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1. Introduction

In the study of differential and integral equations, one often deals with certain integral
inequalities. The Gronwall-Bellman inequality and its various linear and nonlinear gener-
alizations are crucial in the discussion of existence, uniqueness, continuation, boundedness,
oscillation, and stability properties of solutions. The literature on such inequalities and their
applications is vast; see [1–6], and the references are given therein. Usually, the integrals
concerning such inequalities have regular or continuous kernels, but some problems arising
from theoretical or practical phenomena require us to solve integral inequalities with singular
kernels. For example, Henry [7] used this type of integral inequalities to prove global
existence and exponential decay results for a parabolic Cauchy problem; Sano andKunimatsu
[8] gave a sufficient condition for stabilization of semilinear parabolic distributed systems by
making use of a modification of Henry-type inequalities; Ye et al. [9] proved a generalization
of this type of inequalities and used it to study the dependence of the solution on the order
and the initial condition of a fractional differential equation. All such inequalities are proved
by an iteration argument, and the estimation formulas are expressed by a complicated power
series which are sometimes not very convenient for applications. To avoid this shortcoming,
Medved̆ [10] presented a new method for studying Henry-type inequalities and established
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explicit bounds with relatively simple formulas which are similar to the classic Gronwall-
Bellman inequalities. Very recently, Ma and Pec̆arić [11] used a modification of Medved̆’s
method to study certain class of nonlinear inequalities of Henry-type, which generalized
some known results and were used as handy and effective tools in the study of the solutions’
boundedness of some fractional differential and integral equations.

In this paper, by applying Medved̆’s method of desingularization of weakly singular
inequalities we establish some new singular version of the Wendroff inequality (see [1, 12])
for functions in two variables. An example is included to illustrate the usefulness of our
results.

2. Main result

In what follows, R denotes the set of real numbers, R+ = [0,+∞). As usual, Ci(M,S) denotes
the class of all i -times continuously differentiable functions defined on a setMwith range in
a set S(i = 1, 2, . . .), and C0(M,S) = C(M,S).

For convenience, before giving our main results, we first cite some useful lemmas and
definitions here.

Lemma 2.1 (see [13]). Let a ≥ 0, p ≥ q ≥ 0 and p /= 0, then

aq/p ≤ q

p
K(q−p)/pa +

p − q

p
Kq/p (2.1)

for any K > 0.

Definition 2.2 (see [14]). Let [x, y, z] be an ordered parameter group of nonnegative real
numbers. The group is said to belong to the first class distribution and denoted by [x, y, z] ∈ I
if conditions x ∈ (0, 1], y ∈ (1/2, 1) and z ≥ 3/2 − y are satisfied; it is said to belong to the
second-class distribution and denoted by [x, y, z] ∈ II if conditions x ∈ (0, 1], y ∈ (0, 1/2],
and z > (1 − 2y2)/(1 − y2) are satisfied.

Lemma 2.3 (see [15, page 296]). Let α, β, γ , and p be positive constants. Then,

∫ t

0
(tα − sα)p(β−1)sp(γ−1)ds =

tθ

α
B

[
p(γ − 1) + 1

α
, p(β − 1) + 1

]
, t ∈ R+, (2.2)

where B[ξ, η] =
∫1
0s

ξ−1(1 − s)η−1 ds (ξ, η ∈ C, Re ξ > 0, Reη > 0) is the well-known beta function
and θ = p[α(β − 1) + γ − 1] + 1.

Lemma 2.4 (see [14]). Suppose that the positive constants α, β, γ, p1, and p2 satisfy
(a) if [α, β, γ] ∈ I, p1 = 1/β;
(b) if [α, β, γ] ∈ II, p2 = (1 + 4β)/(1 + 3β), then

B

[
pi(γ − 1) + 1

α
, pi(β − 1) + 1

]
∈ (0,+∞),

θi = pi
[
α(β − 1) + γ − 1

]
+ 1 ≥ 0

(2.3)

are valid for i = 1, 2.
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Lemma 2.5 (see [6, page 329]). Let u(x, y), p(x, y), q(x, y), and k(x, y) be nonnegative
continuous functions defined for x, y ∈ R+. If

u(x, y) ≤ p(x, y) + q(x, y)
∫x

0

∫y

0
k(s, t)u(s, t)dsdt (2.4)

for x, y ∈ R+, then

u(x, y) ≤ p(x, y) + q(x, y)
(∫x

0

∫y

0
k(s, t)p(s, t)dsdt

)
exp

(∫x

0

∫y

0
k(s, t)q(s, t)dsdt

)
(2.5)

for x, y ∈ R+.

We also need the following well-known consequence of the Jensen inequality:

(A1 +A2 + · · · +An)
r ≤ nr−1(Ar

1 +Ar
2 + · · · +Ar

n) (JI)

for Ai ≥ 0 (i = 1, 2, . . . , n) and r ≥ 1.

Theorem 2.6. Let u(x, y), a(x, y), b(x, y), and f(x, y) be nonnegative continuous functions for
(x, y) ∈ D = [0, T)× [0, T) (0 < T ≤ ∞). Let p and q be constants with p ≥ q > 0. If u(x, y) satisfies

up(x, y)

≤ a(x, y) + b(x, y)
∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1f(s, t)uq(s, t)dsdt, (x, y) ∈ D,

(2.6)

then for any K > 0 one has the following.
(i) If [α, β, γ] ∈ I,

u(x, y) ≤
{
a(x, y) +

[
P1(x, y) +Q1(x, y)

(∫x

0

∫y

0
f1/(1−β)(s, t)P1(s, t)dsdt

)

× exp
(∫x

0

∫y

0
f1/(1−β)(s, t)Q1(s, t)dsdt

)]1−β}1/p
(2.7)
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for (x, y) ∈ D, where

M1 =
1
α
B

[
β + γ − 1

αβ
,
2β − 1

β

]
,

A(x, y) =
q

p
K(q−p)/pa(x, y) +

p − q

p
Kq/p,

A1(x, y) =
∫x

0

∫y

0
f1/(1−β)(s, t)A1/(1−β)(s, t)dsdt,

P1(x, y) = 2β/(β−1)M2β/(1−β)
1 (xy)((α+1)(β−1)+γ)/(1−β)A1(x, y)b1/(1−β)(x, y),

Q1(x, y) = 2β/(β−1)K(q−p)/p(1−β)M2β/(1−β)
1

(
q

p

)1/(1−β)
(xy)((α+1)(β−1)+γ)/(1−β)b1/(1−β)(x, y).

(2.8)

(ii) If [α, β, γ] ∈ II,

u(x, y) ≤
{
a(x, y) +

[
P2(x, y) +Q2(x, y)

(∫x

0

∫y

0
f (1+4β)/β(s, t)P2(s, t)dsdt

)

× exp
(∫x

0

∫y

0
f (1+4β)/β(s, t)Q2(s, t)dsdt

)]β/(1+4β)}1/p

,

(2.9)

for (x, y) ∈ D, where

M2 =
1
α
B

[
γ(1 + 4β) − β

α(1 + 3β)
,

4β2

1 + 3β

]
,

A2(x, y) =
∫x

0

∫y

0
f (1+4β)/β(s, t)A(1+4β)/β(s, t)dsdt,

P2(x, y) = 2(1+3β)/βM2(1+3β)/β
2 (xy)((1+4β)[α(β−1)+γ]−β)/βA2(x, y)b(1+4β)/β(x, y),

Q2(x, y) = 2(1+3β)/βK(q−p)(1+4β)/pβM2(1+3β)/β
2

(
q

p

)(1+4β)/β

(xy)((1+4β)[α(β−1)+γ]−β)/βb(1+4β)/β(x, y).

(2.10)

Proof. Define a function v(x, y) by

v(x, y) = b(x, y)
∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1f(s, t)uq(s, t)dsdt, (x, y) ∈ D,

(2.11)
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then

up(x, y) ≤ a(x, y) + v(x, y), (2.12)

or

u(x, y) ≤ (a(x, y) + v(x, y))1/p, (x, y) ∈ D. (2.13)

By Lemma 2.1 and inequality (2.13), for any K > 0, we have

uq(x, y) ≤ (
a(x, y) + v(x, y)

)q/p ≤ q

p
K(q−p)/p(a(x, y) + v(x, y)

)
+
p − q

p
Kq/p. (2.14)

Substituting the last relation into (2.11), we get

v(x, y) ≤ b(x, y)
∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1(yα − tα

)β−1
tγ−1

× f(s, t)
[
q

p
K(q−p)/p(a(s, t) + v(s, t)

)
+
p − q

p
Kq/p

]
dsdt

= b(x, y)
∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1f(s, t)A(s, t)dsdt

+
q

p
K(q−p)/pb(x, y)

∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1f(s, t)v(s, t)dsdt,

(2.15)

where A(x, y) = (q/p)K(q−p)/pa(x, y) + ((p − q)/p)Kq/p.
If [α, β, γ] ∈ I, let p1 = 1/β, q1 = 1/(1−β); if [α, β, γ] ∈ II, let p2 = (1+4β)/(1+3β), q2 =

(1+ 4β)/β, then 1/pi + 1/qi = 1 for i = 1, 2. By applying Hölder’s inequality with indices pi, qi
to (2.15), we get

v(x, y) ≤ b(x, y)
[∫x

0

∫y

0

(
xα − sα

)pi(β−1)spi(γ−1)(yα − tα
)pi(β−1)tpi(γ−1)dsdt

]1/pi

×
[∫x

0

∫y

0
fqi(s, t)Aqi(s, t)dsdt

]1/qi

+
q

p
K(q−p)/pb(x, y)

[∫x

0

∫y

0

(
xα − sα

)pi(β−1)spi(γ−1)(yα − tα
)pi(β−1)tpi(γ−1)dsdt

]1/pi

×
[∫x

0

∫y

0
fqi(s, t)vqi(s, t)dsdt

]1/qi
.

(2.16)



6 Journal of Inequalities and Applications

By Lemmas 2.3 and 2.4, the last inequality can be rewritten as

v(x, y) ≤ (
M2

i (xy)
θi
)1/piA1/qi

i (x, y)b(x, y) +K(q−p)/p q
p

(
M2

i (xy)
θi
)1/pi

b(x, y)

×
[∫x

0

∫y

0
fqi(s, t)vqi(s, t)dsdt

]1/qi (2.17)

for (x, y) ∈ D, where

Mi =
1
α
B

[
pi(γ − 1) + 1

α
, pi(β − 1) + 1

]
,

Ai(x, y) =
∫x

0

∫y

0
fqi(s, t)Aqi(s, t)dsdt,

(2.18)

and θi is given as in Lemma 2.4 for i = 1, 2.
Applying inequality (JI) to (2.17), we get

vqi(x, y) ≤ 2qi−1
(
M2

i (xy)
θi
)qi/piAi(x, y)bqi(x, y)

+ 2qi−1
(
q

p

)qi

Kqi((q−p)/p)(M2
i (xy)

θi
)qi/pi

bqi(x, y)
∫x

0

∫y

0
fqi(s, t)vqi(s, t)dsdt.

(2.19)

By Lemma 2.5 and the last inequality, we have

vqi(x, y)≤P1i(x, y)+Q1i(x, y)
(∫x

0

∫y

0
fqi(s, t)P1i(s, t)dsdt

)
exp

(∫x

0

∫y

0
fqi(s, t)Q1i(s, t)dsdt

)
,

(2.20)

where

P1i(x, y) = 2qi−1
(
M2

i (xy)
θi
)qi/piAi(x, y)bqi(x, y),

Q1i(x, y) = 2qi−1
(
q

p

)qi

Kqi((q−p)/p)(M2
i (xy)

θi
)qi/pi

bqi(x, y).
(2.21)

Finally, substituting (2.20) into (2.13), considering two situations for i = 1, 2 and using
parameters α, β, and γ to denote pi, qi and θi in (2.20), we can get the desired estimations
(2.7) and (2.9), respectively.

Remark 2.7. In (2.7) and (2.9), we not only have given some bounds to a new class of nonlinear
weakly singular integral inequalities of Wendroff type, but also note that function a(x, y)
appearing in (2.7) and (2.9) is not required to satisfy the nondecreasing condition as some
known results [16].
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Corollary 2.8. Let functions u(x, y), a(x, y), b(x, y), and f(x, y) be defined as in Theorem 2.6, and
let q be a constant with 0 < q ≤ 1. Suppose that

u(x, y) ≤ a(x, y) + b(x, y)
∫x

0

∫y

0
(x − s)β−1sγ−1(y − t)β−1tγ−1f(s, t)uq(s, t)dsdt (2.22)

for (x, y) ∈ D, then one has the following.
(i) If β ∈ (1/2, 1),

u(x, y) ≤ a(x, y) +
[
P 11(x, y) +Q11(x, y)

(∫x

0

∫y

0
f1/(1−β)(s, t)P 11(s, t)dsdt

)

× exp
(∫x

0

∫y

0
f1/(1−β)(s, t)Q11(s, t)dsdt

)]1−β (2.23)

for (x, y) ∈ D, where

M11 = B

[
β + γ − 1

β
,
2β − 1

β

]
,

A1(x, y) = qKq−1a(x, y) + (1 − q)Kq,

A11(x, y) =
∫x

0

∫y

0
f1/(1−β)(s, t)A1/(1−β)

1 (s, t)dsdt,

P 11(x, y) = 2β/(β−1)M2β/(1−β)
11 (xy)(2β+γ−2)/(1−β)A11(x, y)b1/(1−β)(x, y),

Q11(x, y) = 2β/(β−1)K(q−1)/(1−β)M2β/(1−β)
11 q1/(1−β)(xy)(2β+γ−2)/(1−β)b1/(1−β)(x, y).

(2.24)

(ii) If β ∈ (0, 1/2],

u(x, y) ≤ a(x, y) +
[
P 12(x, y) +Q12(x, y)

(∫x

0

∫y

0
f (1+4β)/β(s, t)P 12(s, t)dsdt

)

× exp
(∫x

0

∫y

0
f (1+4β)/β(s, t)Q12(s, t)dsdt

)]β/(1+4β)
,

(2.25)
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where

M12 = B

[
γ(1 + 4β) − β

1 + 3β
,

4β2

1 + 3β

]
,

A12(x, y) =
∫x

0

∫y

0
f (1+4β)/β(s, t)A(1+4β)/β

1 (s, t)dsdt,

P 12(x, y) = 2(1+3β)/βM2(1+3β)/β
12 (xy)((4β+1)(γ−1)+4β

2)/βA12(x, y)b(1+4β)/β(x, y),

Q12(x, y) = 2(1+3β)/βK(q−1)(1+4β)/βM2(1+3β)/β
12 q(1+4β)/β(xy)((4β+1)(γ−1)+4β

2)/βb(1+4β)/β(x, y).
(2.26)

Proof. Inequalities (2.23) and (2.25) follow by letting p = α = 1 and 0 < q ≤ 1 in Theorem 2.6
and by simple computation. Details are omitted here.

Remark 2.9. When b(x, y) ≡ 1, the inequality (2.22) has been studied in [16], but here we not
only have given some new estimates for u(x, y) (which are unfortunately incomparable with
the results in [16]), but also eliminated the nondecreasing condition for function a(x, y).

Let p = 2, q = α = 1, we get the following interesting Henry-Ou-Iang type singular
integral inequality. For a more detailed account of Ou-Iang type inequalities and their
applications, one is referred to [6] and references cited therein.

Corollary 2.10. Let functions u(x, y), a(x, y), b(x, y), and f(x, y) be defined as in Theorem 2.6.
Suppose that

u2(x, y) ≤ a(x, y) + b(x, y)
∫x

0

∫y

0
(x − s)β−1sγ−1(y − t)β−1tγ−1f(s, t)u(s, t)dsdt (2.27)

for (x, y) ∈ D, then for any K > 0, one has the following.
(i) If β ∈ (1/2, 1),

u2(x, y) ≤ a(x, y) +
[
P 21(x, y) +Q21(x, y)

(∫x

0

∫y

0
f1/(1−β)(s, t)P 21(s, t)dsdt

)

× exp
(∫x

0

∫y

0
f1/(1−β)(s, t)Q21(s, t)dsdt

)]1−β (2.28)

for (x, y) ∈ D, where

M11 = B

[
β + γ − 1

β
,
2β − 1

β

]
,

A2(x, y) =
1
2
K−1/2a(x, y) +

1
2
K1/2,
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A21(x, y) =
∫x

0

∫y

0
f1/(1−β)(s, t)A1/(1−β)

2 (s, t)dsdt,

P 21(x, y) = 2β/(β−1)M2β/(1−β)
11 (xy)(2β+γ−2)/(1−β)A21(x, y)b1/(1−β)(x, y),

Q21(x, y) = 2(β+1)/(β−1)K−1/2(1−β)M2β/(1−β)
11 (xy)(2β+γ−2)/(1−β)b1/(1−β)(x, y).

(2.29)

(ii) If β ∈ (0, 1/2],

u2(x, y) ≤ a(x, y) +
[
P 22(x, y) +Q22(x, y)

(∫x

0

∫y

0
f (1+4β)/β(s, t)P 22(s, t)dsdt

)

× exp
(∫x

0

∫y

0
f (1+4β)/β(s, t)Q22(s, t)dsdt

)]β/(1+4β) (2.30)

for (x, y) ∈ D, where

M12 = B

[
γ(1 + 4β) − β

1 + 3β
,

4β2

1 + 3β

]
,

A22(x, y) =
∫x

0

∫y

0
f (1+4β)/β(s, t)A(1+4β)/β

2 (s, t)dsdt,

P 22(x, y) = 2(1+3β)/βM2(1+3β)/β
12 (xy)((4β+1)(γ−1)+4β

2)/βA22(x, y)b(1+4β)/β(x, y),

Q22(x, y) = 2−1K(q−1)(1+4β)/βM2(1+3β)/β
12 (xy)((4β+1)(γ−1)+4β

2)/βb(1+4β)/β(x, y).

(2.31)

Proof. Inequalities (2.28) and (2.30) follow by letting p = 2, q = α = 1 in Theorem 2.6 and by
simple computation. Details are omitted.

Theorem 2.11. Let u(x, y), a(x, y), b(x, y), and f(x, y) be defined as in Theorem 2.6, let p ≥ 1 be
a constant, and let L : D × R+→R+ be a continuous function which satisfies the condition

0 ≤ L(x, y, v) − L(x, y,w) ≤ N(x, y,w)(v −w) (C)

for (x, y) ∈ D and v ≥ w ≥ 0, whereN : D × R+→R+ is a continuous function.
If u(x, y) satisfies that

up(x, y) ≤ a(x, y) + b(x, y)
∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1f(s, t)L

(
s, t, u(s, t)

)
dsdt

(2.32)

for (x, y) ∈ D, then for any K > 0 one has the following.
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(i) If [α, β, γ] ∈ I,

u(x, y) ≤
{
a(x, y) +

[
P ∗
1 (x, y) +Q∗

1(x, y)
(∫x

0

∫y

0
f1/(1−β)(s, t)P ∗

1 (s, t)dsdt
)

× exp
(∫x

0

∫y

0
f1/(1−β)(s, t)N1/(1−β)

(
s, t,

1
p
a(s, t) +

p − 1
p

)

×Q∗
1(s, t)dsdt

)]1−β}1/p

(2.33)

for (x, y) ∈ D, where

M1 =
1
α
B

[
β + γ − 1

αβ
,
2β − 1

β

]
,

L1(x, y) =
∫x

0

∫y

0
f1/(1−β)(s, t)L1/(1−β)

(
s, t,

1
p
a(s, t) +

p − 1
p

)
dsdt,

P ∗
1 (x, y) = 2β/(β−1)M2β/(1−β)

1 (xy)((α+1)(β−1)+γ)/(1−β)L1(x, y)b1/(1−β)(x, y),

Q∗
1(x, y) = 2β/(β−1)M2β/(1−β)

1 (xy)((α+1)(β−1)+γ)/(1−β)
(
b(x, y)

p

)1/(1−β)
.

(2.34)

(ii) If [α, β, γ] ∈ II,

u(x, y) ≤
{
a(x, y) +

[
P ∗
2 (x, y) +Q∗

2(x, y)
(∫x

0

∫y

0
f (1+4β)/β(s, t)P ∗

2 (s, t)dsdt
)

× exp
(∫x

0

∫y

0
f (1+4β)/β(s, t)N(1+4β)/β

(
s, t,

1
p
a(s, t) +

p − 1
p

)

×Q∗
2(s, t)dsdt

)]β/(1+4β)}1/p

(2.35)

for (x, y) ∈ D, where

M2 =
1
α
B

[
γ(1 + 4β) − β

α(1 + 3β)
,

4β2

1 + 3β

]
,

L2(x, y) =
∫x

0

∫y

0
f (1+4β)/β(s, t)L(1+4β)/β

(
s, t,

1
p
a(s, t) +

p − 1
p

)
dsdt,

P ∗
2 (x, y) = 2(1+3β)/βM2(1+3β)/β

2 (xy)((1+4β)[α(β−1)+γ]−β)/βL2(x, y)b(1+4β)/β(x, y),

Q∗
2(x, y) = 2(1+3β)/βM2(1+3β)/β

2 (xy)((1+4β)[α(β−1)+γ]−β)/β
(
b(x, y)

p

)(1+4β)/β

.

(2.36)
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Proof. Define a function v(x, y) by

v(x, y) = b(x, y)
∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1f(s, t)L

(
s, t, u(s, t)

)
dsdt, (x, y) ∈ D,

(2.37)

then

up(x, y) ≤ a(x, y) + v(x, y). (2.38)

By Lemma 2.1, we have

u(x, y) ≤ (
a(x, y) + v(x, y)

)1/p ≤ 1
p

(
a(x, y) + v(x, y)

)
+
p − 1
p

, (x, y) ∈ D. (2.39)

Substituting the last inequality into (2.37) and using condition (C), we get

v(x, y) ≤ b(x, y)
∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1

× f(s, t)L
(
s, t,

1
p

(
a(s, t) + v(s, t)

)
+
p − 1
p

)
dsdt

≤ b(x, y)
∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1

× f(s, t)L
(
s, t,

1
p
a(s, t) +

p − 1
p

)
dsdt

+
b(x, y)

p

∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1

× f(s, t)M
(
s, t,

1
p
a(s, t) +

p − 1
p

)
v(s, t)dsdt.

(2.40)

Applying similar procedures used from (2.15) to the end of the proof of Theorem 2.6 to the
last inequality, we get the desired inequalities (2.33) and (2.35).

3. Applications

In this section, we will indicate the usefulness of our main results in the study of the
boundedness of certain partial integral equations with weakly singular kernel. Consider the
partial integral equation:

zp(x, y) = l(x, y) + h(x, y)
∫x

0

∫y

0

(
xα − sα

)β−1
sγ−1

(
yα − tα

)β−1
tγ−1F

(
s, t, z(s, t)

)
dsdt (3.1)
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for (x, y) ∈ D, where l(x, y) and h(x, y) ∈ C(D,R), F ∈ C(D × R,R) satisfies

∣∣F(x, y, u)∣∣ ≤ b(x, y)|u|q (3.2)

for some b ∈ C(D,R+), and p ≥ q > 0 are constants. Plugging (3.2) into (3.1) and by applying
Theorem 2.6, we obtain a bound on the solutions z(x, y) of (3.1).

Remark 3.1. (i) Obviously, the boundedness of the solutions of (3.1)-(3.2) cannot be derived
by the known results in [16]. (ii) By our results and under some suitable conditions, other
basic properties’ solutions of (3.1) such as the uniqueness and the continuous dependence
can also be derived here, but in order to save space, the details are omitted.
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