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1. Introduction and preliminaries

Let x1, x2, . . . , xn and p1, p2, . . . , pn be real numbers such that xi ∈ [0, 1/2], pi > 0 with Pn =
∑n

i=1pi. Let Gn and An be the weighted geometric mean and arithmetic mean, respectively,
defined by Gn = (

∏n
i=1 x

pi
i )

1/Pn , andAn = (1/Pn)
∑n

i=1 pixi = x. In particular, consider the above-
mentioned means G′

n = (
∏n

i=1(1 − xi)
pi)1/Pn , and A′

n = (1/Pn)
∑n

i=1 pi(1 − xi). Then the well-
known Ky-Fan inequality is

Gn

G′
n
≤ An

A′
n
. (1.1)

It is well known that Ky-Fan inequality can be obtained from the Levinson inequality [1], see
also [2, page 71].

Theorem 1.1. Let f be a real-valued 3-convex function on [0, 2a], then for 0 < xi < a, pi > 0,

1
Pn

n∑

i=1

pif
(
xi

) − f

(
1
Pn

n∑

i=1

pixi

)

≤ 1
Pn

n∑

i=1

pif
(
2a − xi

) − f

(
1
Pn

n∑

i=1

pi
(
2a − xi

)
)

. (1.2)

In [3], the second author proved the following result.
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Theorem 1.2. Let f be a real-valued 3-convex function on [0, 2a] and xi (1 ≤ i ≤ n)n points on
[0, 2a], then

1
Pn

n∑

i=1

pif
(
xi

) − f

(
1
Pn

n∑

i=1

pixi

)

≤ 1
Pn

n∑

i=1

pif
(
a + xi

) − f

(
1
Pn

n∑

i=1

pi
(
a + xi

)
)

. (1.3)

In this paper, we will give an improvement and reversion of Ky-Fan inequality as well
as some related results.

2. Main results

Lemma 2.1. Define the function

ϕs(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xs

s(s − 1)(s − 2)
, s /= 0, 1, 2,

1
2
logx, s = 0,

−xlogx, s = 1,

1
2
x2logx, s = 2.

(2.1)

Then φ′′′
s (x) = xs−3, that is, ϕs(x) is 3-convex for x > 0.

Theorem 2.2. Define the function

ξs =
1
Pn

n∑

i=1

pi
(
ϕs

(
2a − xi

) − ϕs

(
xi

)) − ϕs(2a − x ) + ϕs(x) (2.2)

for xi, pi as in (1.2). Then

(1) for all s, t ∈ I ⊆ R,

ξsξt ≥ ξ2r = ξ2(s+t)/2, (2.3)

that is, ξs is log convex in the Jensen sense;

(2) ξs is continuous on I ⊆ R, it is also log convex, that is, for r < s < t,

ξt−rs ≤ ξt−sr ξs−rt (2.4)

with

ξ0 =
1
2
ln
(
Ga

nAn

GnA
a
n

)

, (2.5)

where Ga
n = (

∏n
i=1(2a − xi)

pi)1/Pn , Aa
n = (1/Pn)

∑n
i=1pi(2a − xi).
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Proof. (1) Let us consider the function

f(x, u, v, r, s, t) = f(x) = u2ϕs(x) + 2uvϕr(x) + v2ϕt(x), (2.6)

where r = (s + t)/2, u, v, r, s, t are reals.

f ′′′(x) =
(
uxs/2−3/2 + vxt/2−3/2)2 ≥ 0 (2.7)

for x > 0. This implies that f is 3-convex. Therefore, by (1.2), we have u2ξs+2uvξr+v2ξt ≥ 0, that
is,

ξsξt ≥ ξ2r = ξ2(s+t)/2. (2.8)

This follows that ξs is log convex in the Jensen sense.
(2) Note that ξs is continuous at all points s = 0, s = 1, and s = 2 since

ξ0 = lim
s→0

ξs =
1
2
ln

(
Ga

nAn

GnA
a
n

)

,

ξ1 = lim
s→1

ξs =
1
Pn

n∑

i=1

pi
(
xi lnxi −

(
2a − xi

)
ln

(
2a − xi

))
+ (2a − x) ln(2a − x) − x lnx,

ξ2 = lim
s→2

ξs =
1
2

[
1
Pn

n∑

i=1

pi
((
2a − xi

)2 ln
(
2a − xi

) − x2
i lnxi

)) − (2a − x)2 ln(2a − x) + x2 lnx

]

.

(2.9)

Since ξs is a continuous and convex in Jensen sense, it is log convex. That is,

(t − r) ln ξs ≤ (t − s) ln ξr + (s − r) ln ξt, (2.10)

which completes the proof.

Corollary 2.3. For xi, pi as in (1.2),

1 < exp
(
2ξ43 ξ

−3
4

) ≤ Ga
nAn

GnA
a
n
≤ exp

(
2ξ3/4−1 ξ1/43

)
. (2.11)

Proof. Setting s = 0, r = −1, and t = 3 in Theorem 1.2, we get ξ40 ≤ ξ3−1 ξ3 or

ξ0 ≤ ξ3/4−1 ξ1/43 . (2.12)

Again setting s = 3, r = 0, and t = 4 in Theorem 1.2, we get ξ43 ≤ ξ0 ξ
3
4 or

ξ0 ≥ ξ43 ξ
−3
4 . (2.13)

Combining both inequalities (2.12), (2.13), we get

ξ43 ξ
−3
4 ≤ ξ0 ≤ ξ3/4−1 ξ1/43 . (2.14)
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Also we have ξs positive for s > 2; therefore, we have

0 < ξ43 ξ
−3
4 ≤ ξ0 ≤ ξ3/4−1 ξ1/43 . (2.15)

Applying exponentional function, we get

1 < exp
(
2ξ43 ξ

−3
4

) ≤ Ga
nAn

GnA
a
n
≤ exp

(
2ξ3/4−1 ξ1/43

)
. (2.16)

Remark 2.4. In Corollary 2.3, putting 2a = 1 we get an improvement of Ky-Fan inequality.

Theorem 2.5. Define the function

ρs =
1
Pn

n∑

i=1

pi
(
ϕs

(
a + xi

) − ϕs

(
xi

)) − ϕs(a + x ) + ϕs(x), (2.17)

for xi, pi, a as for Theorem 1.1. Then

(1) for all s, t ∈ I ⊆ R,

ρsρt ≥ ρ2r = ρ2(s+t)/2, (2.18)

that is, ρs is log convex in the Jensen sense;

(2) ρs is continuous on I ⊆ R, it is also log convex. That is for r < s < t,

ρt−rs ≤ ρt−sr ρs−rt (2.19)

with

ρ0 =
1
2
ln
(
G̃nAn

GnÃn

)

, (2.20)

where G̃n = (
∏n

i=1(a + xi)
pi)1/Pn , Ãn = (1/Pn)

∑n
i=1pi(a + xi).

Proof. The proof is similar to the proof of Theorem 2.2.

Remark 2.6. Let us note that similar results for difference of power means were recently ob-
tained by Simic in [4].

References

[1] N. Levinson, “Generalization of an inequality of Ky-Fan,” Journal of Mathematical Analysis and Applica-
tions, vol. 8, no. 1, pp. 133–134, 1964.
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