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1. Introduction

Let Ω ⊂ R
N , N ≥ 1, be a bounded domain with Lipschitz boundary ∂Ω. By W1,p(Ω) and

W
1,p
0 (Ω), 1 < p < ∞, we denote the usual Sobolev spaces with their dual spaces (W1,p(Ω))∗

and W−1,q(Ω), respectively, where q is the Hölder conjugate satisfying 1/p + 1/q = 1. We
consider the following elliptic variational-hemivariational inequality. Find u ∈ K such that

〈Au + F(u), v − u〉 +
∫
Ω
j01 (·, u;v − u)dx +

∫
∂Ω
j02
(·, γu; γv − γu

)
dσ ≥ 0, ∀v ∈ K, (1.1)

where j0k(x, s; r), k = 1, 2 denotes the generalized directional derivative of the locally
Lipschitz functions s 
→ jk(x, s) at s in the direction r given by

j0k(x, s; r) = lim sup
y→ s,t↓0

jk
(
x, y + tr

) − jk
(
x, y
)

t
, k = 1, 2 (1.2)
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(cf. [1, Chapter 2]). We denote by K a closed convex subset of W1,p(Ω), and A is a second-
order quasilinear differential operator in divergence form of Leray-Lions type given by

Au(x) = −
N∑
i=1

∂

∂xi
ai(x, u(x),∇u(x)). (1.3)

The operator F stands for the Nemytskij operator associated with some Carathéodory
function f : Ω × R × R

N → R defined by

F(u)(x) = f(x, u(x),∇u(x)). (1.4)

Furthermore, we denote the trace operator by γ : W1,p(Ω) → Lp(∂Ω) which is known to be
linear, bounded, and even compact.

The aim of this paper is to establish the method of sub- and supersolutions for problem
(1.1). We prove the existence of solutions between a given pair of sub-supersolution assuming
only a local growth condition of Clarke’s generalized gradient, which extends results recently
obtained by Carl in [2]. To complete our findings, we also give the proof for the existence of
extremal solutions of problem (1.1) for a fixed ordered pair of sub- and supersolutions in case
A has the form

Au(x) = −
N∑
i=1

∂

∂xi
ai(x,∇u(x)). (1.5)

In the second part we consider (1.1) with a discontinuous Nemytskij operator F involved,
which extends results in [3] and partly of [4]. Let us consider next some special cases of
problem (1.1), where we suppose A = −Δp.

(1) If K = W1,p(Ω) and jk are smooth, problem (1.1) reduces to

〈−Δpu + F(u), v〉 +
∫
Ω
j ′1(·, u)v dx +

∫
∂Ω
j ′2
(·, γu)γv dσ = 0, ∀v ∈ W1,p(Ω), (1.6)

which is equivalent to the weak formulation of the nonlinear boundary value
problem

−Δpu + F(u) + j ′1(u) = 0 in Ω,

∂u

∂ν
+ j ′2
(
γu
)
= 0 on ∂Ω,

(1.7)

where ∂u/∂ν denotes the conormal derivative of u. The method of sub- and
supersolution for this kind of problems is a special case of [5].
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(2) For f ∈ V ∗
0 , K ⊂ W

1,p
0 (Ω) and j2 = 0, (1.1) corresponds to the variational-

hemivariational inequality given by

〈−Δpu + f, v − u〉 +
∫
Ω
j01 (·, u;v − u)dx ≥ 0, ∀v ∈ K, (1.8)

which has been discussed in detail in [6].

(3) IfK ⊂ W
1,p
0 (Ω) and jk = 0, then (1.1) is a classical variational inequality of the form

u ∈ K : 〈−Δpu + F(u), v − u〉 ≥ 0, ∀v ∈ K, (1.9)

whose method of sub- and supersolution has been developed in [7, Chapter 5].

(4) LetK = W
1,p
0 (Ω) orK = W1,p(Ω) and jk not necessarily smooth. Then problem (1.1)

is a hemivariational inequality, which contains forK = W
1,p
0 (Ω) as a special case the

following Dirichlet problem for the elliptic inclusion:

−Δpu + F(u) + ∂j1(·, u) � 0 in Ω,

u = 0 on ∂Ω,
(1.10)

and for K = W1,p(Ω) the elliptic inclusion

−Δpu + F(u) + ∂j1(·, u) � 0 in Ω,

∂u

∂ν
+ ∂j2(·, u) � 0 on ∂Ω,

(1.11)

where the multivalued functions s 
→ ∂jk(x, s), k = 1, 2 stand for Clarke’s
generalized gradient of the locally Lipschitz function s 
→ jk(x, s), k = 1, 2 given
by

∂jk(x, s) =
{
ξ ∈ R : j0k(x, s; r) ≥ ξr, ∀r ∈ R

}
. (1.12)

Problems of the form (1.10) and (1.11) have been studied in [5, 8], respectively.

Existence results for variational-hemivariational inequalities with or without the method
of sub- and supersolutions have been obtained under different structure and regularity
conditions on the nonlinear functions by various authors. For example, we refer to [9–16].
In case that K is the whole space W

1,p
0 (Ω) or W1,p(Ω), respectively, problem (1.1) reduces to

a hemivariational inequality which has been treated in [17–25].
Comparison principles for general elliptic operators A, including the negative p-

Laplacian −Δp, Clarke’s generalized gradient s 
→ ∂j(x, s), satisfying a one-sided growth
condition in the form

ξ1 ≤ ξ2 + c1(s2 − s1)
p−1 (1.13)
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for all ξi ∈ ∂j(x, si), i = 1, 2, for a.a. x ∈ Ω, and for all s1, s2 with s1 < s2, can be found in [7].
Inspired by results recently obtained in [8, 26], we prove the existence of (extremal) solutions
for the variational-hemivariational inequality (1.1) within a sector of an ordered pair of sub-
and supersolutions u, uwithout assuming a one-sided growth condition on Clarke’s gradient
of the form (1.13).

2. Notation of Sub- and Supersolution

For functions u, v : Ω → Rwe use the notation u∧ v = min(u, v), u∨ v = max(u, v), K ∧K =
{u ∧ v : u, v ∈ K}, K ∨ K = {u ∨ v : u, v ∈ K}, and u ∧ K = {u} ∧ K, u ∨ K = {u} ∨ K and
introduce the following definitions.

Definition 2.1. A function u ∈ W1,p(Ω) is said to be a subsolution of (1.1) if the following
holds:

(1) F(u) ∈ Lq(Ω);

(2) 〈Au + F(u), w − u〉 + ∫Ω j01 (·, u;w − u)dx +
∫
∂Ω j02(·, γu; γw − γu)dσ ≥ 0, ∀w ∈ u ∧K.

Definition 2.2. A function u ∈ W1,p(Ω) is said to be a supersolution of (1.1) if the following
holds:

(1) F(u) ∈ Lq(Ω);

(2) 〈Au + F(u), w − u〉 + ∫Ω j01(·, u;w − u)dx +
∫
∂Ω j02(·, γu; γw − γu)dσ ≥ 0, ∀w ∈ u ∨K.

In order to prove our main results, we additionally suppose the following assump-
tions:

u ∨K ⊂ K, u ∧K ⊂ K. (2.1)

3. Preliminaries and Hypotheses

Let 1 < p < ∞, 1/p+1/q = 1, and assume for the coefficients ai : Ω×R×RN → R, i = 1, . . . ,N
the following conditions.

(A1) Each ai(x, s, ξ) satisfies Carathéodory conditions, that is, is measurable in x ∈ Ω for
all (s, ξ) ∈ R × R

N and continuous in (s, ξ) for a.e. x ∈ Ω. Furthermore, a constant
c0 > 0 and a function k0 ∈ Lq(Ω) exist so that

|ai(x, s, ξ)| ≤ k0(x) + c0
(
|s|p−1 + |ξ|p−1

)
(3.1)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R × R
N , where |ξ| denotes the Euclidian norm of

the vector ξ.
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(A2) The coefficients ai satisfy a monotonicity condition with respect to ξ in the form

N∑
i=1

(
ai(x, s, ξ) − ai

(
x, s, ξ′

))(
ξi − ξ′i

)
> 0 (3.2)

for a.e. x ∈ Ω, for all s ∈ R, and for all ξ, ξ′ ∈ R
N with ξ /= ξ′.

(A3) A constant c1 > 0 and a function k1 ∈ L1(Ω) exist such that

N∑
i=1

ai(x, s, ξ)ξi ≥ c1|ξ|p − k1(x) (3.3)

for a.e. x ∈ Ω, for all s ∈ R, and for all ξ ∈ R
N .

Condition (A1) implies that A : W1,p(Ω) → (W1,p(Ω))∗ is bounded continuous and along
with (A2); it holds that A is pseudomonotone. Due to (A1) the operator A generates a
mapping fromW1,p(Ω) into its dual space defined by

〈Au, ϕ〉 =
∫
Ω

N∑
i=1

ai(x, u,∇u)
∂ϕ

∂xi
dx, (3.4)

where 〈·, ·〉 stands for the duality pairing between W1,p(Ω) and (W1,p(Ω))∗, and assumption
(A3) is a coercivity type condition.

Let [u, u] be an ordered pair of sub- and supersolutions of problem (1.1). We impose
the following hypotheses on jk and the nonlinearity f in problem (1.1).

(j1) x 
→ j1(x, s) and x 
→ j2(x, s) are measurable inΩ and ∂Ω, respectively, for all s ∈ R.

(j2) s 
→ j1(x, s) and s 
→ j2(x, s) are locally Lipschitz continuous in R for a.a. x ∈ Ω and
for a.a. x ∈ ∂Ω, respectively.

(j3) There are functions L1 ∈ L
q
+(Ω) and L2 ∈ L

q
+(∂Ω) such that for all s ∈ [u(x), u(x)]

the following local growth conditions hold:

η ∈ ∂j1(x, s) :
∣∣η∣∣ ≤ L1(x), for a.a. x ∈ Ω,

ξ ∈ ∂j2(x, s) : |ξ| ≤ L2(x), for a.a. x ∈ ∂Ω.
(3.5)

(F1) (i) x 
→ f(x, s, ξ) is measurable in Ω for all (s, ξ) ∈ R × R
N .

(ii) (s, ξ) 
→ f(x, s, ξ) is continuous in R × R
N for a.a. x ∈ Ω.

(iii) There exist a constant c2 > 0 and a function k3 ∈ L
q
+(Ω) such that

∣∣f(x, s, ξ)∣∣ ≤ k3(x) + c2|ξ|p−1 (3.6)

for a.e. x ∈ Ω, for all ξ ∈ R
N , and for all s ∈ [u(x), u(x)].
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Note that the associated Nemytskij operator F defined by F(u)(x) = f(x, u(x),∇u(x)) is
continuous and bounded from [u, u] ⊂ W1,p(Ω) to Lq(Ω) (cf. [27]). We recall that the normed
space Lp(Ω) is equipped with the natural partial ordering of functions defined by u ≤ v if
and only if v − u ∈ L

p
+(Ω), where Lp

+(Ω) is the set of all nonnegative functions of Lp(Ω).
Based on an approach in [8], the main idea in our considerations is to modify the

functions jk. First we set for k = 1, 2

αk(x) := min
{
ξ : ξ ∈ ∂jk

(
x, u(x)

)}
, βk(x) := max

{
ξ : ξ ∈ ∂jk(x, u(x))

}
. (3.7)

By means of (3.7) we introduce the mappings j̃1 : Ω × R → R and j̃2 : ∂Ω × R → R defined
by

j̃k(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

jk
(
x, u(x)

)
+ αk(x)

(
s − u(x)

)
, if s < u(x),

jk(x, s), if u(x) ≤ s ≤ u(x),

jk(x, u(x)) + βk(x)(s − u(x)), if s > u(x).

(3.8)

The following lemma provides some properties of the functions j̃1 and j̃2.

Lemma 3.1. Let the assumptions in (j1)–(j3) be satisfied. Then the modified functions j̃1 : Ω×R → R

and j̃2 : ∂Ω × R → R have the following qualities.

(j̃1) x 
→ j̃1(x, s) and x 
→ j̃2(x, s) are measurable inΩ and ∂Ω, respectively, for all s ∈ R, and
s 
→ j̃1(x, s) and s 
→ j̃2(x, s) are locally Lipschitz continuous in R for a.a. x ∈ Ω and for
a.a. x ∈ ∂Ω, respectively.

(j̃2) Let ∂j̃k(x, s) be Clarke’s generalized gradient of s 
→ j̃k(x, s). Then for all s ∈ R the
following estimates hold true:

η ∈ ∂j̃1(x, s) :
∣∣η∣∣ ≤ L1(x), for a.a. x ∈ Ω,

ξ ∈ ∂j̃2(x, s) : |ξ| ≤ L2(x), for a.a. x ∈ ∂Ω.
(3.9)

(j̃3) Clarke’s generalized gradients of s 
→ j̃1(x, s) and s 
→ j̃2(x, s) are given by

∂j̃k(x, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk(x), if s < u(x),

∂j̃k
(
x, u(x)

)
, if s = u(x),

∂jk(x, s), if u(x) < s < u(x),

∂j̃k(x, u(x)), if s = u(x),

βk(x), if s > u(x),

(3.10)

and the inclusions ∂j̃k(x, u(x)) ⊂ ∂jk(x, u(x)) and ∂j̃k(x, u(x)) ⊂ ∂jk(x, u(x)) are valid
for k = 1, 2.
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Proof. With a view to the assumptions (j1)–(j3) and the definition of j̃k in (3.8), one verifies
the lemma in few steps.

With the aid of Lemma 3.1, we introduce the integral functionals J1 and J2 defined on
Lp(Ω) and Lp(∂Ω), respectively, given by

J1(u) =
∫
Ω
j̃1(x, u(x))dx, u ∈ Lp(Ω), J2(v) =

∫
∂Ω
j̃2(x, v(x))dσ, v ∈ Lp(∂Ω). (3.11)

Due to the properties (j̃1)–(j̃2) and Lebourg’s mean value theorem (see [1, Chapter 2]), the
functionals J1 : Lp(Ω) → R and J2 : Lp(∂Ω) → R are well defined and Lipschitz continuous
on bounded sets of Lp(Ω) and Lp(∂Ω), respectively. This implies among others that Clarke’s
generalized gradients ∂J1 : Lp(Ω) → 2L

q(Ω) and ∂J2 : Lp(∂Ω) → 2L
q(∂Ω) are well defined, too.

Furthermore, by means of Aubin-Clarke’s theorem (see [1]), for u ∈ Lp(Ω) and v ∈ Lp(∂Ω)
we get

η ∈ ∂J1(u) =⇒ η ∈ Lq(Ω) with η(x) ∈ ∂j̃1(x, u(x)) for a.a. x ∈ Ω,

ξ ∈ ∂J2(v) =⇒ ξ ∈ Lq(∂Ω) with ξ(x) ∈ ∂j̃2(x, v(x)) for a.a. x ∈ ∂Ω.
(3.12)

An important tool in our considerations is the following surjectivity result for
multivalued pseudomonotone mappings perturbed by maximal monotone operators in
reflexive Banach spaces.

Theorem 3.2. LetX be a real reflexive Banach space with the dual spaceX∗,Φ : X → 2X
∗
a maximal

monotone operator, and u0 ∈ dom(Φ). Let A : X → 2X
∗
be a pseudomonotone operator, and assume

that either Au0 is quasibounded or Φu0 is strongly quasibounded. Assume further that A : X → 2X
∗

is u0-coercive, that is, there exists a real-valued function c : R+ → R with c(r) → +∞ as r → +∞
such that for all (u, u∗) ∈ graph(A) one has 〈u∗, u − u0〉 ≥ c(‖u‖X)‖u‖X . Then A + Φ is surjective,
that is, range(A + Φ) = X∗.

The proof of the theorem can be found, for example, in [28, Theorem 2.12]. The
notationAu0 andΦu0 stand forAu0(u) := A(u0+u) andΦu0(u) := Φ(u0+u), respectively. Note
that any bounded operator is, in particular, also quasibounded and strongly quasibounded.
For more details we refer to [28]. The next proposition provides a sufficient condition to
prove the pseudomonotonicity of multivalued operators and plays an important part in our
argumentations. The proof is presented, for example, in [28, Chapter 2].

Proposition 3.3. Let X be a reflexive Banach space, and assume that A : X → 2X
∗
satisfies the

following conditions:

(i) for each u ∈ X one has that A(u) is a nonempty, closed, and convex subset of X∗;

(ii) A : X → 2X
∗
is bounded;

(iii) if un ⇀ u in X and u∗
n ⇀ u∗ in X∗ with u∗

n ∈ A(un) and if lim sup〈u∗
n, un − u〉 ≤ 0, then

u∗ ∈ A(u) and 〈u∗
n, un〉 → 〈u∗, u〉.

Then the operator A : X → 2X
∗
is pseudomonotone.
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We denote by i∗ : Lq(Ω) → (W1,p(Ω))∗ and γ∗ : Lq(∂Ω) → (W1,p(Ω))∗ the adjoint
operators of the imbedding i : W1,p(Ω) → Lp(Ω) and the trace operator γ : W1,p(Ω) →
Lp(∂Ω), respectively, given by

〈i∗η, ϕ〉 =
∫
Ω
ηϕdx, ∀ϕ ∈ W1,p(Ω), 〈γ∗ξ, ϕ〉 =

∫
∂Ω
ξγϕdσ, ∀ϕ ∈ W1,p(Ω). (3.13)

Next, we introduce the following multivalued operators:

Φ1(u) := (i∗ ◦ ∂J1 ◦ i)(u), Φ2(u) :=
(
γ∗ ◦ ∂J2 ◦ γ

)
(u), (3.14)

where i, i∗, γ, γ∗ are defined as mentioned above. The operators Φk, k = 1, 2, have the
following properties (see, e.g., [5, Lemmas 3.1 and 3.2]).

Lemma 3.4. The multivalued operators Φ1 : W1,p(Ω) → 2(W
1,p(Ω))∗ and Φ2 : W1,p(Ω) →

2(W
1,p(Ω))∗ are bounded and pseudomonotone.

Let b : Ω × R → R be the cutoff function related to the given ordered pair u, u of sub-
and supersolutions defined by

b(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(s − u(x))p−1, if s > u(x),

0, if u(x) ≤ s ≤ u(x),

−(u(x) − s
)p−1

, if s < u(x).

(3.15)

Clearly, the mapping b is a Carathéodory function satisfying the growth condition

|b(x, s)| ≤ k4(x) + c3|s|p−1 (3.16)

for a.e. x ∈ Ω, for all s ∈ R, where k4 ∈ L
q
+(Ω) and c3 > 0. Furthermore, elementary

calculations show the following estimate:

∫
Ω
b(x, u(x))u(x)dx ≥ c4‖u‖pLp(Ω) − c5, ∀u ∈ Lp(Ω), (3.17)

where c4 and c5 are some positive constants. Due to (3.16) the associated Nemytskij operator
B : Lp(Ω) → Lq(Ω) defined by

Bu(x) = b(x, u(x)) (3.18)

is bounded and continuous. Since the embedding i : W1,p(Ω) → Lp(Ω) is compact, the
composed operator B̂ := i∗ ◦ B ◦ i : W1,p(Ω) → (W1,p(Ω))∗ is completely continuous.
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For u ∈ W1,p(Ω), we define the truncation operator T with respect to the functions u
and u given by

Tu(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x), if u(x) > u(x),

u(x), if u(x) ≤ u(x) ≤ u(x),

u(x), if u(x) < u(x).

(3.19)

The mapping T is continuous and bounded from W1,p(Ω) into W1,p(Ω) which follows from
the fact that the functions min(·, ·) andmax(·, ·) are continuous fromW1,p(Ω) to itself and that
T can be represented as Tu = max(u, u) +min(u, u)−u (cf. [29]). Let F ◦T be the composition
of the Nemytskij operator F and T given by

(F ◦ T)(u)(x) = f(x, Tu(x),∇Tu(x)). (3.20)

Due to hypothesis (F1)(iii), the mapping F ◦ T : W1,p(Ω) → Lq(Ω) is bounded and
continuous. We set F̂ : i∗ ◦ (F ◦ T) : W1,p(Ω) → (W1,p(Ω))∗, and consider the multivalued
operator

Ã = ATu + F̂ + λB̂ + Φ1 + Φ2 : W1,p(Ω) −→ 2(W
1,p(Ω))∗ , (3.21)

where λ is a constant specified later, and the operator AT is given by

〈ATu, ϕ〉 = −
N∑
i=1

∫
Ω
ai(x, Tu,∇u)

∂ϕ

∂xi
dx. (3.22)

We are going to prove the following properties for the operator Ã.

Lemma 3.5. The operator Ã : W1,p(Ω) → 2(W
1,p(Ω))∗ is bounded, pseudomonotone, and coercive for

λ sufficiently large.

Proof. The boundedness of Ã follows directly from the boundedness of the specific operators
AT , F̂, B̂, Φ1, and Φ2. As seen above, the operator B̂ is completely continuous and thus
pseudomonotone. The elliptic operator AT + F̂ is pseudomonotone because of hypotheses
(A1), (A2), and (F1), and in view of Lemma 3.4 the operators Φ1 and Φ2 are bounded
and pseudomonotone as well. Since pseudomonotonicity is invariant under addition, we
conclude that Ã : W1,p(Ω) → 2(W

1,p(Ω))∗ is bounded and pseudomonotone. To prove the
coercivity of Ã, we have to find the existence of a real-valued function c : R+ → R satisfying

lim
s→+∞

c(s) = +∞, (3.23)

such that for all u ∈ W1,p(Ω) and u∗ ∈ Ã(u) the following holds

〈u∗, u − u0〉 ≥ c
(
‖u‖W1,p(Ω)

)
‖u‖W1,p(Ω) (3.24)
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for some u0 ∈ K. Let u∗ ∈ Ã(u); that is, u∗ is of the form

u∗ =
(
AT + F̂ + λB̂

)
(u) + i∗η + γ∗ξ, (3.25)

where η ∈ Lq(Ω) with η(x) ∈ ∂j̃1(x, u(x)) for a.a. x ∈ Ω and ξ ∈ Lq(∂Ω) with ξ(x) ∈
∂j̃2(x, u(x)) for a.a. x ∈ ∂Ω. Applying (A1), (A3), (F1)(iii), (3.17), and (j̃2), the trace operator
γ : W1,p(Ω) → Lp(∂Ω) and Young’s inequality yield

〈u∗, u − u0〉

=
〈(

AT + F̂ + λB̂
)
(u) + i∗η + γ∗ξ, u − u0

〉

=
∫
Ω

N∑
i=1

ai(x, Tu,∇u)
∂u − ∂u0

∂xi
dx +

∫
Ω

(
f(·, Tu,∇Tu)(u − u0) + λb(x, u)(u − u0)

)
dx

+
∫
Ω

(
η(u − u0)

)
dx +

∫
∂Ω
ξγ(u − u0)dσ

≥ c1‖∇u‖p
Lp(Ω) − ‖k1‖L1(Ω) − d1‖u‖p−1Lp(Ω) − d2‖∇u‖p−1

Lp(Ω) − d3 − ε‖∇u‖p
Lp(Ω) − c(ε)‖u‖pLp(Ω)

− d5‖u‖Lp(Ω) − d6‖∇u‖p−1
Lp(Ω) − d7 + λc4‖u‖pLp(Ω) − λc5 − d8 − d9‖u‖p−1Lp(Ω)

− d10‖u‖Lp(Ω) − d11 − d12‖u‖Lp(∂Ω) − d13

= (c1 − ε)‖∇u‖pLp(Ω) + (λc4 − c(ε))‖u‖pLp(Ω) − d14‖∇u‖p−1
Lp(Ω) − d15‖u‖p−1Lp(Ω)

− d16‖u‖Lp(Ω) − d17,

(3.26)

where dj are some positive constants. Choosing ε < c1 and λ such that λ > c(ε)/c4 yields the
estimate

〈u∗, u − u0〉 ≥ d18‖u‖pW1,p(Ω) − d19‖u‖p−1W1,p(Ω) − d20‖u‖W1,p(Ω) − d21. (3.27)

Setting c(s) = d18s
p−1−d19s

p−2−d20−d21/s for s > 0 and c(0) = 0 provides the estimate in (3.24)
satisfying (3.23). This proves the coercivity of A and completes the proof of the lemma.
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4. Main Results

Theorem 4.1. Let hypotheses (A1)–(A3), (j1)–(j3), and (F1) be satisfied, and assume the existence of
sub- and supersolutions u and u, respectively, satisfying u ≤ u and (2.1). Then, there exists a solution
of (1.1) in the order interval [u, u].

Proof. Let IK : W1,p(Ω) → R ∪ {+∞} be the indicator function corresponding to the closed
convex set K/= ∅ given by

IK(u) =

⎧⎨
⎩
0, if u ∈ K,

+∞, if u/∈K,
(4.1)

which is known to be proper, convex, and lower semicontinuous. The variational-
hemivariational inequality (1.1) can be rewritten as follows. Find u ∈ K such that

〈Au + F(u), v − u〉 + IK(v) − IK(u) +
∫
Ω
j01 (·, u;v − u)dx +

∫
∂Ω
j02
(·, γu; γv − γu

)
dσ ≥ 0 (4.2)

for all v ∈ W1,p(Ω). By using the operators AT, F̂, B̂ and the functions j̃1, j̃2 introduced in
Section 3, we consider the following auxiliary problem. Find u ∈ K such that

〈
ATu + F̂(u) + λB̂(u), v − u

〉
+ IK(v) − IK(u) +

∫
Ω
j̃01 (·, u;v − u)dx

+
∫
∂Ω
j̃02
(·, γu; γv − γu

)
dσ ≥ 0

(4.3)

for all v ∈ W1,p(Ω). Consider now the multivalued operator

Ã + ∂IK : W1,p(Ω) −→ 2(W
1,p(Ω))∗ , (4.4)

where Ã is as in (3.21), and ∂IK : W1,p(Ω) → 2(W
1,p(Ω))∗ is the subdifferential of the

indicator function IK which is known to be a maximal monotone operator (cf. [28, page
20]). Lemma 3.5 provides that Ã is bounded, pseudomonotone, and coercive. Applying
Theorem 3.2 proves the surjectivity of Ã + ∂IK meaning that range(Ã + ∂IK) = (W1,p(Ω))∗.
Since 0 ∈ (W1,p(Ω))∗, there exists a solution u ∈ K of the inclusion

Ã(u) + ∂IK(u) � 0. (4.5)

This implies the existence of η∗ ∈ Φ1(u), ξ∗ ∈ Φ2(u), and θ∗ ∈ ∂IK(u) such that

ATu + F̂(u) + λB̂(u) + η∗ + ξ∗ + θ∗ = 0, in
(
W1,p(Ω)

)∗
, (4.6)
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where it holds in view of (3.12) and (3.14) that

η∗ = i∗η, ξ∗ = γ∗ξ (4.7)

with

η ∈ Lq(Ω), η(x) ∈ ∂j̃1(x, u(x)) as well as ξ ∈ Lq(∂Ω), ξ(x) ∈ ∂j̃2
(
x, γu(x)

)
. (4.8)

Due to the Definition of Clarke’s generalized gradient ∂j̃k(·, u), k = 1, 2, one gets

〈
η∗, ϕ
〉
=
∫
Ω
η(x)ϕ(x)dx ≤

∫
Ω
j̃01
(
x, u(x);ϕ(x)

)
dx, ∀ϕ ∈ W1,p(Ω),

〈ξ∗, ϕ〉 =
∫
∂Ω
ξ(x)γϕ(x)dσ ≤

∫
∂Ω
j̃02
(
x, γu(x); γϕ(x)

)
dσ, ∀ϕ ∈ W1,p(Ω).

(4.9)

Moreover, we have the following estimate:

〈θ∗, v − u〉 ≤ IK(v) − IK(u), ∀v ∈ W1,p(Ω). (4.10)

From (4.6)we conclude

〈
ATu + F̂(u) + λB̂(u) + η∗ + ξ∗ + θ∗, ϕ

〉
= 0, ∀ϕ ∈ W1,p(Ω). (4.11)

Using the estimates in (4.9) and (4.10) to the equation above where ϕ is replaced by v − u,
yields for all v ∈ W1,p(Ω)

0 =
〈
AT + F̂(u) + λB̂(u) + η∗ + ξ∗ + θ∗, v − u

〉

≤
〈
ATu + F̂(u) + λB̂(u), v − u

〉
+ IK(v) − IK(u)

+
∫
Ω
j̃01 (·, u;v − u)dx +

∫
∂Ω
j̃02
(·, γu; γv − γu

)
dσ.

(4.12)

Hence, we obtain a solution u of the auxiliary problem (4.3) which is equivalent to the
problem. Find u ∈ K such that

〈
ATu + F̂(u) + λB̂(u), v − u

〉
+
∫
Ω
j̃01 (·, u;v − u)dx +

∫
∂Ω
j̃02
(·, γu; γv − γu

)
dσ ≥ 0, ∀v ∈ K.

(4.13)
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In the next step we have to show that any solution u of (4.13) belongs to [u, u]. By
Definition 2.2 and by choosing w = u ∨ u = u + (u − u)+ ∈ u ∨K, we obtain

〈
Au + F(u), (u − u)+

〉
+
∫
Ω
j01
(·, u; (u − u)+

)
dx +

∫
∂Ω
j02
(·, γu; γ(u − u)+

)
dσ ≥ 0, (4.14)

and selecting v = u ∧ u = u − (u − u)+ ∈ K in (4.13) provides

〈
ATu + F̂(u) + λB̂(u),−(u − u)+

〉
+
∫
Ω
j̃01
(·, u;−(u − u)+

)
dx +

∫
∂Ω
j̃02
(·, γu;−γ(u − u)+

)
dσ ≥ 0.

(4.15)

Adding these inequalities yields

N∑
i=1

∫
Ω
(ai(x, u,∇u) − ai(x, Tu,∇u))

∂(u − u)+

∂xi
dx +

∫
Ω
(F(u) − (F ◦ T)(u))(u − u)+dx

+
∫
Ω

(
j01 (·, u; 1) + j̃01 (·, u;−1)

)
(u − u)+dx +

∫
∂Ω

(
j02
(·, γu; 1) + j̃02

(·, γu;−1))γ(u − u)+dσ

≥ λ

∫
Ω
B(u)(u − u)+dx.

(4.16)

Let us analyze the specific integrals in (4.16). By using (A2) and the definition of the
truncation operator, we obtain

∫
Ω
(ai(x, u,∇u) − ai(x, Tu,∇u))

∂(u − u)+

∂xi
dx ≤ 0,

∫
Ω
(F(u) − (F ◦ T)(u))(u − u)+dx = 0.

(4.17)

Furthermore, we consider the third integral of (4.16) in case u > u; otherwise it would be
zero. Applying (1.12) and (3.8) proves

j̃01 (x, u(x);−1)

= lim sup
s→u(x),t↓0

j̃1(x, s − t) − j̃1(x, s)
t

= lim sup
s→u(x),t↓0

j1(x, u(x)) + β1(x)(s − t − u(x)) − j1(x, u(x)) − β1(x)(s − u(x))
t

= lim sup
s→u(x),t↓0

−β1(x)t
t

= −β1(x).

(4.18)
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Proposition 2.1.2 in [1] along with (3.7) shows

j01 (x, u(x); 1) = max
{
ξ : ξ ∈ ∂j1(x, u(x))

}
= β1(x). (4.19)

In view of (4.18) and (4.19) we obtain

∫
Ω

(
j01 (·, u; 1) + j̃01 (·, u;−1)

)
(u − u)+dx =

∫
Ω

(
β1(x) − β1(x)

)
(u − u)+dx = 0, (4.20)

and analog to this calculation

∫
∂Ω

(
j02
(·, γu; 1) + j̃02

(·, γu;−1))γ(u − u)+dσ = 0. (4.21)

Due to (4.17), (4.20), and (4.21), we immediately realize that the left-hand side in (4.16) is
nonpositive. Thus, we have

0 ≥ λ

∫
Ω
B(u)(u − u)+dx

= λ

∫
Ω
b(·, u)(u − u)+dx

= λ

∫
{x:u(x)>u(x)}

(u − u)pdx

= λ

∫
Ω

(
(u − u)+

)p
dx

≥ 0,

(4.22)

which implies (u − u)+ = 0 and hence, u ≤ u. The proof for u ≤ u is done in a similar way. So
far we have shown that any solution of the inclusion (4.5) (which is a solution of (4.3) as well)
belongs to the interval [u, u]. The latter implies ATu = Au, B(u) = 0 and (F ◦ T)(u) = F(u),
and thus from (4.5) it follows

〈
Au + F(u) + i∗η + γ∗ξ, v − u

〉 ≥ 0, ∀v ∈ K, (4.23)

where η(x) ∈ ∂j̃1(x, u(x)) ⊂ ∂j1(x, u(x)) and ξ(x) ∈ ∂j̃2(x, γu(x)) ⊂ ∂j2(x, γu(x)), which
proves that u ∈ [u, u] is also a solution of our original problem (1.1). This completes the
proof of the theorem.

Let S denote the set of all solutions of (1.1)within the order interval [u, u]. In addition,
we will assume that K has lattice structure, that is, K fulfills

K ∨K ⊂ K, K ∧K ⊂ K. (4.24)
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We are going to show that S possesses the smallest and the greatest element with respect to
the given partial ordering.

Theorem 4.2. Let the hypothesis of Theorem 4.1 be satisfied. Then the solution set S is compact.

Proof. First, we are going to show that S is bounded in W1,p(Ω). Let u ∈ S be a solution of
(4.2), and notice that S is Lp(Ω)-bounded because of u ≤ u ≤ u. This implies γu ≤ γu ≤ γu,
and thus, u is also bounded in Lp(∂Ω). Choosing a fixed v = u0 ∈ K in (4.2) delivers

〈Au + F(u), u0 − u〉 +
∫
Ω
j01 (·, u;u0 − u)dx +

∫
∂Ω
j02
(·, γu; γu0 − γu

)
dσ ≥ 0. (4.25)

Using (A1), (j3), (F1)(iii), Proposition 2.1.2 in [1], and Young’s inequality yields

〈Au, u〉 ≤
∫
Ω

N∑
i=1

|ai(x, u,∇u)|
∣∣∣∣∂u0

∂xi

∣∣∣∣dx +
∫
Ω

∣∣f(x, u,∇u)
∣∣|u0 − u|dx

+
∫
Ω
max
{
η(u0 − u) : η ∈ ∂j1(x, u)

}
dx +

∫
∂Ω

max
{
ξ(u0 − u) : ξ ∈ ∂j2(x, u)

}
dσ

≤
∫
Ω

N∑
i=1

(
k0 + c0|u|p−1 + c0|∇u|p−1

)
|∇u0|dx +

∫
Ω

(
k3 + c2|∇u|p−1

)
|u0 − u|dx

+
∫
Ω
L1|u0 − u|dx +

∫
∂Ω
L2
∣∣γu0 − γu

∣∣dσ

≤ e1 + e2‖u‖p−1Lp(Ω) + e3‖∇u‖p−1
Lp(Ω) + e4 + e5‖u‖Lp(Ω) + e6‖∇u‖p−1

Lp(Ω) + ε‖∇u‖p
Lp(Ω)

+ c(ε)‖u‖pLp(Ω) + e7 + e8‖u‖Lp(Ω) + e9 + e10‖u‖Lp(∂Ω)

≤ ε‖∇u‖p
Lp(Ω) + e11‖∇u‖p−1

Lp(Ω) + e12‖∇u‖Lp(Ω) + e13,

(4.26)

where the left-hand side fulfills the estimate

〈Au, u〉 ≥ c1‖∇u‖p
Lp(Ω) − k1. (4.27)

Thus, one has

(c1 − ε)‖∇u‖pLp(Ω) ≤ e11‖∇u‖p−1Lp(Ω) + e13, (4.28)

where the choice ε < c1 proves that ‖∇u‖Lp(Ω) is bounded. Hence, we obtain the boundedness
of u in W1,p(Ω). Let (un) ⊂ S. Since W1,p(Ω), 1 < p < ∞, is reflexive, there exists a weak
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convergent subsequence, not relabelled, which yields along with the compact imbedding i :
W1,p(Ω) → Lp(Ω) and the compactness of the trace operator γ : W1,p(Ω) → Lp(∂Ω)

un ⇀ u in W1,p(Ω),

un −→ u in Lp(Ω) and a.e. pointwise in Ω,

γun −→ γu in Lp(∂Ω) and a.e. pointwise in ∂Ω.

(4.29)

As un solves (4.2), in particular, for v = u ∈ K, we obtain

〈Aun, un − u〉 ≤ 〈F(un), u − un〉 +
∫
Ω
j01 (·, un;u − un)dx +

∫
∂Ω
j02
(·, γun; γu − γun

)
dσ. (4.30)

Since (s, r) 
→ j0
k
(x, s; r), k = 1, 2, is upper semicontinuous and due to Fatou’s Lemma, we get

from (4.30)

lim sup
n→∞

〈Aun, un − u〉 ≤ lim sup
n→∞

〈F(un), u − un〉
︸ ︷︷ ︸

→ 0

+
∫
Ω
lim sup
n→∞

j01 (·, un;u − un)
︸ ︷︷ ︸

≤j01 (·,u,0)=0

dx

+
∫
∂Ω
lim sup
n→∞

j02 (·, γun; γu − γun)
︸ ︷︷ ︸

≤j02 (·,γu,γ0)=0

dσ ≤ 0.

(4.31)

The elliptic operator A satisfies the (S+)-property, which due to (4.31) and (4.29) implies

un −→ u in W1,p(Ω). (4.32)

Replacing u by un in (1.1) yields the following inequality:

〈Aun + F(un), v − un〉 +
∫
Ω
j01 (·, un; v − un)dx +

∫
∂Ω
j02
(·, γun; γv − γun

)
dσ ≥ 0, ∀v ∈ K.

(4.33)

Passing to the limes superior in (4.33) and using Fatou’s Lemma, the strong convergence of
(un) inW1,p(Ω), and the upper semicontinuity of (s, r) → j0

k
(x, s; r), k = 1, 2, we have

〈Au + F(u), v − u〉 +
∫
Ω
j01 (·, u; v − u)dx +

∫
∂Ω
j02
(·, γu; γv − γu

)
dσ ≥ 0, ∀v ∈ K. (4.34)

Hence, u ∈ S. This shows the compactness of the solution set S.
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In order to prove the existence of extremal elements of the solution set S, we drop the
u-dependence of the operator A. Then, our assumptions read as follows.

(A1′) Each ai(x, ξ) satisfies Carathéodory conditions, that is, is measurable in x ∈ Ω for
all ξ ∈ R

N and continuous in ξ for a.e. x ∈ Ω. Furthermore, a constant c0 > 0 and a
function k0 ∈ Lq(Ω) exist so that

|ai(x, ξ)| ≤ k0(x) + |ξ|p−1 (4.35)

for a.e. x ∈ Ω and for all ξ ∈ R
N , where |ξ| denotes the Euclidian norm of the vector

ξ.

(A2′) The coefficients ai satisfy a monotonicity condition with respect to ξ in the form

N∑
i=1

(
ai(x, ξ) − ai

(
x, ξ′
))(

ξi − ξ′i
)
> 0 (4.36)

for a.e. x ∈ Ω, and for all ξ, ξ′ ∈ R
N with ξ /= ξ′.

(A3′) A constant c1 > 0 and a function k1 ∈ L1(Ω) exist such that

N∑
i=1

ai(x, ξ)ξi ≥ c1|ξ|p − k1(x) (4.37)

for a.e. x ∈ Ω, and for all ξ ∈ R
N .

Then the operator A : W1,p(Ω) → (W1,p(Ω))∗ acts in the following way:

〈
Au, ϕ

〉
=
∫
Ω

N∑
i=1

ai(x,∇u)
∂ϕ

∂xi
dx. (4.38)

Let us recall the definition of a directed set.

Definition 4.3. Let (P,≤) be a partially ordered set. A subset C of P is said to be upward
directed if for each pair x, y ∈ C there is a z ∈ C such that x ≤ z and y ≤ z. Similarly, C is
downward directed if for each pair x, y ∈ C there is a w ∈ C such that w ≤ x and w ≤ y. If C
is both upward and downward directed, it is called directed.

Theorem 4.4. Let hypotheses (A1′)–(A3′) and (j1)–(j3) be fulfilled, and assume that (F1) and (4.24)
are valid. Then the solution set S of problem (1.1) is a directed set.

Proof. By Theorem 4.1, we have S /= ∅. Let u1, u2 ∈ S be given solutions of (1.1), and let u0 =
max{u1, u2}. We have to show that there is a u ∈ S such that u0 ≤ u. Our proof is mainly based
on an approach developed recently in [26] which relies on a properly constructed auxiliary
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problem. Let the operator B̂ be given basically as in (3.15)–(3.18) with the following slight
change:

b(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(s − u(x))p−1, if s > u(x),

0, if u(x) ≤ s ≤ u(x),

−(u0(x) − s)p−1, if s < u0(x).

(4.39)

We introduce truncation operators Tj related to uj and modify the truncation operator T as
follows. For j = 1, 2, we define

Tju(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x), if u(x) > u(x),

u(x), if uj(x) ≤ u(x) ≤ u(x),

uj(x), if u(x) < uj(x),

Tu(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x), if u(x) > u(x),

u(x), if u0(x) ≤ u(x) ≤ u(x),

u0(x), if u(x) < u0(x),

(4.40)

and we set

Gu(x) = f(x, Tu(x),∇Tu(x)) −
2∑

j=1

∣∣f(x, Tu(x),∇Tu(x)) − f
(
x, Tju(x),∇Tju(x)

)∣∣ (4.41)

as well as

F̂ : i∗ ◦G : W1,p(Ω) −→
(
W1,p(Ω)

)∗
. (4.42)

Moreover, we define

αk,j(x) := min
{
ξ : ξ ∈ ∂jk

(
x, uj(x)

)}
, βk(x) := max

{
ξ : ξ ∈ ∂jk(x, u(x))

}
,

αk,0(x) :=

⎧⎨
⎩
αk,1(x), if x ∈ {u1 ≥ u2},
αk,2(x), if x ∈ {u2 > u1}

(4.43)

for k, j = 1, 2, and introduce the functions j̃1 : Ω × R → R and j̃2 : ∂Ω × R → R defined by

j̃k(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

jk(x, u0(x)) + αk,0(x)(s − u0(x)), if s < u0(x),

jk(x, s), if u0(x) ≤ s ≤ u(x),

jk(x, u(x)) + βk(x)(s − u(x)), if s > u(x).

(4.44)
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Furthermore, we define the functions h1,j : Ω ×R → R and h2,j : ∂Ω ×R → R for j = 0, 1, 2 as
follows:

hk,0(x, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αk,0(x), if s ≤ u0(x),

αk,0(x) +
βk(x) − αk,0(x)
u(x) − u0(x)

(s − u0(x)), if u0(x) < s < u(x),

βk(x), if s ≥ u(x),

(4.45)

and for j = 1, 2

hk,j(x, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αk,j(x, ) if s ≤ uj(x),

αk,j(x) +
αk,0(x) − αk,j(x)
u0(x) − uj(x)

(
s − uj(x)

)
, if uj(x) < s < u0(x),

hk,0(x, s), if s ≥ u0(x),

(4.46)

where k = 1, 2. (Note that for k = 2 we understand the functions above being defined on ∂Ω.)
Apparently, the mappings (x, s) 
→ hk,j(x, s) are Carathéodory functions which are piecewise
linear with respect to s. Let us introduce the Nemytskij operators H1 : Lp(Ω) → Lq(Ω) and
H2 : Lp(∂Ω) → Lq(∂Ω) defined by

H1u(x) =
2∑

j=1

∣∣h1,j(x, u(x)) − h1,0(x, u(x))
∣∣,

H2u(x) =
2∑

j=1

∣∣h2,j
(
x, γ(u(x))

) − h2,0
(
x, γ(u(x))

)∣∣.
(4.47)

Due to the compact imbedding W1,p(Ω) → Lp(Ω) and the compactness of the trace operator
γ : W1,p(Ω) → Lp(∂Ω), the operators H̃1 = i∗ ◦ H1 ◦ i : W1,p(Ω) → (W1,p(Ω))∗ and
H̃2 = γ∗ ◦ H2 ◦ γ : W1,p(Ω) → (W1,p(Ω))∗ are bounded and completely continuous and
thus pseudomonotone. Now, we consider the following auxiliary variational-hemivariational
inequality. Find u ∈ K such that

〈
Au + F̂(u) + λB̂(u), v − u

〉
+
∫
Ω
j̃01 (·, u; v − u)dx −

〈
H̃1u, v − u

〉

+
∫
∂Ω
j̃02
(·, γu; γv − γu

)
dσ −

〈
H̃2γu, γv − γu

〉
≥ 0

(4.48)

for all v ∈ K. The construction of the auxiliary problem (4.48) including the functions Hk

and G is inspired by a very recent approach introduced by Carl and Motreanu in [26]. The
first part of the proof of Theorem 4.1 delivers the existence of a solution u of (4.48), since
all calculations in Section 3 are still valid. In order to show that the solution set S of (1.1) is
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upward directed, we have to verify that a solution u of (4.48) satisfies ul ≤ u ≤ u, l = 1, 2. By
assumption ul ∈ S, that is, ul solves

ul ∈ K : 〈Aul + F(ul), v − ul〉 +
∫
Ω
j01 (·, ul; v − ul)dx +

∫
∂Ω
j02
(·, γul; γv − γul

)
dσ ≥ 0 (4.49)

for all v ∈ K. Selecting v = u ∧ ul = ul − (ul − u)+ ∈ K in the inequality above yields

〈Aul + F(ul),−(ul − u)+〉 +
∫
Ω
j01
(·, ul; −(ul − u)+

)
dx +

∫
∂Ω
j02
(·, γul; −γ(ul − u)+

)
dσ ≥ 0.

(4.50)

Taking the special test function v = u ∨ ul = u + (ul − u)+ ∈ K in (4.48), we get

〈Au + F̂(u) + λB̂(u), (ul − u)+〉 +
∫
Ω
j̃01
(·, u; (ul − u)+

)
dx −

〈
H̃1, (ul − u)+

〉

+
∫
∂Ω
j̃02
(·, γu; γ(ul − u)+

)
dσ −

〈
H̃2γu, γ(ul − u)+

〉
≥ 0.

(4.51)

Adding (4.50) and (4.51) yields

∫
Ω

N∑
i=1

(ai(x,∇u) − ai(x,∇ul))
∂(ul − u)+

∂xi
dx

+
∫
Ω

⎛
⎝f(x, Tu,∇Tu)−f(x, ul,∇ul)−

2∑
j=1

∣∣f(x, Tu,∇Tu)−f(x, Tju,∇Tju
)∣∣
⎞
⎠(ul−u)+dx

+
∫
Ω

⎛
⎝j̃01 (·, u; 1) + j01 (·, ul;−1) −

2∑
j=1

∣∣h1,j(x, u) − h1,0(x, u)
∣∣
⎞
⎠(ul − u)+dx

+
∫
∂Ω

⎛
⎝j̃02
(·, γu; 1) + j02

(·, γul;−1
) − 2∑

j=1

∣∣h2,j
(
x, γu
) − h2,0

(
x, γu
)∣∣
⎞
⎠γ(ul − u)+dσ

≥ −λ
∫
Ω
B(u)(ul − u)+dx.

(4.52)

The condition (A2′) implies directly

∫
Ω

N∑
i=1

(ai(x,∇u) − ai(x,∇ul))
∂(ul − u)+

∂xi
dx ≤ 0, (4.53)
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and the second integral can be estimated to obtain

∫
Ω

⎛
⎝f(x, Tu,∇Tu) − f(x, ul,∇ul) −

2∑
j=1

∣∣f(x, Tu,∇Tu) − f
(
x, Tju,∇Tju

)∣∣
⎞
⎠(ul − u)+dx

≤
∫
Ω

(
f(x, Tu,∇Tu) − f(x, ul,∇ul) −

∣∣f(x, Tu,∇Tu) − f(x, Tlu,∇Tlu)
∣∣)(ul − u)+dx

=
∫
{x∈Ω:ul(x)>u(x)}

(
f(x, Tu,∇Tu) − f(x, ul,∇ul) −

∣∣f(x, Tu,∇Tu) − f(x, ul,∇ul)
∣∣)(ul − u)dx

≤ 0.
(4.54)

In order to investigate the third integral, we make use of some auxiliary calculation. In view
of (4.44) we have for ul(x) > u(x)

j̃01 (x, u(x); 1) = lim sup
s→u(x),t↓0

j̃1(x, s + t) − j̃1(x, s)
t

= lim sup
s→u(x),t↓0

j1(x, u0(x)) + α1,0(x)(s + t − u0(x)) − j1(x, u0(x)) − α1,0(x)(s − u0(x))
t

= lim sup
s→u(x),t↓0

α1,0(x)t
t

= α1,0(x).
(4.55)

Applying Proposition 2.1.2 in [1] and (3.7) results in

j01 (x, ul(x);−1) = max
{−ξ : ξ ∈ ∂j1(x, ul(x))

}
= −min

{
ξ : ξ ∈ ∂j1(x, ul(x))

}
= −α1,l(x).

(4.56)

Furthermore, we have in case ul(x) > u(x)

h1,l(x, u(x)) = α1,l(x),

h1,0(x, u(x)) = α1,0(x).
(4.57)



22 Journal of Inequalities and Applications

Thus, we get

∫
Ω

⎛
⎝j̃01 (·, u; 1) + j01 (·, ul;−1) −

2∑
j=1

∣∣h1,j(x, u) − h1,0(x, u)
∣∣
⎞
⎠(ul − u)+dx

≤
∫
Ω

(
j̃01 (·, u; 1) + j01 (·, ul;−1) − |h1,l(x, u) − h1,0(x, u)|

)
(ul − u)+dx

=
∫
{x∈Ω:ul(x)>u(x)}

(α1,0(x) − α1,l(x) − |α1,l(x) − α1,0(x)|)(ul − u)+dx

≤ 0.

(4.58)

The same result can be proven for the boundary integral meaning

∫
∂Ω

⎛
⎝j̃02
(·, γu; 1) + j02

(·, γul;−1
) − 2∑

j=1

∣∣h2,j
(
x, γu
) − h2,0

(
x, γu
)∣∣
⎞
⎠γ(ul − u)+dσ ≤ 0. (4.59)

Applying (4.53)–(4.59) to (4.52) yields

0 ≥ −λ
∫
Ω
B(u)(ul − u)+dx

= −λ
∫
{x∈Ω:ul(x)>u(x)}

− (u0 − u)p−1(ul − u)dx

≥ λ

∫
Ω

(
(ul − u)+

)p
dx

≥ 0,

(4.60)

and hence, (ul − u)+ = 0 meaning that ul ≤ u for l = 1, 2. This proves u0 = max{u1, u2} ≤ u.
The proof for u ≤ u can be shown in a similar way. More precisely, we obtain a solution
u ∈ K of (4.48) satisfying u ≤ u0 ≤ u ≤ u which implies F̂(u) = f(·, u,∇u), B̂(u) = 0 and
H1(u) = H2(γu) = 0. The same arguments as at the end of the proof of Theorem 4.1 apply,
which shows that u is in fact a solution of problem (1.1) belonging to the interval [u0, u].
Thus, the solution set S is upward directed. Analogously, one proves that S is downward
directed.

Theorems 4.2 and 4.4 allow us to formulate the next theorem about the existence of
extremal solutions.

Theorem 4.5. Let the hypotheses of Theorem 4.4 be satisfied. Then the solution set S possesses
extremal elements.
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Proof. Since S ⊂ W1,p(Ω) andW1,p(Ω) are separable, S is also separable; that is, there exists a
countable, dense subset Z = {zn : n ∈ N} of S. We construct an increasing sequence (un) ⊂ S
as follows. Let u1 = z1 and select un+1 ∈ S such that

max(zn, un) ≤ un+1 ≤ u. (4.61)

By Theorem 4.4, the element un+1 exists because S is upward directed. Moreover, we can
choose by Theorem 4.2 a convergent subsequence (denoted again by un) with un → u in
W1,p(Ω) and un(x) → u(x) a.e. in Ω. Since (un) is increasing, the entire sequence converges
in W1,p(Ω) and further, u = supun. One sees at once that Z ⊂ [u, u]which follows from

max(z1, . . . , zn) ≤ un+1 ≤ u, ∀n, (4.62)

and the fact that [u, u] is closed in W1,p(Ω) implies

S ⊂ Z ⊂ [u, u] = [u, u]. (4.63)

Therefore, as u ∈ S, we conclude that u is the greatest element in S. The existence of the
smallest solution of (1.1) in [u, u] can be proven in a similar way.

Remark 4.6. If A depends on s, we have to require additional assumptions. For example, if A
satisfies in s a monotonicity condition, the existence of extremal solutions can be shown, too.
In caseK = W1,p(Ω), a Lipschitz condition with respect to s is sufficient for proving extremal
solutions. For more details we refer to [7].

5. Generalization to Discontinuous Nemytskij Operators

In this section, we will extend our problem in (1.1) to include discontinuous nonlinearities f
of the form f : Ω×R×R×RN → R. We consider again the elliptic variational-hemivariational
inequality

〈Au + F(u), v − u〉 +
∫
Ω
j01 (·, u;v − u)dx +

∫
∂Ω
j02
(·, γu; γv − γu

)
dσ ≥ 0, ∀v ∈ K, (5.1)

where all denotations of Section 1 are valid. Here, F denotes the Nemytskij operator given by

F(u)(x) = f(x, u(x), u(x),∇u(x)), (5.2)

where we will allow f to depend discontinuously on its third argument. The aim of this
section is to deal with discontinuous Nemytskij operators F : [u, u] ⊂ W1,p(Ω) → Lq(Ω)
by combining the results of Section 4 with an abstract fixed point result for not necessarily
continuous operators, cf. [30, Theorem 1.1.1]. This will extend recent results obtained in [3].
Let us recall the Definitions of sub- and supersolutions.
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Definition 5.1. A function u ∈ W1,p(Ω) is called a subsolution of (5.1) if the following holds:

(1) F(u) ∈ Lq(Ω);

(2) 〈Au + F(u), w − u〉 + ∫Ω j01 (·, u;w − u)dx +
∫
∂Ω j02(·, γu; γw − γu)dσ ≥ 0, ∀w ∈ u ∧K.

Definition 5.2. A function u ∈ W1,p(Ω) is called a supersolution of (5.1) if the following holds:

(1) F(u) ∈ Lq(Ω);

(2) 〈Au + F(u), w − u〉 + ∫Ω j01 (·, u;w − u)dx +
∫
∂Ω j02(·, γu; γw − γu)dσ ≥ 0, ∀w ∈ u ∨K.

The conditions for Clarke’s generalized gradient s 
→ ∂jk(x, s) and the functions
jk, k = 1, 2, are the same as in (j1)–(j3). We only change the property (F1) to the following.

(F2) (i) x 
→ f(x, r, u(x), ξ) is measurable for all r ∈ R, for all ξ ∈ R
N , and for all

measurable functions u : Ω → R.
(ii) (r, ξ) 
→ f(x, r, s, ξ) is continuous in R × R

N for all s ∈ R and for a.a. x ∈ Ω.
(iii) s 
→ f(x, r, s, ξ) is decreasing for all (r, ξ) ∈ R × R

N and for a.a. x ∈ Ω.
(iv) There exist a constant c2 > 0 and a function k2 ∈ L

q
+(Ω) such that

∣∣f(x, r, s, ξ)∣∣ ≤ k2(x) + c0|ξ|p−1 (5.3)

for a.e. x ∈ Ω, for all ξ ∈ R
N , and for all r, s ∈ [u(x), u(x)].

By [31] the mapping x 
→ f(x, u(x), u(x),∇u(x)) is measurable for u ∈ W1,p(Ω); however, the
associated Nemytskij operator F : W1,p(Ω) ⊂ Lp(Ω) → Lq(Ω) is not necessarily continuous.
An important tool in extending the previous result to discontinuous Nemytskij operators is
the next fixed point result. The proof of this lemma can be found in [30, Theorem 1.1.1].

Lemma 5.3. Let P be a subset of an ordered normed space, G : P → P an increasing mapping, and
G[P] = {Gx | x ∈ P}.

(1) If G[P] has a lower bound in P and the increasing sequences of G[P] converge weakly in
P , then G has the least fixed point x∗, and x∗ = min{x | Gx ≤ x}.

(2) If G[P] has an upper bound in P and the decreasing sequences of G[P] converge weakly in
P , then G has the greatest fixed point x∗, and x∗ = max{x | x ≤ Gx}.

Our main result of this section is the following theorem.

Theorem 5.4. Assume that hypotheses (A1′)–(A3′), (j1)–(j3), (F2), and (4.24) are valid, and let u and
u be sub- and supersolutions of (5.1) satisfying u ≤ u and (2.1). Then there exist extremal solutions
u∗ and u∗ of (5.1) with u ≤ u∗ ≤ u∗ ≤ u.

Proof. We consider the following auxiliary problem:

u ∈ K : 〈Au + Fz(u), v − u〉 +
∫
Ω
j01 (·, u;v − u)dx +

∫
∂Ω
j02
(·, γu; γv − γu

)
dσ ≥ 0, ∀v ∈ K,

(5.4)
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where Fz(u)(x) = f(x, u(x), z(x),∇u(x)), and we define the set H := {z ∈ W1,p(Ω) : z ∈
[u, u], and z is a supersolution of (5.1) satisfying z ∧ K ⊂ K}. On H we introduce the fixed
point operator L : H → K by z 
→ u∗ =: Lz, that is, for a given supersolution z ∈ H, the
element Lz is the greatest solution of (5.4) in [u, z], and thus, it holds u ≤ Lz ≤ z for all
z ∈ H. This implies L : H → [u, u] ∩K. Because of (4.24), Lz is also a supersolution of (5.4)
satisfying

〈ALz + Fz(Lz), w − Lz〉 +
∫
Ω
j01 (·, Lz;w − Lz)dx +

∫
∂Ω
j02
(·, γLz; γw − γLz

)
dσ ≥ 0 (5.5)

for all w ∈ Lz ∨K. By the monotonicity of f with respect to its third argument, Lz ≤ z, and
using the representation w = Lz + (v − Lz)+ for any v ∈ K we obtain

0 ≤ 〈ALz + Fz(Lz), (v − Lz)+
〉
+
∫
Ω
j01
(·, Lz; (v − Lz)+

)
dx +

∫
∂Ω
j02
(·, γLz; γ(v − Lz)+

)
dσ

≤ 〈ALz + FLz(Lz), (v − Lz)+〉 +
∫
Ω
j01
(·, Lz; (v − Lz)+

)
dx +

∫
∂Ω
j02
(·, γLz; γ(v − Lz)+

)
dσ

(5.6)

for all v ∈ K. Consequently, Lz is a supersolution of (5.1). This shows L : H → H.
Let v1, v2 ∈ H, and assume that v1 ≤ v2. Then we have the following.

Lv1 ∈
[
u, v1
]
is the greatest solution of

〈Au + Fv1(u), v − u〉 +
∫
Ω
j01 (·, u;v − u)dx +

∫
∂Ω
j02
(·, γu; γv − γu

)
dσ ≥ 0, ∀v ∈ K.

(5.7)

Lv2 ∈
[
u, v2
]
is the greatest solution of

〈Au + Fv2(u), v − u〉 +
∫
Ω
j01 (·, u;v − u)dx +

∫
∂Ω
j02
(·, γu; γv − γu

)
dσ ≥ 0, ∀v ∈ K.

(5.8)

Since v1 ≤ v2, it follows that Lv1 ≤ v2, and due to (4.24), Lv1 is also a subsolution of (5.7),
that is, (5.7) holds, in particular, for v ∈ Lv1 ∧K, that is,

0 ≥ 〈ALv1 + Fv1(Lv1), (Lv1 − v)+
〉 −
∫
Ω
j01
(·, Lv1;−(Lv1 − v)+

)
dx

−
∫
∂Ω
j02
(·, γLv1;−γ(Lv1 − v)+

)
dσ

(5.9)
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for all v ∈ K. Using the monotonicity of f with respect to its third argument s yields

0 ≥ 〈ALv1 + Fv1(Lv1), (Lv1 − v)+〉 −
∫
Ω
j01
(·, Lv1;−(Lv1 − v)+

)
dx

−
∫
∂Ω
j02
(·, γLv1;−γ(Lv1 − v)+

)
dσ

≥ 〈ALv1 + Fv2(Lv1), (Lv1 − v)+〉 −
∫
Ω
j01
(·, Lv1;−(Lv1 − v)+

)
dx

−
∫
∂Ω
j02
(·, γLv1;−γ(Lv1 − v)+

)
dσ

(5.10)

for all v ∈ K. Hence, Lv1 is a subsolution of (5.8). By Theorem 4.5, we know that there exists
the greatest solution of (5.8) in [Lv1, v2]. But Lv2 is the greatest solution of (5.8) in [u, v2] ⊇
[Lv1, v2] and therefore, Lv1 ≤ Lv2. This shows that L is increasing.

In the last step we have to prove that any decreasing sequence of L(H) converges
weakly inH. Let (un) = (Lzn) ⊂ L(H) ⊂ H be a decreasing sequence. Then un(x) ↘ u(x) a.e.
x ∈ Ω for some u ∈ [u, u]. The boundedness of un in W1,p(Ω) can be shown similarly as in
Section 4. Thus the compact imbedding i : W1,p(Ω) → Lp(Ω) along with the monotony of un

as well as the compactness of the trace operator γ : W1,p(Ω) → Lp(∂Ω) implies

un ⇀ u in W1,p(Ω),

un −→ u in Lp(Ω) and a.e. pointwise in Ω,

γun −→ γu in Lp(∂Ω) and a.e. pointwise in ∂Ω.

(5.11)

Since un ∈ K, it follows u ∈ K. From (5.4) with u replaced by un and v by u, and using the
fact that (s, r) 
→ j0

k
(x, s; r), k = 1, 2, is upper semicontinuous, we obtain by applying Fatou’s

Lemma

lim sup
n→∞

〈Aun, un − u〉 ≤ lim sup
n→∞

〈Fzn(un), u − un〉 + lim sup
n→∞

∫
Ω
j01 (·, un;u − un)dx

+ lim sup
n→∞

∫
∂Ω
j02
(·, γun; γu − γun

)
dσ

≤ lim sup
n→∞

〈Fzn(un), u − un〉
︸ ︷︷ ︸

→ 0

+
∫
Ω
lim sup
n→∞

j01 (·, un;u − un)
︸ ︷︷ ︸

≤j01 (·,u;0)=0

dx

+
∫
∂Ω
lim sup
n→∞

j02 (·, γun; γu − γun)
︸ ︷︷ ︸

≤j02 (·,γu;γ0)=0

dσ

≤ 0.

(5.12)
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The S+-property ofA provides the strong convergence of (un) inW1,p(Ω). As Lzn = un is also
a supersolution of (5.4) Definition 5.2 yields

〈
Aun + Fzn(un), (v − un)+

〉
+
∫
Ω
j01
(·, un; (v − un)

+)dx +
∫
∂Ω
j02
(·, γun; γ(v − un)

+)dσ ≥ 0

(5.13)

for all v ∈ K. Due to zn ≥ un ≥ u and the monotonicity of f we get

0 ≤ 〈Aun + Fzn(un), (v − un)
+〉 +
∫
Ω
j01
(·, un; (v − un)

+)dx +
∫
∂Ω
j02
(·, γun; γ(v − un)

+)dσ

≤ 〈Aun + Fu(un), (v − un)
+〉 +
∫
Ω
j01
(·, un; (v − un)

+)dx +
∫
∂Ω
j02
(·, γun; γ(v − un)

+)dσ
(5.14)

for all v ∈ K, and since the mapping u 
→ u+ = max(u, 0) is continuous from W1,p(Ω) to itself
(cf. [29]), we can pass to the upper limit on the right-hand side for n → ∞. This yields

〈Au + Fu(u), (v − u)+〉 +
∫
Ω
j01
(·, u; (v − u)+

)
dx +

∫
∂Ω
j02
(·, γu; γ(v − u)+

)
dx ≥ 0, ∀v ∈ K,

(5.15)

which shows that u is a supersolution of (5.1), that is, u ∈ H. As u is an upper bound of
L(H), we can apply Lemma 5.3, which yields the existence of the greatest fixed point u∗ of
L in H. This implies that u∗ must be the the greatest solution of (5.1) in [u, u]. By analogous
reasoning, one shows the existence of the smallest solution u∗ of (5.1). This completes the
proof of the theorem.

Remark 5.5. Sub- and supersolutions of problem (5.1) have been constructed in [32] under
the conditions (A1′)–(A3′), (j1)–(j2) and (F2)(i)–(F2)(iii), where the gradient dependence of
f has been dropped, meaning that f(x, r, s) := f(x, r, s, ξ). Further, it is assumed thatA = −Δp

which is the negative p-Laplacian defined by

Δpu = div
(
|∇u|p−2∇u

)
where ∇u =

(
∂u

∂x1
, . . . ,

∂u

∂xN

)
. (5.16)

The coefficients ai, i = 1, . . . ,N are given by

ai(x, s, ξ) = |ξ|p−2ξi. (5.17)

Thus, hypothesis (A1′) is satisfied with k0 = 0 and c0 = 1. Hypothesis (A2′) is a consequence
of the inequalities from the vector-valued function ξ 
→ |ξ|p−2ξ (see [7, page 37]), and (A3′)
is satisfied with c1 = 1 and k1 = 0. The construction is done by using solutions of simple
auxiliary elliptic boundary value problems and the eigenfunction of the p-Laplacian which
belongs to its first eigenvalue.
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