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1. Introduction

In this paper, we deal with the existence and a variational of constant formula for solutions
of a parabolic hemivariational inequality of the form:

u̇(x, t) + Δu(x, t) − divC
[
ε(u(x, t)

]
+ Ξ(x, t) = f(x, t) in Ω × (0,∞), (1.1)

u(x, t) = 0 on Γ1 × (0,∞), (1.2)

C
[
ε
(
u(x, t)

)]
ν = −(β · ν)u(x, t) on Γ0 × (0,∞), (1.3)

Ξ(x, t) ∈ ϕ
(
u(x, t)

)
a.e. (x, t) ∈ Ω × (0,∞), (1.4)

u(x, 0) = u0(x) in Ω, (1.5)

where Ω is a bounded domain in R
N with sufficiently smooth boundary Γ. Let x0 ∈ R

N ,
β(x) = x−x0, R = maxx∈Ω|x−x0|. The boundary Γ is composed of two pieces Γ0 and Γ1, which
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are nonempty sets and defined by

Γ0 :=
{
x ∈ Γ : β(x) · ν ≥ α > 0

}
, Γ1 :=

{
x ∈ Γ : β(x) · ν ≤ 0

}
, (1.6)

where ν is the unit outward normal vector to Γ. Here u̇ = ∂u/∂t, u = (u1, . . . , uN)T is the
displacement, ε(u) = (1/2){∇u + (∇u)T} = (1/2)((∂ui/∂xj) + (∂uj/∂xi)) is the strain tensor,
ϕ(u) = (ϕ1(u1), . . . , ϕN(uN))T , ϕi is a multi-valued mapping by filling in jumps of a locally
bounded function bi, i = 1, . . . ,N. A continuous map C from the space S ofN ×N symmetric
matrices into itself is defined by

C[ε] = a(tr ε)I + bε, for ε ∈ S, (1.7)

where I is the identity of S, tr ε denotes the trace of ε, and a > 0, b > 0. For example, in
the case N = 2, C[ε] = (E/d(1 − μ2))[μ(tr ε)I + (1 − μ)ε], where E > 0 is Young’s modulus,
0 < μ < 1/2 is Poisson’s ratio and d is the density of the plate.

Let H and V be two complex Hilbert spaces. Assume that V is a dense subspace in
H and the injection of V into H is continuous. Let A be a continuous linear operator from V
into V ∗ which is assumed to satisfy Gårding’s inequality. Namely, we formulated the problem
(1.1) as

u̇ +Au − divC
[
ε(u)

]
+ Ξ = f in Ω × (0,∞). (1.8)

The existence of global weak solutions for a class of hemivariational inequalities has
been studied bymany authors, for example, parabolic type problems in [1–4], and hyperbolic
types in [5–7]. Rauch [8] and Miettinen and Panagiotopoulos [1, 2] proved the existence of
weak solutions for elliptic one. The background of these variational problems are physics,
especially in solid mechanics, where nonconvex and multi-valued constitutive laws lead to
differential inclusions. We refer to [3, 4] to see the applications of differential inclusions. Most
of them considered the existence of weak solutions for differential inclusions of various forms
by using the Faedo-Galerkin approximation method.

In this paper, we prove the existence and a variational of constant formula for strong
solutions of parabolic hemivariational inequalities. The plan of this paper is as follows. In
Section 2, the main results besides notations and assumptions are stated. In order to prove
the solvability of the linear case with Ξ(x, t) = 0 we establish necessary estimates applying
the result of Di Blasio et al. [9] to (1.1)–(1.5) considered as an equation in H as well as V ∗.
The existence and regularity for the nondegenerate nonlinear systems has been developed as
seen in [10, Theorem 4.1] or [11, Theorem 2.6], and the references therein. In Section 3, wewill
obtain the existence for solutions of (1.1)–(1.5) by converting the problem into the contraction
mapping principle and the norm estimate of a solution of the above nonlinear equation on
L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ⊂ C([0, T];H). Consequently, if u is a solution asociated with u0,
and f , in view of the monotonicity of A, we show that the mapping

H × L2(0, T ;V ∗) 
 (
u0, f

) �−→ u ∈ L2(0, T ;V ) ∩ C
(
[0, T];H

)
, (1.9)

is continuous.
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2. Preliminaries and Linear Hemivariational Inequalities

We denote ξ · ζ =
∑N

i=1 ξiζi for ξ = (ξ1, . . . , ξN), ζ = (ζ1, . . . , ζN) ∈ R
N and ε · ε̃ =

∑N
i,j=1 εij ε̃ij for

ε, ε̃ ∈ S. Throughout this paper, we consider

V =
{
u ∈ (

H1(Ω)
)N

: u = 0 on Γ1
}
, H =

(
L2(Ω)

)N
,

(u, v) =
∫

Ω
u(x) ·v(x)dx, (u, v)Γ0 =

∫

Γ0
u(x) ·v(x)dΓ.

(2.1)

We denote V ∗ the dual space of V , ( · , · ) the dual pairing between V and V ∗.
The norms on V , H, and V ∗ will be denoted by ‖ · ‖, | · | and ‖ · ‖∗, respectively. For the

sake of simplicity, we may consider

‖u‖∗ ≤ |u| ≤ ‖u‖, u ∈ V. (2.2)

We denote ‖ · ‖(L2(Γ0))
N by ‖ · ‖Γ0 . Let A be the operator associated with a sesquilinear form

a(u, v)which is defined Gårding’s inequality

Rea(u, u) ≥ ω1‖u‖2 −ω2|u|2, ω1 > 0, ω2 ≥ 0, for u ∈ V, (2.3)

that is,

(Au, v) = a(u, v), u, v ∈ V. (2.4)

Then A is a symmetric bounded linear operator from V into V ∗ which satisfies

(Au, u) ≥ ω1‖u‖2 −ω2
∣∣u
∣∣2 (2.5)

and its realization inH which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H} (2.6)

is also denoted by A. Here, we note that D(A) is dense in V . Hence, it is also dense inH. We
endow the domain D(A) of A with graph norm, that is, for u ∈ D(A), we define ‖u‖D(A) =
|u|+ |Au|. So, for the brevity, we may regard that |u| ≤ ‖u‖ ≤ ‖u‖D(A) for all u ∈ V . It is known
that—A generates an analytic semigroup S(t) (t ≥ 0) in both H and V ∗.

From the following inequalities

ω1‖u‖2 ≤ Rea(u, u) +ω2
∣∣u
∣∣2 ≤ C|Au||u| +ω2|u|2

≤ (
C|Au| +ω2|u|

)|u| ≤ max
{
C,ω2

}‖u‖D(A)|u|,
(2.7)
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it follows that there exists a constant C0 > 0 such that

‖u‖ ≤ C0‖u‖1/2D(A)|u|1/2. (2.8)

So, we may regard as V = (D(A),H)1/2,2 where (D(A),H)1/2,2 is the real interpolation space
between D(A) andH.

Consider the following initial value problem for the abstract linear parabolic type
equation:

u̇(t) +Au(t) − divC
[
ε(u(t))

]
= f(t), t > 0,

u = 0 on Γ1 × (0,∞),

C
[
ε(u

(
x, t))

]
ν = −(β · ν)u(x, t) on Γ0 × (0,∞),

u(x, 0) = u0(x), x ∈ Ω.

(LE)

A continuous map C from the space S of N ×N symmetric matrices into itself is defined by

C[ε] = a(tr ε)I + bε, for a > 0, b > 0, ε ∈ S. (2.9)

It is easily known that

(divC[ε(w)], v) = −(C[ε(w)]ν, v)Γ0 + (C[ε(w)], ε(v)), v,w ∈ V, (2.10)

C
[
ε
(
w1

)] − C
[
ε
(
w2

)]
= C

[
ε
(
w1 −w2

)]
, w1, w2 ∈ V. (2.11)

Note that the map C is linear and symmetric and it can be easily verified that the tensor C
satisfies the condition

λ0
∣∣ε
∣∣2 ≤ C[ε] · ε ≤ λ1

∣∣ε
∣∣2, ε ∈ S for some λ0, λ1 > 0. (2.12)

Let λ be the smallest positive constant such that

‖v‖2 ≤ λ‖∇v‖2 ∀v ∈ V. (2.13)

Simple calculations and Korn’s inequality yield that

λ2|∇u|2 ≤ ∣∣ε(u)
∣∣2 ≤ λ3|∇u|2, (2.14)

and hence |ε(u)| is equivalent to the (H1(Ω))N norm on V. Then by virtue of [9, Theorem 3.3],
we have the following result on the linear parabolic type equation (LE).
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Proposition 2.1. Suppose that the assumptions stated above are satisfied. Then the following
properties hold.

(1) For any u0 ∈ V = (D(A),H)1/2,2 and f ∈ L2(0, T ;H) (T > 0), there exists a unique
solution u of (LE) belonging to

L2(0, T ;D(A)
) ∩W1,2(0, T ;H) ⊂ C

(
[0, T];V

)
(2.15)

and satisfying

‖u‖L2(0,T ;D(A))∩W1,2(0,T ;H) ≤ C1
(∥∥u0

∥∥ + ‖f‖L2(0,T ;H)
)
, (2.16)

where C1 is a constant depending on T .

(2) Let u0 ∈ H and f ∈ L2(0, T ;V ∗) for any T > 0. Then there exists a unique solution u of
(LE) belonging to

L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ⊂ C
(
[0, T];H

)
(2.17)

and satisfying

‖u‖L2(0,T ;V )∩W1,2(0,T ;V ∗) ≤ C1
(∣∣u0

∣∣ + ‖f‖L2(0,T ;V ∗)
)
, (2.18)

where C1 is a constant depending on T .

Proof. (1) Let â(u, v) be a bounded sesquilinear form defined in V × V by

â(u, v) = (Au, v) − (
divC

[
ε(u)

]
, v

)
, u, v ∈ V. (2.19)

Noting that by(2.10)

−(divC[ε(u)], u) =
(
C
[
ε(u)

]
, ε(u)

)
+
(
(β · ν)u, u)Γ0 , (2.20)

and by (2.12), (2.14), and (1.6),

λ0λ2‖u‖2 ≤
(
C
[
ε(u)

]
, ε(u)

)
, α|u|2 ≤ (

(β · ν)u, u)Γ0 , (2.21)

it follows that there exist ω̂1 > 0 and ω̂2 ≥ 0 such that

Re â(u, u) ≥ ω̂1‖u‖2 − ω̂2|u|2, for u ∈ V. (2.22)

Let Â be the operator associated with this sesquilinear form:

(Âu, v) = â(u, v), u, v ∈ V. (2.23)
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Then Â is also a symmetric continuous linear operator from V into V ∗ which satisfies

(Âu, u) ≥ ω̂1‖u‖2 − ω̂2|u|2. (2.24)

So we know that—Â generates an analytic semigroup Ŝ(t) (t ≥ 0) in both H and V ∗. Hence,
by applying [9, Theorem 3.3] to the regularity for the solution of the equation:

u̇(t) + Âu(t) = f(t), t > 0,

u = 0 on Γ1 × (0,∞),

C
[
ε
(
u(x, t)

)]
ν = −(β · ν)u(x, t) on Γ0 × (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

(2.25)

in the space H, we can obtain a unique solution u of (LE) belonging to

L2(0, T ;D(A)
) ∩W1,2(0, T ;H) ⊂ C

(
[0, T];V

)
(2.26)

and satisfying the norm estimate (2.16).
(2) It is easily seen that

H =
{
x ∈ V ∗ :

∫T

0

∥∥AetAx
∥∥2
∗ dt < ∞

}
, (2.27)

for the time T > 0. Therefore, in terms of the intermediate theory we can see that

(V, V ∗)1/2,2 = H (2.28)

and follow the argument of (1) term by term to deduce the proof of (2) results.

3. Existence of Solutions in the Strong Sense

This Section is to investigate the regularity of solutions for the following parabolic
hemivariational inequality of dynamic elasticity in the strong sense:

u̇(t) +Au(t) − divC
[
ε
(
u(t)

)]
+ Ξ(x, t) = f(t), t ≥ 0,

u = 0 on Γ1 × (0,∞),

C
[
ε
(
u(x, t)

)]
ν = −(β · ν)u(x, t) on Γ0 × (0,∞)

Ξ(x, t) ∈ ϕ
(
u(x, t)

)
a.e. (x, t) ∈ Ω × (0,∞),

u(0) = u0.

(HIE)
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Now, we formulate the following assumptions.

(Hb) Let bi(i = 1, . . . ,N) : R → R be a locally bounded function verifying

∣∣bi(s)
∣∣ ≤ μi|s| for s ∈ R, (3.1)

where μi > 0. We denote

μ̃ = max
{
μ1, . . . , μN

}
. (3.2)

The multi-valued function ϕi : R → 2R is obtained by filling in jumps of a function
bi : R → R by means of the functions bεi , b

ε
i , bi, bi : R → R as follows.

bεi (s) = ess inf
|τ−s|≤ε

bi(τ), bεi (s) = ess sup
|τ−s|≤ε

bi(τ),

bi(s) = lim
ε→ 0+

bεi (s), bi(s) = lim
ε→ 0+

bi
ε
(s),

ϕi(s) =
[
bi(s), bi(s)

]
.

(3.3)

We denote b(ξ) := (b1(ξ1), . . . , bN(ξN)), ϕ(ξ) := (ϕ1(ξ1), . . . , ϕN(ξN)) for ξ̃ = (ξ1, . . . , ξN) ∈ R
N .

We will need a regularization of bi defined by

bni (s) = n

∫∞

−∞
bi(s − τ)ρ(nτ)dτ, (3.4)

where ρ ∈ C∞
0 ((−1, 1)), ρ ≥ 0 and

∫1
−1ρ(τ)dτ = 1. It is easy to show that bni is continuous for all

n ∈ N and bεi , b
ε
i , bi, bi, b

n
i satisfy the same condition (Hb)with possibly different constants

if bi satisfies (Hb). It is also known that bni (s) is locally Lipschitz continuous in s, that is for
any r > 0, there exists a number Li(r) > 0 such that

(Hb-1)

∣∣bni
(
s1
) − bn

(
s2
)∣∣ ≤ Li(r)

∣∣s1 − s2
∣∣ (3.5)

holds for all s1, s2 ∈ R with |s1| < r, |s2| < r. We denote

L(r) = max{L1(r), . . . , LN(r)}. (3.6)
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The following lemma is from [[12]; Lemma A.5].

Lemma 3.1. Letm ∈ L1(0, T ;R) satisfyingm(t) ≥ 0 for all t ∈ (0, T) and a ≥ 0 be a constant. Let d
be a continuous function on [0, T] ⊂ R satisfying the following inequality:

1
2
d2(t) ≤ 1

2
a2 +

∫ t

0
m(s)d(s)ds, t ∈ [0, T]. (3.7)

Then,

∣∣d(t)
∣∣ ≤ a +

∫ t

0
m(s)ds, t ∈ [0, T]. (3.8)

Proof. Let

βε(t) =
1
2
(a + ε)2 +

∫ t

0
m(s)d(s)ds, ε > 0. (3.9)

Then

dβε(t)
dt

= m(t)d(t), t ∈ (0, T), (3.10)

and

1
2
d2(t) ≤ β0(t) ≤ βε(t), t ∈ (0, T). (3.11)

Hence, we have

dβε(t)
dt

≤ m(t)
√
2
√
βε(t). (3.12)

Since t → βε(t) is absolutely continuous and

d

dt

√
βε(t) =

1
2
√
βε(t)

dβε(t)
dt

(3.13)

for all t ∈ (0, T), it holds

d

dt

√
βε(t) ≤ 1√

2
m(t), (3.14)

that is,

√
βε(t) ≤

√
βε(0) +

1√
2

∫ t

0
m(s)ds, t ∈ (0, T). (3.15)
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Therefore, combining this with (3.11), we conclude that

|d(t)| ≤
√
2
√
βε(t) ≤

√
2
√
βε(0) +

∫ t

0
m(s)ds

= a + ε +
∫ t

0
m(s)ds, t ∈ [0, T]

(3.16)

for arbitrary ε > 0.

From now on, we establish the following results on the local solvability of the
following equation,

u̇(t) +Au(t) − divC
[
ε
(
u(t)

)]
= −bn(u(t)) + f(t), t ≥ 0, n ∈ N,

u = 0 on Γ1 × (0,∞),

C
[
ε(u

(
x, t)

)]
ν = −(β · ν)u(x, t) on Γ0 × (0,∞),

u(0) = u0.

(HIE-1)

Lemma 3.2. Let u be a solution of (HIE-1) and u ∈ Br = {v ∈ L2(0, T ;V ) : ||v|| ≤ r}. Then, the
following inequality holds, for any 0 < t ≤ T ,

∣∣u(t)
∣∣2 + ‖u‖2

L2(0,t;Γ0)
+ ‖u‖2

L2(0,t;V ) ≤ c−11

(
1
2
∣∣u0

∣∣2 + ‖f‖2
L2(0,t;H)

)
e(ω2+L(r)+1)t, (3.17)

where c1 = min{1/2, α, ω1 + c0}.

Proof. We remark that from (2.11), (2.12), it follows that there is a constant c0 > 0 such that

c0
∥∥u1(t) − u2(t)

∥∥2 ≤ (
C
[
ε
(
u1(t)

)] − C
[
ε
(
u2(t)

)]
, ε
(
u1(t)

) − ε
(
u2(t)

))
. (3.18)

Consider the following equation:

u̇(t) +Au(t) − divC
[
ε
(
u(t)

)]
= −bn(u(t)) + f(t), t > 0, n ∈ N. (3.19)

Multipying on both sides of u(t), we get

(
u̇(t), u(t)

)
+
(
Au(t), u(t)

)
+
(
C
[
ε
(
u(t)

)]
, ε
(
u(t)

))
+
(
(β · ν)u(t), u(t))

+
(
bn
(
u(t)

)
, u(t)

)
=
(
f(t), u(t)

)
,

(3.20)
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and integrating this over (0, t), by (1.6), (2.5), (3.18) and (Hb-1), we have

1
2
∣∣u(t)

∣∣2 + α

∫ t

0

∥∥u(τ)
∥∥2
Γ0
dτ +

(
ω1 + c0

)
∫ t

0

∥∥u(τ)
∥∥2

dτ

≤ 1
2
∣∣u0

∣∣2 +
(
ω2 + L(r)

)
∫ t

0

∣∣u(τ)
∣∣2dτ +

∫ t

0

{∣∣f(τ)
∣∣2 +

∣∣u(τ)
∣∣2}dτ,

(3.21)

that is,

c1
(∣∣u(t)

∣∣2 + ‖u‖2L2(0,t;Γ0)
+ ‖u‖2L2(0,t;V )

)

≤ 1
2
∣∣u0

∣∣2 + ‖f‖2
L2(0,t;H) +

(
ω2 + L(r) + 1

)
∫ t

0

∣∣u(τ)
∣∣2dτ.

(3.22)

Applying Gronwall lemma, the proof of the lemma is complete.

Theorem 3.3. Assume that u0 ∈ H, f ∈ L2(0, T ;V ∗) and (Hb). Then, there exists a time T0 > 0 such
that (HIE-1) admits a unique solution

u ∈ L2(0, T0;V ) ∩W1,2(0, T0;V ∗) ∩ C
(
[0, T0];H

)
, 0 < T0 ≤ T. (3.23)

Proof. Assume that (2.5) holds for ω2 /= 0. Let the constant r satisfy the following inequality:

c−11

(
1
2
∣∣u0

∣∣2 + ‖f‖2
L2(0,T ;H)

)
e(ω2+L(r)+1)T < r. (3.24)

Let us fix T ≥ T0 > 0 such that

max
{
μ̃, L(r)

}

4ω2
(
ω1 + c0

)
(
e2ω2T0 − 1

)
< 1, (3.25)

where μ̃ is given by (Hb).
Invoking Proposition 2.1, for a givenw ∈ Br = {v ∈ L2(0, T0;V ) : ‖v‖ ≤ r}, the problem

u̇(t) +Au(t) − divC
[
ε
(
u(t)

)]
= −bn(w(t)

)
+ f(t), t ≥ 0, n ∈ N,

u = 0 on Γ1 × (0,∞),

C
[
ε
(
u(x, t)

)]
ν = −(β · ν)u(x, t) on Γ0 × (0,∞),

u(0) = u0.

(HIE-2)

has a unique solution u ∈ L2(0, T ;V ) ∩ C([0, T];H). To prove the existence and uniqueness
of solutions of semilinear type (HIE-1), by virtue of Lemma 3.2, we are going to show that
the mapping defined byw �→ umaps is strictly contractive from Br into itself if the condition
(3.25) is satisfied.
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Lemma 3.4. Let u1, u2 be the solutions of (HIE-2) with w replaced by w1, w2 ∈ Br where Br is the
ball of radius r centered at zero of L2(0, T0;V ), respectively. Then the following inequality holds:

∣∣u1(t) − u2(t)
∣∣ ≤

∫ t

0
eω2(t−s)G(s)ds, (3.26)

where

G(t) = L(r)
∥∥w1(t) −w2(t)

∥∥. (3.27)

Proof. Let u1, u2 be the solutions of (HIE-2) with w replaced by w1, w2 ∈ L2(0, T0;V ),
respectively. Then, we have that

d

dt

(
u1(t) − u2(t)

)
+A

(
u1(t) − u2(t)

) − (
divC

[
ε(u1(t)

)] − divC
[
ε
(
u2(t)

)])

= −{bn(w1(t)
) − bn

(
w2(t)

)}
, t > 0, n ∈ N.

(3.28)

Multiplying on both sides of u1(t) − u2(t) and by (2.8), we get

1
2
d

dt

∣∣u1(t) − u2(t)
∣∣2 + a

(
u1(t) − u2(t), u1(t) − u2(t)

)

+
(
C
[
ε
(
u1(t)

)] − C
[
ε
(
u2(t)

)]
, ε
(
u1(t)

) − ε
(
u2(t)

))

+
((
β(x) · ν)(u1(t) − u2(t)

)
, u1(t) − u2(t)

)
Γ0

= −(bn(w1(t)
) − bn

(
w2(t)

)
, u1(t) − u2(t)

)
,

(3.29)

and so, by (3.18), (2.5), (Hb), we obtain

1
2
d

dt

∣∣u1(t) − u2(t)
∣∣2 +

(
ω1 + c0

)∥∥u1(t) − u2(t)
∥∥2

≤ ω2
∣∣u1(t) − u2(t)|2 + L(r)

∥∥w1(t) −w2(t)
∥∥∣∣u1(t) − u2(t)

∣∣.

(3.30)

Putting

G(t) = L(r)
∥∥w1(t) −w2(t)

∥∥, H(t) = G(t)
∣∣u1(t) − u2(t)

∣∣ (3.31)

and integrating (3.30) over (0, t), this yields

1
2
|u1(t) − u(t)|2 + (

ω1 + c0
)
∫ t

0

∥∥u1(s) − u2(s)
∥∥2
ds ≤ ω2

∫ t

0

∣∣u1(s) − u2(s)
∣∣2ds +

∫ t

0
H(s)ds.

(3.32)
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From (3.32) it follows that

d

dt

{
e−2ω2t

∫ t

0

∣∣u1(s) − u2(s)
∣∣2ds

}

= 2e−2ω2t

{
1
2
∣∣u1(t) − u2(t)

∣∣2 −ω2

∫ t

0

∣∣u1(s) − u2(s)
∣∣2ds

}

≤ 2e−2ω2t

∫ t

0
H(s)ds.

(3.33)

Integrating (3.33) over (0, t) we have

e−2ω2t

∫ t

0

∣∣u1(s) − u2(s)
∣∣2ds ≤ 2

∫ t

0
e−2ω2τ

∫ τ

0
H(s)dsdτ

= 2
∫ t

0

∫ t

s

e−2ω2τdτH(s)ds = 2
∫ t

0

e−2ω2s − e−2ω2t

2ω2
H(s)ds

=
1
ω2

∫ t

0

(
e−2ω2s − e−2ω2t

)
H(s)ds,

(3.34)

thus, we get

ω2

∫ t

0

∣∣u1(s) − u2(s)
∣∣2ds ≤

∫ t

0

(
e2ω2(t−s) − 1

)
H(s)ds. (3.35)

From (3.32) and (3.35) it follows that

1
2
∣∣u1(t) − u2(t)

∣∣2 +
(
ω1 + c0

)
∫ t

0

∥∥u1(s) − u2(s)
∥∥2
ds

≤
∫ t

0
e2ω2(t−s)H(s)ds

=
∫ t

0
e2ω2(t−s)G(s)

∣∣u1(s) − u2(s)
∣∣ds,

(3.36)

which implies

1
2
(
e−2ω2t

∣∣u1(t) − u2(t)
∣∣)2 +

(
ω1 + c0

)
e−2ω2t

∫ t

0

∥∥u1(s) − u2(s)
∥∥2
ds

≤
∫ t

0
e−ω2sG(s)e−ω2s

∣∣u1(s) − u2(s)
∣∣ds.

(3.37)
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By using Lemma 3.1, we obtain that

e−ω2t
∣∣u1(t) − u2(t)

∣∣ ≤
∫ t

0
e−ω2sG(s)ds. (3.38)

The proof of lemma is complete.
From (3.26) and (3.36) it follows that

1
2
∣∣u1(t) − u2(t)

∣∣2 +
(
ω1 + c0

)
∫ t

0

∥∥u1(s) − u2(s)
∥∥2
ds

≤
∫ t

0
e2ω2(t−s)G(s)

∫s

0
eω2(s−τ)G(τ)dτ ds

= e2ω2t

∫ t

0
e−ω2sG(s)

∫s

0
e−ω2τG(τ)dτ ds

= e2ω2t

∫ t

0

1
2
d

ds

{∫s

0
e−ω2τG(τ)dτ

}2

ds

=
1
2
e2ω2t

{∫ t

0
e−ω2τG(τ)dτ

}2

≤ 1
2
e2ω2t

∫ t

0
e−2ω2τdτ

∫ t

0
G(τ)2dτ

=
1
2
e2ω2t

1 − e−2ω2t

2ω2

∫ t

0
G(τ)2dτ

=
L(r)2

4ω2

(
e2ω2t − 1

)
∫ t

0

∥∥w1(s) −w2(s)
∥∥2
ds.

(3.39)

Starting from the initial value u0(t) = u0, consider a sequence {un( · )} satisfying

u̇n+1(t) +Aun+1(t) − divC
[
ε
(
un+1(t)

)]
= −bn(un(t)

)
+ f(t), t ≥ 0

un+1 = 0 on Γ1 × (0,∞)

C[ε
(
un+1(x, t)

)
]ν = −(β · ν)u̇n+1(x, t), on Γ0 × (0,∞)

un+1(0) = u0.

(3.40)

Then from (3.39) it follows that

1
2
∣∣un+1(t) − un(t)

∣∣2 +
(
ω1 + c0

)
∫ t

0

∥∥un+1(s) − un(s)
∥∥2
ds

≤ L(r)2

4ω2

(
e2ω2t − 1

)
∫ t

0

∥∥un(s) − un−1(s)
∥∥2
ds.

(3.41)
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So by virtue of the condition (3.25) the contraction principle gives that there exists
u( · ) ∈ L2(0, T0;V ) such that

un( · ) −→ u( · ) in L2(0, T0;V ), (3.42)

and hence, from (3.41) there exists u( · ) ∈ C([0, T0];H) such that

un( · ) −→ u( · ) in C
(
[0, T0];H

)
. (3.43)

Now, we give a norm estimation of the solution (HIE) and establish the global
existence of solutions with the aid of norm estimations.

Theorem 3.5. Let the assumption (Hb) be satisfied. Assume that u0 ∈ H and f ∈ L2(0, T ;V ∗) for
any T > 0. Then, the solution u of (HIE) exists and is unique in

u ∈ L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ⊂ C
(
[0, T];H

)
. (3.44)

Furthermore, there exists a constant C2 depending on T such that

‖u‖L2∩W1,2 ≤ C2
(
1 + |u0| + ‖f‖L2(0,T ;V ∗)

)
. (3.45)

Proof. Let w ∈ Br be the solution of

ẇ(t) +Aw(t) − divC
[
ε
(
w(t)

)]
= f(t), t ≥ 0,

w = 0 on Γ1 × (0,∞),

C
[
ε
(
w(x, t)

)]
ν = −(β · ν)w(x, t) on Γ0 × (0,∞),

w(0) = u0.

(3.46)

Then, since

d

dt

(
u(t) −w(t)

)
+A

(
u(t) −w(t)

) − divC
[
ε
(
u(t)

)]
+ divC

[
ε
(
w(t)

)]
= −bn(u(t)), (3.47)

by multiplying by u(t) −w(t), from (Hb), (3.18) and the monotonicity of A, we obtain

1
2
d

dt

∣∣u(t) −w(t)
∣∣2 +

(
ω1 + c0

)∥∥u(t) −w(t)
∥∥2 ≤ ω2

∣∣u(t) −w(t)
∣∣2 + μ̃

∥∥u(t)
∥∥∣∣u(t) −w(t)

∣∣.

(3.48)
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By integrating on (3.48) over (0, t) we have

1
2
∣∣u(t) −w(t)

∣∣2 +
(
ω1 + c0

)
∫ t

0

∥∥u(s) −w(s)
∥∥2
ds

≤ ω2

∫ t

0

∣∣u(s) −w(s)
∣∣2ds + μ̃

∫ t

0

∥∥u(s)
∥∥∣∣u(s) −w(s)

∣∣ds.

(3.49)

By the procedure similar to (3.39)we have

1
2
∣∣u(t) −w(t)

∣∣ +
(
ω1 + c0

)
∫ t

0

∥∥u(s) −w(s)
∥∥2
ds ≤ μ̃2

4ω2

(
e2ω2t − 1

)
∫ t

0

∥∥u(s)
∥∥2
ds. (3.50)

Put

M =
μ̃2

4ω2
(
ω1 + c0

)
(
e2ω2t − 1

)
. (3.51)

Then it holds

‖u −w‖L2(0,T0;V ) ≤ M1/2‖u‖L2(0,T0;V ) (3.52)

and hence, from (2.16) in Proposition 2.1, we have that

‖u‖L2(0,T0;V ) ≤
1

1 −M1/2
‖w‖L2(0,T0;V )

≤ C0

1 −M1/2

(
1 +

∣∣u0
∣∣ + ‖f‖L2(0,T0;V ∗)

)

≤ C2
(
1 +

∣∣u0
∣∣ + ‖f‖L2(0,T0;V ∗)

)

(3.53)

for some positive constant C2. Noting that by (Hb)

∥∥bn(u)
∥∥
L2(0,T ;H) ≤ const·‖u‖L2(0,T ;V ) (3.54)

and by Proposition 2.1

‖u‖W1,2(0,T ;V ∗) ≤ C1
{
1 +

∣∣u0
∣∣ +

∥∥bn(u) + f
∥∥
L2(0,T ;V ∗)

}
, (3.55)

it is easy to obtain the norm estimate of u inW1,2(0, T0;V ∗) satisfying (3.45).
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Now from Theorem 3.3 it follows that

∣∣u
(
T0
)∣∣ ≤ ‖u‖

C
(
[0,T0],H

) ≤ C2
(
1 +

∣∣u0
∣∣ + ‖f‖L2(0,T0;V ∗)

)
. (3.56)

So, we can solve the equation in [T0, 2T0] and obtain an analogous estimate to (3.53). Since the
condition (3.25) is independent of initial values, the solution of (HIE-1) can be extended the
internal [0, nT0] for a natural number n, that is, for the initial u(nT0) in the interval [nT0, (n +
1)T0], as analogous estimate (3.53) holds for the solution in [0, (n + 1)T0]. Furthermore, the
estimate (3.45) is easily obtained from (3.53) and (3.56).

We show that (u,Ξ) is a solution of the problem (HIE). Lemma 3.4 and (Hb) give that

∣∣bn
(
u(t)

)∣∣ ≤ μ̃
∣∣u(t)

∣∣ ≤ c, (3.57)

and for u0 ∈ H, there exists a unique solution u of (HIE) belonging to

L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ⊂ C
(
[0, T];H

)
(3.58)

and satisfying (3.44).
From (3.44)and (3.57), we can extract a subsequence from {un}, still denoted by {un},

such that

un −→ u weakly in L2(0, T ;V ) ∩W1,2(0, T ;V ∗) (3.59)

bn
(
un

) −→ Ξweakly in L2(0, T ;H). (3.60)

Here, we remark that if V is compactly embedded in H and u ∈ L2(0, T ;V )), the
following embedding

L2(0, T ;V ) ∩W1,2(0, T ;V ∗) ⊂ L2(0, T ;H) (3.61)

is compact in view [13, Theorem 2]. Hence, the mapping

un −→ u strongly in L2(0, T ;H). (3.62)

By a solution of (HIE-1), we understand a mild solution that has a form

un(t) = S(t)u0 +
∫ t

0
S(t − s)

{
divC

[
ε
(
un(t)

)] − bn
(
un(s)

)
+ f(s)

}
ds, t ≥ 0, (3.63)

so letting n → ∞ and using the convergence results above, we obtain

u̇(t) +Au(t) − divC
[
ε
(
u(t)

)]
+ Ξ(t) = f(t), 0 ≤ t ≤ T. (3.64)



Journal of Inequalities and Applications 17

Now, we show that Ξ(x, t) ∈ ϕ(u(x, t)) a.e. in Q := Ω × (0, T0). Indeed, from (3.62) we
have uni → ui strongly in L2(0, T ;L2(Ω)) and hence uni(x, t) → ui(x, t) a.e. in Q for each
i = 1, 2, . . . ,N. Let i ∈ {1, 2, . . . ,N} and η > 0.Using the theorem of Lusin and Egoroff, we can
choose a subset ω ⊂ Q such that |ω| < η, ui ∈ L2(Q \ ω) and uni → ui uniformly on Q \ ω.
Thus, for each ε > 0, there is an M > 2/ε such that

∣∣uni(x, t) − ui(x, t)
∣∣ <

ε

2
for n > M and (x, t) ∈ Q \ω. (3.65)

Then, if |uni(x, t) − s| < 1/n,we have |ui(x, t) − s| < ε for all n > M and (x, t) ∈ Q \ω.
Therefore we have

bεi
(
ui(x, t)

) ≤ bni
(
uni(x, t)

) ≤ bεi
(
ui(x, t)

)
, ∀n > M, (x, t) ∈ Q \ω. (3.66)

Let φ ∈ L2(0, T ;L2(Ω)), φ ≥ 0. Then

∫

Q\ω
bi

ε(ui(x, t)
)
φ(x, t)dx dt ≤

∫

Q\ω
bni
(
uni(x, t)

)
φ(x, t)dx dt

≤
∫

Q\ω
bi

ε(
ui(x, t)

)
φ(x, t)dx dt.

(3.67)

Letting n → ∞ in this inequality and using (3.60), we obtain

∫

Q\ω
bi

ε(ui(x, t)
)
φ(x, t)dx dt ≤

∫

Q\ω
Ξi(x, t)φ(x, t)dx dt

≤
∫

Q\ω
bi

ε(
ui(x, t)

)
φ(x, t)dx dt,

(3.68)

where Ξ = (Ξ1, . . . ,ΞN). Letting ε → 0+ in this inequality, we deduce that

Ξi(x, t) ∈ ϕi

(
ui(x, t)

)
a.e. in Q \ω, (3.69)

and letting η → 0+ we get

Ξi(x, t) ∈ ϕi

(
ui(x, t)

)
a.e. in Q. (3.70)

This implies that Ξ(x, t) ∈ ϕ(u(x, t)) a.e. in Q. This completes the proof of theorem.

Remark 3.6. In terms of Proposition 2.1, we remark that if u0 ∈ V = (D(A),H)1/2,2 and f ∈
L2(0, T ;H) for any T > 0 then the solution u of (HIE) exists and is unique in

x ∈ L2(0, T ;D(A)) ∩W1,2(0, T ;H) ⊂ C
(
[0, T];V

)
. (3.71)
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Futhermore, there exists a constant C2 depending on T such that

‖u‖L2∩W1,2 ≤ C2
(
1 +

∥∥u0
∥∥ + ‖f‖L2(0,T ;H)

)
. (3.72)

Theorem 3.7. Let the assumption (Hb) be satisfied

(1) if (u0, f) ∈ V ×L2(0, T ;H), then the solution u of (HIE) belongs to u ∈ L2(0, T ;D(A))∩
C([0, T];V ) and the mapping

H × L2(0, T ;H) 
 (
u0, f

) �−→ u ∈ L2(0, T ;D(A)
) ∩ C

(
[0, T];V

)
(3.73)

is continuous.

(2) let (u0, f) ∈ H × L2(0, T ;V ∗). Then the solution u of (HIE) belongs to u ∈ L2(0, T ;V ) ∩
C([0, T];H) and the mapping

H × L2(0, T ;V ∗) 
 (u0, f) �−→ u ∈ L2(0, T ;V ) ∩ C
(
[0, T];H

)
(3.74)

is continuous.

Proof. (1) It is easy to show that if u0 ∈ V and f ∈ L2(0, T ;H), then u belongs to
L2(0, T ;D(A)) ∩ W1,2(0, T ;H). let (u0i, fi) ∈ V × L2(0, T ;H) and ui ∈ Br be the solution of
(HIE)with (u0n, fi) in place of (u0, f) for i = 1, 2. Then in view of Proposition 2.1, we have

∥∥u1 − u2
∥∥
L2(0,T ;D(A))∩W1,2(0,T ;H)

≤ C1
{∥∥u01 − u02

∥∥ +
∥∥bn(u1) − bn(u2)

∥∥
L2(0,T ;H) +

∥∥f1 − f2
∥∥
L2(0,T ;H)

}

≤ C1
{∥∥u01 − u02

∥∥ + L(r)
∥∥u1 − u2

∥∥
L2(0,T :V ) +

∥∥f1 − f2
∥∥
L2(0,T ;H)

}
.

(3.75)

Since

u1(t) − u2(t) = u01 − u02 +
∫ t

0

(
u̇1(s) − u̇2(s)

)
ds, (3.76)

we get

∥∥u1 − u2
∥∥
L2(0,T ;H) ≤

√
T
∣∣u01 − u02

∣∣ +
T√
2

∥∥u1 − u2
∥∥
W1,2(0,T ;H). (3.77)
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Hence, arguing as in (2.8), we get

∥∥u1 − u2
∥∥
L2(0,T ;V ) ≤ C0

∥∥u1 − u2
∥∥1/2
L2(0,T ;D(A))

∥∥u1 − u2
∥∥1/2
L2(0,T ;H)

≤ C0
∥∥u1 − u2

∥∥1/2
L2(0,T ;D(A))

{
T1/4∣∣u01 − u02

∣∣1/2 +
(

T√
2

)1/2∥∥u1 − u2
∥∥1/2
W1,2(0,T ;H)

}

≤ C0T
1/4∣∣u01 − u02

∣∣1/2∥∥u1 − u2
∥∥1/2
L2(0,T ;D(A0))

+ C0

(
T√
2

)1/2∥∥u1 − u2
∥∥
L2(0,T ;D(A))∩W1,2(0,T ;H)

≤ 2−7/4C0
∣∣u01 − u02

∣∣ + 2C0

(
T√
2

)1/2∥∥u1 − u2
∥∥
L2(0,T ;D(A))∩W1,2(0,T ;H).

(3.78)

Combining (3.75) with (3.78), we obtain

∥∥u1 − u2
∥∥
L2(0,T ;D(A))∩W1,2(0,T ;H)

≤ C1
{∥∥u01 − u02

∥∥ +
∥∥f1 − f2

∥∥
L2(0,T ;H)

}
+ 2−7/4C0C1μ

∣∣u01 − u02
∣∣

+ 2C0C1

(
T√
2

)1/2

L(r)
∥∥u1 − u2

∥∥
L2(0,T ;D(A))∩W1,2(0,T ;H).

(3.79)

Suppose that (u0n, fn) → (u0, f) in V × L2(0, T ;H) and let un and u be the solutions (HIE)
with (u0n, fn) and (u0, f), respectively. Let 0 < T1 ≤ T be such that

2C0C1
(
T1/

√
2
)1/2

L(r) < 1. (3.80)

Then by virtue of (3.79)with T replaced by T1 we see that

un −→ u in L2(0, T1;D
(
A0

)) ∩W1,2(0, T1;H). (3.81)

This implies that un(T1) �→ u(T1) in V . Hence the same argument shows that un → u in

L2(T1,min
{
2T1, T

}
; D

(
A0

)) ∩W1,2(T1,min
{
2T1, T

}
;H

)
. (3.82)

Repeating this process we conclude that un → u in L2(0, T ;D(A0)) ∩W1,2(0, T ;H).
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(2) If (u0, f) ∈ H × L2(0, T ;H) then u belongs to L2(0, T ;V ) ∩ C([0, T];H) from
Theorem 3.5. Let (u0i, fi) ∈ H × L2(0, T ;H) and ui ∈ Br be the solution of (HIE) with (u0i, fi)
in place of (u0, f) for i = 1, 2. Multiplying (HIE) by u1(t) − u2(t), we have

1
2
d

dt

∣∣u1(t) − u2(t)
∣∣2 +

(
ω1 + c0

)∥∥u1(t) − u2(t)
∥∥2

≤ ω2
∣∣u1(t) − u2(t)

∣∣2 +
∣∣bn

(
u1(t)

) − bn
(
u2(t)

)∣∣∣∣u1(t) − u2(t)
∣∣

+
∣∣f1(t) − f2(t)

∣∣∣∣u1(t) − u2(t)
∣∣.

(3.83)

Put

G(t) = L(r)
∥∥u1(t) − u2(t)

∥∥ +
∣∣f1(t) − f2(t)

∣∣. (3.84)

Then, by the similar argument in (3.32), we get

1
2
∣∣u1(t) − u2(t)

∣∣2 +
(
ω1 + c0

)
∫ t

0

∥∥u1(s) − u2(s)
∥∥2
ds

≤ 1
2
∣∣u01 − u02

∣∣2 +ω2

∫ t

0

∣∣u1(s) − u2(s)
∣∣2ds +

∫ t

0
G(s)

∣∣u1(s) − u2(s)
∣∣ds

(3.85)

and we have that

d

dt

{
e−2ω2t

∫ t

0

∣∣u1(s) − u2(s)
∣∣2ds

}
≤ 2e−2ω2t

{
1
2
∣∣u01 − u02

∣∣2 +
∫ t

0
G(s)

∣∣u1(s) − u2(s)
∣∣ds

}
, (3.86)

thus, arguing as in (3.35) we have

ω2

∫ t

0

∣∣u1(s) − u2(s)
∣∣2ds

≤ 1
2
(
e2ω2t − 1

)∣∣u01 − u02
∣∣2 +

∫ t

0

(
e2ω2(t−s) − 1

)
G(s)

∣∣u1(s) − u2(s)
∣∣ds.

(3.87)

Combining this inequality with (3.85) it holds that

1
2
∣∣u1(t) − x2(t)

∣∣2 +
(
ω1 + c0

)
∫ t

0

∥∥u1(s) − u2(s)
∥∥2
ds

≤ 1
2
e2ω2t

∣∣u01 − u02
∣∣2 +

∫ t

0
e2ω2(t−s)G(s)

∣∣u1(s) − u2(s)
∣∣ds.

(3.88)
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By Lemma 3.1 the following inequality

1
2
(
e−2ω2t

∣∣u1(t) − u2(t)
∣∣)2 +

(
ω1 + c0

)
e−2ω2t

∫ t

0

∥∥u1(s) − u2(s)
∥∥2
ds

≤ 1
2
∣∣u01 − u02

∣∣2 +
∫ t

0
e−ω2sG(s)e−ω2s

∣∣u1(s) − u2(s)
∣∣ds

(3.89)

implies that

e−ω2t
∣∣u1(t) − u2(t)

∣∣ ≤ ∣∣u01 − u02
∣∣ +

∫ t

0
e−ω2sG(s)ds. (3.90)

Hence, from (3.88) and (3.90) it follows that

1
2
∣∣u1(t) − u2(t)

∣∣2 +
(
ω1 + c0

)
∫ t

0

∥∥u1(s) − u2(s)
∥∥2
ds ≤ 1

2
e2ω2t

∣∣u01 − u02
∣∣2

+
∫ t

0
e2ω2(t−s)G(s)eω2s

(∣∣u01 − u02
∣∣ +

∫ s

0
eω2(s−τ)G(τ)ds

)

≤ 1
2
e2ω2t

∣∣u01 − u02
∣∣2 +

∣∣u01 − u02
∣∣e2ω2t

∫ t

0
G(s)ds +

L(r)2

4ω2

(
e2ω2t − 1

)
∫ t

0
G(s)2ds.

(3.91)

The last term of (3.91) is estimated as

L(r)2
(
e2ω2t − 1

)

4ω2

∫ t

0
2
(
L2∥∥x1(s) − x2(s)

∥∥2 +
∣∣k1(s) − k2(s)

∣∣2)ds. (3.92)

Let T2 < T be such that

ω1 + c0 − L(r)2

2ω2

(
e2ω2T2 − 1

)
> 0. (3.93)

Hence, from (3.91) and (3.92) it follows that there exists a constant C > 0 such that

∣∣u1
(
T2
) − u2

(
T2
)∣∣2 +

∫T2

0

∥∥u1(s) − u2(s)
∥∥2
ds ≤ C

(∣∣u01 − u02
∣∣2 +

∫T2

0

∣∣f1(s) − f2(s)
∣∣2ds

)
. (3.94)

Suppose (u0n, un) → (u0, f) in H × L2(0, T2;V ∗), and let un and u be the solutions
(HIE) with (u0n, fn) and (u0, f), respectively. Then, by virtue of (3.94), we see that un → u



22 Journal of Inequalities and Applications

in L2(0, T2, V ) ∩ C([0, T2];H). This implies that un(T2) → u(T2) in H. Therefore the same
argument shows that un → u in

L2(T2,min
{
2T2, T

}
;V

) ∩ C
([
T2,min

{
2T2, T

}]
;H

)
. (3.95)

Repeating this process, we conclude that un → u in L2(0, T ;V ) ∩ C([0, T];H).
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