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1. Introduction

Let A denote the class of all functions of the form

f(z) = z +
∞∑

k=2

akz
k (1.1)

which are analytic in the open unit disk U := {z ∈ C : |z| < 1}, and S := {f ∈ A :
f is univalent in U}.

For f ∈ A, Al-Oboudi [1] introduced the following operator:

D0f(z) = f(z), (1.2)

D1f(z) = (1 − δ)f(z) + δzf ′(z) = Dδf(z), δ ≥ 0, (1.3)

Dnf(z) = Dδ

(
Dn−1f(z)

)
,

(
n ∈ N := {1, 2, 3, . . .}). (1.4)

If f is given by (1.1), then from (1.3) and (1.4) we see that

Dnf(z) = z +
∞∑

k=2

[
1 + (k − 1)δ

]n
akz

k,
(
n ∈ N0 := N ∪ {0}), (1.5)

with Dnf(0) = 0.
When δ = 1, we get Sălăgean’s differential operator [2].
By using the Al-Oboudi differential operator, we introduce the following integral

operator.
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Definition 1.1. Let n,m ∈ N0 and αi ∈ C, 1 ≤ i ≤ m. We define the integral operator
I(f1, . . . , fm) : Am → A,

I
(
f1, . . . , fm

)
(z) :=

∫z

0

(
Dnf1(t)

t

)α1

· · ·
(
Dnfm(t)

t

)αm

dt (z ∈ U), (1.6)

where fi ∈ A and Dn is the Al-Oboudi differential operator.

Remark 1.2. (i) For n = 0, m = 1, α1 = 1, α2 = α3 = · · · = αm = 0, and D0f1(z) := D0f(z) =
f(z) ∈ A, we have Alexander integral operator

I(f)(z) :=
∫z

0

f(t)
t

dt (1.7)

which was introduced in [3].
(ii) For n = 0, m = 1, α1 = α ∈ [0, 1], α2 = α3 = · · · = αm = 0, and D0f1(z) := D0f(z) =

f(z) ∈ S, we have the integral operator

Iα(f)(z) :=
∫z

0

(
f(t)
t

)α

dt (1.8)

that was studied in [4].
(iii) For n = 0, m ∈ N0, αi ∈ C, D0fi(z) = fi(z) ∈ S, 1 ≤ i ≤ m, we have the integral

operator

I
(
f1, . . . , fm

)
(z) :=

∫z

0

(
f1(t)
t

)α1

· · ·
(
fm(t)
t

)αm

dt (1.9)

which was studied in [5].
(iv) For n = 0, m = 1, α1 = γ , α2 = α3 = · · · = αm = 0 and D0f1(z) := D0f(z) = f(z), we

have the integral operator

Iγ(f)(z) :=
∫z

0

(
f(t)
t

)γ

dt (1.10)

which was studied in [6, 7].

2. Main results

The following lemmas will be required in our investigation.

Lemma 2.1 (see [8]). If the function f is regular in the unit disk U, f(z) = z + a2z
2 + · · · , and

(
1 − |z|2)

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1, (2.1)

for all z ∈ U, then the function f is univalent in U.
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Lemma 2.2 (Schwarz Lemma) (see [9, page 166]). Let the analytic function f(z) be regular in U

and let f(0) = 0. If, in U, |f(z)| ≤ 1, then

∣∣f(z)
∣∣ ≤ |z|, (z ∈ U), (2.2)

and |f ′(0)| ≤ 1.
The equality holds if and only if f(z) ≡ Kz and |K| = 1.

Theorem 2.3. Let n,m ∈ N0, αi ∈ C , and fi ∈ A, 1 ≤ i ≤ m. If

∣∣∣∣∣
z
(
Dnfi(z)

)′

Dnfi(z)
− 1

∣∣∣∣∣ ≤ 1,

∣∣α1
∣∣ + · · · + ∣∣αm

∣∣ ≤ 1,

(2.3)

then I(f1, . . . , fm)(z) defined in Definition 1.1 is univalent in U.

Proof. Since fi ∈ A, 1 ≤ i ≤ m, by (1.5), we have

Dnfi(z)
z

= 1 +
∞∑

k=2

[
1 + (k − 1)δ

]n
ak,iz

k−1 (
n ∈ N0

)
,

Dnfi(z)
z

/= 0,
(2.4)

for all z ∈ U.
On the other hand, we obtain

I ′
(
f1, . . . , fm

)
(z) =

(
Dnf1(z)

z

)α1

· · ·
(
Dnfm(z)

z

)αm

, (2.5)

for z ∈ U. This equality implies that

ln I ′
(
f1, . . . , fm

)
(z) = α1 ln

Dnf1(z)
z

+ · · · + αm ln
Dnfm(z)

z
(2.6)

or equivalently

ln I ′
(
f1, . . . , fm

)
(z) = α1

[
lnDnf1(z) − ln z

]
+ · · · + αm

[
lnDnfm(z) − ln z

]
. (2.7)

By differentiating the above equality, we get

I ′′
(
f1, . . . , fm

)
(z)

I ′
(
f1, . . . , fm

)
(z)

=
m∑

i=1

αi

[(
Dnfi(z)

)′

Dnfi(z)
− 1
z

]
. (2.8)

After some calculus, we obtain

∣∣∣∣∣
zI ′′

(
f1, . . . , fm

)
(z)

I ′
(
f1, . . . , fm

)
(z)

∣∣∣∣∣ ≤
m∑

i=1

∣∣αi

∣∣
∣∣∣∣∣
z
(
Dnfi(z)

)′

Dnfi(z)
− 1

∣∣∣∣∣. (2.9)
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By hypothesis, since |z(Dnfi(z))
′/Dnfi(z)−1| ≤ 1, 1 ≤ i ≤ m (z ∈ U), and since |α1|+· · ·+|αm| ≤

1 we have
∣∣∣∣∣
zI ′′

(
f1, . . . , fm

)
(z)

I ′
(
f1, . . . , fm

)
(z)

∣∣∣∣∣ ≤
m∑

i=1

∣∣αi

∣∣ ≤ 1. (2.10)

So, we obtain

(
1 − |z|2)

∣∣∣∣∣
zI ′′

(
f1, . . . , fm

)
(z)

I ′
(
f1, . . . , fm

)
(z)

∣∣∣∣∣ ≤ 1 − |z|2 ≤ 1. (2.11)

Thus I(f1, . . . , fm)(z) ∈ S.

Remark 2.4. For n = 0, D0fi(z) = fi(z) ∈ S, 1 ≤ i ≤ m, we have [5, Theorem 1].

Corollary 2.5. Let n,m ∈ N0, αi > 0, and fi ∈ A, 1 ≤ i ≤ m. If

∣∣∣∣∣
z
(
Dnfi(z)

)′

Dnfi(z)
− 1

∣∣∣∣∣ ≤ 1, (z ∈ U), (2.12)

and α1 + · · · + αm ≤ 1, then I(f1, . . . , fm)(z) ∈ S.

Theorem 2.6. Let n,m ∈ N0, αi ∈ C, and fi ∈ A, 1 ≤ i ≤ m. If

(i) |Dnfi(z)| ≤ 1,

(ii) |z2(Dnfi(z))
′/(Dnfi(z))

2 − 1| ≤ 1 (z ∈ U), and

(iii) |α1| + · · · + |αm| ≤ 1/3,

then I(f1, . . . , fm)(z) defined in Definition 1.1 is univalent in U.

Proof. By (2.9), we get

(
1 − |z|2)

∣∣∣∣∣
zI ′′

(
f1, . . . , fm

)
(z)

I ′
(
f1, . . . , fm

)
(z)

∣∣∣∣∣ ≤
(
1 − |z|2)

m∑

i=1

∣∣αi

∣∣
∣∣∣∣∣
z
(
Dnfi(z)

)′

Dnfi(z)
− 1

∣∣∣∣∣. (2.13)

This inequality implies that

(
1 − |z|2)

∣∣∣∣∣
zI ′′

(
f1, . . . , fm

)
(z)

I ′
(
f1, . . . , fm

)
(z)

∣∣∣∣∣ ≤
(
1 − |z|2)

m∑

i=1

[
∣∣αi

∣∣
∣∣∣∣∣
z
(
Dnfi(z)

)′

Dnfi(z)

∣∣∣∣∣ +
∣∣αi

∣∣
]

=
(
1 − |z|2)

m∑

i=1

[
∣∣αi

∣∣
∣∣∣∣∣
z2
(
Dnfi(z)

)′

(Dnfi(z))
2

∣∣∣∣∣

∣∣Dnfi(z)
∣∣

|z| +
∣∣αi

∣∣
]
.

(2.14)

By Schwarz lemma (Lemma 2.2), we have

(
1 − |z|2)

∣∣∣∣
zI ′′

(
f1, . . . , fm

)
(z)

I ′
(
f1, . . . , fm

)
(z)

∣∣∣∣ ≤
(
1 − |z|2)

m∑

i=1

[
∣∣αi

∣∣
∣∣∣∣∣
z2
(
Dnfi(z)

)′
(
Dnfi(z)

)2

∣∣∣∣∣ +
∣∣αi

∣∣
]
, (2.15)
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or

(
1 − |z|2)

∣∣∣∣
zI ′′

(
f1, . . . , fm

)
(z)

I ′
(
f1, . . . , fm

)
(z)

∣∣∣∣ ≤
(
1 − |z|2)

m∑

i=1

[
∣∣αi

∣∣
∣∣∣∣∣
z2
(
Dnfi(z)

)′
(
Dnfi(z)

)2 − 1

∣∣∣∣∣ + 2
∣∣αi

∣∣
]

≤ (
1 − |z|2)

m∑

i=1

[∣∣αi

∣∣ + 2
∣∣αi

∣∣]

= 3
(
1 − |z|2)

m∑

i=1

∣∣αi

∣∣

≤ 1 − |z|2

≤ 1,

(2.16)

for all z ∈ U.
So, by Lemma 2.1, I(f1, . . . , fm)(z) ∈ S.

Remark 2.7. For n = 0, m = 1, α1 = α ∈ C, |α| ≤ 1/3, α2 = α3 = · · · = αm = 0, we have [7,
Theorem 1].

Corollary 2.8. Let n,m ∈ N0, αi > 0, and fi ∈ A, 1 ≤ i ≤ m. If

(i) |Dnfi(z)| ≤ 1,

(ii) |z2(Dnfi(z))
′/(Dnfi(z))

2 − 1| ≤ 1 (z ∈ U), and

(iii) α1 + · · · + αm ≤ 1/3,

then I(f1, . . . , fm)(z) ∈ S.

In [10], similar results are given by using the Ruscheweyh differential operator.
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