ≤ C2t
η we have for any η > 0

T(at) ≤ C
(
λ, η

)
tη. (2.84)
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