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Copyright q 2008 R. F. Patterson and E. Savaş. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let [Xk,l] be a factorable double sequence of independent, identically distributed random
variables with E|Xk,l| < ∞ and E(Xk,l) = μ. Let A = am,n,k,l be a factorable double sequence to
double sequence transformation defined as

(Ax)m,n =
∞,∞∑

k,l=1,1

am,n,k,lxk,l. (1.1)

These factorable sequences and matrices will be used to characterize such transformations
with respect to Robison and Hamilton-type conditions (see [1, 2]). That is,regularity
conditions of the following type. The four-dimensional matrix A is RH-regular if and only
if

RH1: P-limm,nam,n,k,l = 0 for each k and l;

RH2: P-limm,n
∑

k,lam,n,k,l = 1;

RH3: P-limm,n
∑

k|am,n,k,l| = 0 for each l;

RH4: P-limm,n
∑

l|am,n,k,l| = 0 for each k;

RH5:
∑

k,l|am,n,k,l| is P-convergent; and
RH6: there exist positive numbers A and B such that

∑
k,l>B|am,n,k,l| < A.
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Throughout this paper, we will denote
∑∞,∞

k,l=1,1am,n,k,lXk,l by Ym,n and examine Ym,n with
respect to the Pringsheim converges. To accomplish this goal, we begin by presenting

and prove the following theorem. A necessary and sufficient condition that Ym,n = Y̆m
˘̆
Yn

P-converges to μ in probability is that maxk,l|am,n,k,l| = maxk,l|am,kan,l| converges to 0 in
the Pringsheim sense. This theorem and other similar to it will be used in the pursuit of
establishing the following. If maxk,l|am,n,k,l| = maxk,l|am,kan,l| = O(m−γ1)O(n−γ2), γ1, γ2 > 0,
then

E|X̆|1+1/γ1 < ∞, E| ˘̆X|1+1/γ2 < ∞ (1.2)

implies that Ym,n → μ almost sure P-convergence.

2. Definitions, notations, and preliminary results

Let us begin by presenting Pringsheim’s notions of convergence and divergence of double
sequences.

Definition 2.1 (see [3]). A double sequence x = [xk,l] has Pringsheim limit L (denoted by P-
limx = L) provided that given ε > 0 there exists N ∈ N such that |xk,l − L| < ε whenever
k, l > N. We will describe such an x more briefly as “P-convergent.”

Definition 2.2. A double sequence x is called definite divergent, if for every (arbitrarily large)
G > 0 there exist two natural numbers n1 and n2 such that |xn,k| > G for n ≥ n1, k ≥ n2.

Throughout this paper, we will also denote
∑∞,∞

k,l=1,1 by
∑

k,l. Using these definitions,
Robison and Hamilton presented a series of concepts and matrix characterization of
P-convergence. The first definition they both presented was the following. The four-
dimensional matrix A is said to be RH-regular if it maps every bounded P-convergent
sequence into a P-convergent sequence with the same P-limit. The assumption of bounded-
ness was made because a double sequence which is P-convergent is not necessarily bounded.
They both independently presented the following Silverman-Toeplitz type characterization
of RH-regularity [4, 5].

Theorem 2.3. The four-dimensional matrix A is RH-regular if and only if

RH1: P-limm,nam,n,k,l = 0 for each k and l;

RH2: P-limm,n
∑

k,lam,n,k,l = 1;

RH3: P-limm,n
∑

k|am,n,k,l| = 0 for each l;

RH4: P-limm,n
∑

l|am,n,k,l| = 0 for each k;

RH5:
∑

k,l|am,n,k,l| is P-convergent; and
RH6: there exist positive numbers A and B such that

∑
k,l>B|am,n,k,l| < A.

Following Robison and Hamilton work, Patterson in [6] presented the following two
notions of subsequence of a double sequence.

Definition 2.4. The double sequence [y] is a double subsequence of the sequence [x] provided
that there exist two increasing double index sequences {nj} and {kj} such that if zj = xnj ,kj ,
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then y is formed by

z1 z2 z5 z10

z4 z3 z6 —

z9 z8 z7 —

— — — —.

(2.1)

Definition 2.5 (Patterson [6]). A number β is called a Pringsheim limit point of the double
sequence [x] provided that there exists a subsequence [y] of [x] that has Pringsheim limit
β: P-lim[y] = β.

Using these definitions, Patterson presented a series of four-dimensional matrix
characterizations of such sequence spaces. Let {xk,l} be a double sequence of real numbers
and, for each n, let αn = supn{xk,l : k, l ≥ n}. Patterson [7] also extended the above notions
with the presentation of the following. The Pringsheim limit superior of [x] is defined as
follows:

(1) if α = +∞ for each n, then P-lim sup [x] := +∞;

(2) if α < ∞ for some n, then P-lim sup [x] := infn{αn}.

Similarly, let βn = infn{xk,l : k, l ≥ n}. Then the Pringsheim limit inferior of [x] is defined as
follows:

(1) if βn = −∞ for each n, then P-lim inf [x] := −∞;

(2) if βn > −∞ for some n, then P-lim inf [x] := supn{βn}.

3. Main result

The analysis of double sequences of random variables via four-dimensional matrix
transformations begins with the following theorem. However, it should be noted that the
relationship between our main theorem that is stated above and the next four theorems will
be apparent in their statements and proofs.

Theorem 3.1. A necessary and sufficient condition that Ym,n = Y̆m
˘̆
Yn P-converges to μ in probability

is that maxk,l|am,n,k,l| = maxk,l|am,kan,l| converges to 0 in the Pringsheim sense.

Proof. First, note that

lim
T̆→∞

T̆P[|X̆| ≥ T̆] = 0, lim
˘̆
T→∞

˘̆
TP[| ˘̆X| ≥ ˘̆

T] = 0 (3.1)

because E|X̆| < ∞ and E| ˘̆X| < ∞. Let T = T̆
˘̆
T , Xm,n,k,l = X̆m,k

˘̆
Xn,l, am,n,k,lXk,l = am,kX̆kan,l

˘̆
Xl,

and Zm,n = Z̆m
˘̆
Zn =

∑
k,lXm,n,k,l. For sufficiently large m and n and since maxk,l|am,n,k,l| is
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a P-null sequence, it follows from (3.1) that

P[Zm,n /=Ym,n] ≤
∑

k,l

P[Xm,n,k,l /=am,n,k,lXk,l]

=
∑

k,l

P

[
|X̆| ≥ 1

|am,k| ; |
˘̆
X| ≥ 1

|an,l|
]

≤ ε
∑

k,l

|am,n,k,l|

≤ εM,

(3.2)

where M is define by RH6 of regularity conditions. Therefore, it suffices to show that

P-lim
m,n

Zm,n = μ in probability. (3.3)

Observe that

E(Zm,n) − μ =
∑

k,l

am,n,k,l

(∫

|x̆|<1/|am,k |
x̆ dF̆

∫

| ˘̆x|<1/|an,l |
˘̆x d

˘̆
F − μ

)
+ μ

(
∑

k,l

am,n,k,l − 1

)
, (3.4)

which is a P-null sequence. Since

1

T̆
˘̆
T

∫

|x̆|<T̆

∫

| ˘̆x|< ˘̆
T

x̆2 ˘̆x2
dF̆ d

˘̆
F =

1

T̆
˘̆
T
{−T̆2

P[|X̆| ≥ T̆] · (− ˘̆
T
2
P[| ˘̆X| ≥ ˘̆

T])}

+
1

T̆
˘̆
T

{
2
∫ T̆

0
x̆P[|X̆| ≥ x̆]dx̆ · 2

∫ ˘̆
T

0

˘̆xP[| ˘̆X| ≥ ˘̆x]d ˘̆x
} (3.5)

is a P-null sequence with respect to T , we have

∑

k,l

VarXm,n,k,l ≤
∑

k,l

|am,n,k,l|2
∫

|x̆|<1/|am,k |
x̆2 dF̆

∫

| ˘̆x|<1/|an,l |
˘̆x2
d
˘̆
F ≤ ε

∑

k,l

|am,n,k,l| ≤ εM (3.6)

for m and n sufficiently large, where F = F̆
˘̆
F and x = x̆ ˘̆x. It is also clear that E(

∑
k,lxm,n,k,l)

2 is
finite. Thus,

∑

k,l

VarXm,n,k,l = Var

(
∑

k,l

Xm,n,k,l

)
(3.7)

is finite. The result clearly follows from the Chebyshev’s inequality. Thus, the sufficiency is
proved.

Now, let us consider the necessary part of this theorem. Similar to Pruitt’s notation [8],
let Uk,l = Xk,l − μ and consider the transformation Tm,n =

∑
k,lam,n,k,lUk,l. Our goal become

showing that Tm,n P-converges in probability to 0. Which imply that Tm,n P-converges in law
to 0. Let us consider the characteristic function of Tm,n, that is,

E(euTm,n) = E(eu
∑

k,lam,n,k,lUk,l) = E(Πk,le
uam,n,k,lUk,l) = Πk,lE(euam,n,k,lUk,l) := Πk,lg(uam,n,k,l).

(3.8)
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Observe that

P-lim
m,n

{Πk,lg(uam,n,k,l)} = 1. (3.9)

Because

|Πk,lg(uam,n,k,l)| ≤ |g(uam,n,k,l)| ≤ 1 (3.10)

for all (m,n) we have that

P-lim
m,n

g(uam,n,k,l) = 1 (3.11)

for all (k, l). Clearly, there exists u0 such that |g(uam,n,k,l)| < 1 for 0 < |u| < u0. Let u = u0/2M
then there exists a double subsequence [am,n,km,ln] such that

|uam,n,km,ln | ≤ Mu =
u0

2
. (3.12)

Thus P-limm,nuam,n,km,ln = 0. Therefore, clearly we can choose (km, ln) such that

|am,n,km,ln | = max
k,l

|am,n,k,l|. (3.13)

Theorem 3.2. If E(|X̆|)1+1/γ1 < ∞, E(| ˘̆X|)1+1/γ2 < ∞, and maxk,l|am,n,k,l| = maxk|am,k| ·
maxl|an,l| ≤ B̆m−γ1 ˘̆Bn−γ2 , then for every ε > 0

∑

m,n

P[|am,n,k,lXk,l| ≥ ε for some (k, l)] < ∞, (3.14)

that is,

∑

m,n

P[|am,kX̆k| ≥ ε; |an,l
˘̆
Xl| ≥ ε for some (k, l)] < ∞. (3.15)

Proof. Let

Nm,n(x) = Nm,n(x̆ ˘̆x) =
∑

{(k,l):1/|am,k |≤x̆; 1/|an,l |≤ ˘̆x}
|am,n,k,l|. (3.16)

Note x = x̆ ˘̆x, and observe that Nm,n(x) = 0 for x̆ < (m)γ1 , ˘̆x < (n)γ2 , and
∫∫∞

0 d(Nm,n(x)) =∑
k,l|am,n,k,l| ≤ M. If

G(x) = P(|X| ≥ x) = P(|X̆| ≥ x̆)P(| ˘̆X| ≥ ˘̆x) = G(x̆)G( ˘̆x), (3.17)
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then xG(x) converges to 0 in the Pringsheim sense because E(X) < ∞ and recalled that

T = T̆
˘̆
T . Therefore,

∑

k,l

P[|am,n,k,lxk,l| ≥ 1] =
∑

k,l

G

(
1

|am,n,k,l|
)

=
∑

k,l

1
|am,n,k,l|G

(
1

|am,n,k,l|
)
|am,n,k,l|

=
∫∫∞

0
xG(x)d(Nm,n(x))

= Nm,n(T)TG(T)|∞0 |∞0 −
∫∫∞

0
Nm,n(x)d(xG(x))

= lim
T→∞

Nm,n(T)TG(T) −
∫∫∞

0
Nm,n(x)d(xG(x))

≤ M

∫∞

mγ1

∫∞

nγ2

|d(xG(x))|

= M

∫∞

mγ1

∫∞

nγ2

|d(x̆G(x̆))d( ˘̆xG( ˘̆x))|.

(3.18)

Our goal now is to get an estimate for
∫∞
mγ1

∫∞
nγ2 |d(xG(x))|. To this end observe that, for z < y

yG(y) − zG(z) = (y − z)G(z) + y(G(z) −G(y)), (3.19)

where (y − z)G(z) and y(G(z) − G(y)) are increasing and decreasing functions of y,
respectively. Thus

∫ y̆

z̆

∫ ˘̆y

˘̆z
d|xG(x)| ≤ [(y̆ − z̆)G(z̆) + y̆(G(z̆) −G(y̆))] · [( ˘̆y − ˘̆z)G( ˘̆z) + ˘̆y(G( ˘̆z) −G( ˘̆Y ))]. (3.20)

The last inequality grant us the following:

∫∞

mγ1

∫∞

nγ2

|d(x̆G(x̆))d( ˘̆xG( ˘̆x))|

=
∞,∞∑

i,j=m,n

∫ (i+1)γ1

iγ1

∫ (j+1)γ2

jγ2
|d(x̆G(x̆))d( ˘̆xG( ˘̆x))|

≤
∞,∞∑

i,j=m,n

{[(i + 1)γ1 − iγ1]G(iγ1) · [(j + 1)γ2 − jγ2]G(jγ2)}

+
∞,∞∑

i,j=m,n

{(i + 1)γ1[G(iγ1) −G((i + 1)γ1)]· (j + 1)γ2[G(jγ2) −G((j + 1)γ2)]}.

(3.21)
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Therefore,

∫∞

mγ1

∫∞

nγ2

|d(x̆G(x̆))d( ˘̆xG( ˘̆x))|

≤ 2
∞,∞∑

i,j=m,n

{(i + 1)γ1[G(iγ1) −G((i + 1)γ1)]· (j + 1)γ2[G(jγ2) −G((j + 1)γ2)]}.

∞∑

m,n

P[|am,n,k,lXk,l| ≥ ε for some (k, l)]

≤
∞∑

m,n

∞∑

k,l

P[|am,n,k,lXk,l| ≥ ε]

≤ 2M
∞,∞∑

m,n=1,1

∞,∞∑

i,j=m,n

{(i+1)γ1[G(iγ1)−G((i+1)γ1)]· (j+1)γ2[G(jγ2)−G((j+1)γ2)]}

= 2M
∞,∞∑

i,j=1,1

{(i + 1)γ1[G(iγ1) −G((i + 1)γ1)]· (j + 1)γ2[G(jγ2) −G((j + 1)γ2)]}

≤ 21+γ121+γ2M
∫∫

|x̆|1+1/γ1 | ˘̆x|1+1/γ2dF̆(x̆)d ˘̆
F( ˘̆x)

< ∞.

(3.22)

Theorem 3.3. Let x and F be define as in Theorem 3.2. If E|X̆|1+1/γ1 < ∞, E| ˘̆X|1+1/γ2 < ∞, and

maxk,l|am,n,k,l| = maxk|am,k| ·maxl|an,l| ≤ B̆m−γ1 ˘̆Bn−γ2 then for α1 < γ1/2(γ1+1) and α2 < γ2/2(γ2+
1)

∑

m,n

P[|am,n,k,lXk,l| ≥ mα1nα2 for at least two pairs (k, l)] < ∞, (3.23)

that is,

∑

m,n

P[|am,kX̆k| ≥ mα1 ; |an,l
˘̆
Xl| ≥ nα2 for at least two pairs (k, l)] < ∞. (3.24)

Proof. By Markov’s inequality, we have the following:

∑

m

P[|am,kX̆k| ≥ mα1] ≤ |am,k|1+1/γ1E(|x̆|)1+1/γ1mα1(1+1/γ1),

∑

n

P[|an,l
˘̆
Xl| ≥ nα2] ≤ |an,l|1+1/γ2E(| ˘̆x|)1+1/γ2nα2(1+1/γ2).

(3.25)
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Therefore,

∑

m,n

P[|am,kX̆k| ≥ mα1 ; |an,l
˘̆
Xl| ≥ nα2 for at least two pairs (k, l)]

≤
∑

i /= k, j /= l

P[|am,iX̆i| ≥ mα1 ; |am,kX̆k| ≥ mα1 ; |an,j
˘̆
Xj | ≥ nα2 ; |an,l

˘̆
Xl| ≥ nα2]

≤ E(|x̆|1+1/γ1)2m2α1(1+1/γ1)
∑

i /= k

|am,i|1+1/γ1 |am,k|1+1/γ1

·E(| ˘̆x|1+1/γ2)2n2α2(1+1/γ2)
∑

j /= l

|an,j |1+1/γ2 |an,l|1+1/γ2

≤ E(|x̆|1+1/γ1)2 ·E(| ˘̆x|1+1/γ2)2B̆2/γ1 ˘̆
B
2/γ2

M4m2[−1+α1(1+1/γ1)]n2[−1+α2(1+1/γ2)],

(3.26)

which is P-convergent when sum on n and m provided that α1 < γ1/2(γ1 + 1) and α2 <
γ2/2(γ2 + 1).

Theorem 3.4. Let x and F be define as in Theorem 3.2. If μ = 0, E|X̆|1+1/γ1 < ∞, E| ˘̆X|1+1/γ2 < ∞,

and maxk,l|am,n,k,l| = maxk|am,k| ·maxl|an,l| ≤ B̆m−γ1 ˘̆Bn−γ2 then for ε > 0

∑

m,n

P

[
∑̂

k,l

|am,n,k,lXk,l| ≥ ε

]
< ∞, (3.27)

where

∑̂

k,l

am,n,k,lXk,l =
∑

{k:|am,kXk |<m−α1 l:|an,lXl |<n−α2}
am,n,k,lXk,l, (3.28)

α1 < γ1, and α2 < γ2.

Proof. Let

Xm,n,k,l :=

⎧
⎪⎪⎨

⎪⎪⎩

Xm,k; if |am,kXk| < m−α1 ,

Xn,l; if |an,lXl| < n−α2 ,

0; otherwise,

(3.29)

and βm,n,k,l = E(Xm,n,k,l). If am,n,k,l = 0, then βm,n,k,l = μ = 0 and if am,n,k,l /= 0, then

|βm,n,k,l| =
∣∣∣∣μ −

∫

|x̆|≥m−α1 |am,k |−1

∫

| ˘̆x|≥m−α2 |an,l |−1
x dF

∣∣∣∣

≤
∫

|x̆|≥m−α1 B̆
−1
mγ1

∫

| ˘̆x|≥n−α2 ˘̆
B
−1
nγ2

|x|dF.
(3.30)

Therefore, P-limm,nβm,n,k,l = 0 uniformly in (k, l) and P-limm,n
∑

k,lam,n,k,lβm,n,k,l = 0. Let

Zm,n,k,l = Zm,kZn,l = Xm,n,k,l − βm,n,k,l, (3.31)
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so that E(Zm,n,k,l) = 0, E(|Zm,k|1+1/γ1) < c1, and E(|Zn,l|1+1/γ2) < c2 for some c1 and c2. Also
|am,kZm,k| ≤ 2m−α1 and |an,lZn,l| ≤ 2n−α2 . Observe that

∑̂

k,l

am,n,k,lXk,l =
∑

k,l

am,n,k,lXm,n,k,l =
∑

k,l

am,n,k,lZm,n,k,l +
∑

k,l

am,n,k,lβm,n,k,l. (3.32)

Note for sufficiently large m and n

[∣∣∣∣∣
∑̂

k,l

am,n,k,lXk,l

∣∣∣∣∣ ≥ ε

]
⊂
[∣∣∣∣∣
∑

k,l

am,n,k,lZm,n,k,l

∣∣∣∣∣ ≥
ε

2

]
. (3.33)

Thus it is sufficient to show that

∑

m,n

P

[∣∣∣∣∣
∑̂

k,l

|am,n,k,lZm,n,k,l|
∣∣∣∣∣ ≥ ε

]
< ∞. (3.34)

Let η1 and η2 be the least integers greater than 1/γ1 and 1/γ2, respectively. Our goal now is to
produce an estimate for

E

((
∑

k

am,kZm,k

)2η1(∑

l

an,lZn,l

)2η2)
. (3.35)

Observe that

E

((
∑

k

am,kZm,k

)2η1(∑

l

an,lZn,l

)2η2)
(3.36)

is equal to

∑

k1,k2,...,k2p ; l1,l2,...,l2q

E

( 2p∏

i=1

2q∏

j=1

am,n,ki,ljZm,n,ki,lj

)
. (3.37)

It happens to be the case that E((
∑

kam,kZm,k)
2η1(

∑
lan,lZn,l)

2η2) is zero if ki, li /= kj , lj for i /= j
because the Zm,n,k,l’s are independent and E(Zm,n,k,l) = 0. Let us now consider the general
term. Thus

p1 of the k
′
s = φ1, . . . , pθ1 of the k

′
s = φθ1 ,

q1 of the k
′
s = ϕ1, . . . , qθ2 of the k

′
s = ϕθ2 ,

r1 of the l
′
s = κ1, . . . , rτ1 of the l

′
s = κτ1 ,

s1 of the l
′
s = ω1, . . . , sτ2 of the l

′
s = ωτ2 ,

(3.38)

where 2 ≤ pi ≤ 1 + 1/γ1, qj > 1 + 1/γ1, 2 ≤ rλ ≤ 1 + 1/γ2, sχ > 1 + 1/γ2,

θ1∑

i=1

pi +
θ2∑

j=1

qj = 2η1,

τ1∑

λ=1

ri +
τ2∑

χ=1

sχ = 2η2.

(3.39)
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Now let us consider the following expectation:

E

(
θ1∏

i=1

(am,φiZm,φi)
pi ·

θ2∏

j=1

(am,ϕjZm,ϕj )
qj ·

τ1∏

λ=1

(an,κλZn,κλ)
rλ

τ2∏

χ=1

(an,ωχZn,ωχ)
sχ

)

≤ (1 + c1)
θ1(1 + c2)

τ1 ·
τ2∏

χ=1

|am,φi |pi
τ1∏

λ=1

|an,κλ |rλ

·E
(

θ2∏

j=1

(am,ϕjZm,ϕj )
qj ·

τ2∏

χ=1

(an,ωχZn,ωχ)
sχ

)

≤ (1 + c1)
θ1(1 + c2)

τ1 ·
θ1∏

i=1

|am,φi |pi
τ1∏

λ=1

|an,κλ |rλ

·
θ2∏

j=1

|am,ϕj |1+1/γ1(2m−α1)qj−1−1/γ1 ·
τ2∏

χ=1

|an,ωχ |1+1/γ2(2n−α2)sχ−1−1/γ2

≤ (1 + c1)
θ1(1 + c2)

τ1 ·
θ1∏

i=1

|am,φi ||am,φi |pi−1

·
τ1∏

λ=1

|an,κλ ||an,κλ |rλ−1 ·
θ2∏

j=1

|am,ϕj |1+1/γ1(2m−α1)qj−1−1/γ1

·
τ2∏

χ=1

|an,ωχ |1+1/γ2(2n−α2)sχ−1−1/γ2

≤ (1 + c1)
θ1(1 + c2)

τ1 ·
θ1∏

i=1

|am,φi |
τ1∏

λ=1

|an,κλ |
θ2∏

j=1

|am,ϕj |
τ2∏

χ=1

|an,ωχ |

· (B̆m−γ1)
∑θ1

i=1(pi−1)+θ2/γ1(2m−α1)
∑θ2

j=1(qj−1−1/γ1)

· ( ˘̆Bn−γ2)
∑τ1

λ=1(rλ−1)+τ2/γ2(2n−α2)
∑τ2

χ=1(sχ−1−1/γ2),

(3.40)

where c1 and c2 are upper bound for E|Zm,k| and E|Zn,l|, respectively. Now let us examine the
negative exponents, that is,

γ1

θ1∑

i=1

(pi − 1) + θ2 + α1

θ2∑

j=1

(
qj − 1 − 1

γ1

)
,

γ2

τ1∑

λ=1

(rλ − 1) + τ2 + α2

τ2∑

χ=1

(
sχ − 1 − 1

γ2

)
.

(3.41)

Observe that, if θ2 and τ2 are 1 or large, then

θ2 + α1

θ2∑

j=1

(
qj − 1 − 1

γ1

)
≥ 1 + α1

(
η1 − 1

γ1

)
,

τ2 + α2

τ2∑

χ=1

(
sχ − 1 − 1

γ2

)
≥ 1 + α2

(
η2 − 1

γ2

)
,

(3.42)
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respectively. Also is θ2 = τ2 = 0, then

γ1

θ1∑

i=1

(pi − 1) = γ1(2η1 − θ1) ≥ γ1η1 ≥ 1 + γ1

(
η1 − 1

γ1

)
≥ 1 + α1

(
η1 − 1

γ1

)
,

γ2

τ1∑

λ=1

(rλ − 1) = γ2(2η2 − τ1) ≥ γ2η2 ≥ 1 + γ2

(
η2 − 1

γ2

)
≥ 1 + α2

(
η2 − 1

γ2

)
.

(3.43)

Thus the expected value in (3.40) is bounded by the product of

K1

θ1∏

i=1

|am,φi |
θ2∏

j=1

|am,ϕj |m−1−α1(η1−1/γ1),

K2

τ1∏

λ=1

|an,κλ |
τ2∏

χ=1

|an,ωχ |n−1−α2(η2−1/γ2),
(3.44)

where K1 dependent on c1, γ1, B̆; and c2, γ2,
˘̆
B, respectively.

Therefore,

E

(
∑

k

am,kZm,k

)2η1

≤ K3m
−1−α1(η2−1/γ1),

E

(
∑

l

an,lZn,l

)2η2

≤ K4n
−1−α2(η2−1/γ2)

(3.45)

for some K3 and K4 which independent on c1, γ1, B̆, M and c2, γ2,
˘̆
B, M, respectively. With

both independent of (m,n). Now the result follows from Markov’s inequality.

Theorem 3.5. If maxk,l|am,n,k,l| = maxk,l|am,kan,l| = O(m−γ1)O(n−γ2), γ1, γ2 > 0, then E|X̆|1+1/γ1 <
∞ and E| ˘̆X|1+1/γ1 < ∞ implies that Ym,n → μ almost sure P-convergence.

Proof. Observe that
∑

k,l

am,n,k,lXk,l =
∑

k,l

am,n,k,l(Xk,l − μ) + μ
∑

k,l

am,n,k,l. (3.46)

Note the last term P-converge to μ because of the regularity of A. We will only consider the
case when μ = 0. By the Borel-Cantelli lemma, it is sufficient to prove that for ε > 0

∑

m,n

P

[∣∣∣∣∣
∑

k,l

am,n,k,lxk,l

∣∣∣∣∣ ≥ ε

]
≤ ∞. (3.47)

At this point, the proof follows a path identical to Pruitt’s proof using the above theorems
and as such, the rest is omitted.
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