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1. Introduction

We define

I(f) =
∫ b

a

f(x)dx. (1.1)

The problem of approximating I( f) is usually referred to as numerical integration or
quadrature [1]. Most numerical integration formulae are based on defining the approxi-
mation by using polynomial or piecewise polynomial interpolation. Formulae using such
interpolation with evenly spaced nodes are referred to as Newton-Cotes formulae. The
Gaussian quadrature formulae, which are optimal and converge rapidly by selecting the node
points carefully that need not be equally spaced, are investigated in [2].

In [3–5], the quadrature problem, in particular, the investigation of error bounds of
Newton-Cotes formulae, namely, the mid-point, trapezoid, and Simpson’s rule have been
carried out by the use of Peano kernel approach in terms of variety of norms, from an
inequality point of view.
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The deduction of the optimal quadrature formulae in the sense of minimal error
bounds has not received the right attention as long as the work by Ujević (see [6–8] and [9,
pages 153–166]), who used a new approach for obtaining optimal two-point and three-point
quadrature formulae of open as well as closed type, has not appeared. Further, some error
inequalities have also been presented by Ujević to ensure the applications of these optimal
quadrature formulae for different classes of functions.

In this paper, we present an approach similar to that of Ujević’s [6] to present some
improvements and generalizations in this context.

Let us first formulate the main problem.
Consider

K(x, y, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(t − α)2 + α1, t ∈ [a, x],

1
2
(t − β)2 + β1, t ∈ (x, y),

1
2
(t − γ)2 + γ1, t ∈ [y, b],

(1.2)

as defined in [6], where x, y ∈ [a + h(b − a), b − h(b − a)], h ∈ [0, 1/2], x < y, and
α, α1, β, β1, γ, γ1 ∈ R are parameters which are required to be determined.

We know that the exact value of the remainder term of the integral
∫ b

a K(x, y, t)f ′′(t)dt
may not be found, thus, we may proceed as

∣∣∣∣
∫ b

a

K(x, y, t)f ′′(t)dt
∣∣∣∣ ≤ max

t∈[a,b]
|f ′′(t)|

∫ b

a

|K(x, y, t)|dt. (1.3)

The main aim of this paper is to present a minimal estimation of the error bound (1.3)
by appropriately choosing the variables and parameters involved. Moreover, it is worth
mentioning that the family of quadrature formulae thus obtained hereafter is a generalization
of that presented in [6].

2. A generalized optimal quadrature formula

Consider the above stated error inequality problem for a = −1, b = 1, so that x, y ∈ [−1 +
2h, 1 − 2h]. We will try to find out an optimal quadrature formula of the form

∫1

−1
f(t)dt − [hf(−1) + (1 − h)f(x) + (1 − h)f(y) + hf(1)] =

∫1

−1
K(x, y, t)f ′′(t)dt, (2.1)

where K(x, y, t) is defined by (1.2)with a = −1, b = 1, and x, y ∈ [−1 + 2h, 1 − 2h]with x < y,
h ∈ [0, 1/2].

The parameters α, a1, β, β1, γ, γ1 ∈ R involved in K(x, y, t) are required to be deter-
mined in a way such that the representation (2.1) is obtained.
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Integrating by parts right-hand side of (2.1), we have

∫1

−1
K(x, y, t)f ′′(t)dt = −

[
1
2
(1 + α)2 + α1

]
f ′(−1) +

[
1
2
(1 − γ)2 + γ1

]
f ′(1)

+
[
1
2
{(x − α)2 − (x − β)2} + α1 − β1

]
f ′(x)

+
[
1
2
{(y − β)2 − (y − γ)2} + β1 − γ1

]
f ′(y) − (1 + α)f(−1)

− (1 − γ)f(1) + (α − β)f(x) + (β − γ)f(y)

+
∫1

−1
f(t)dt.

(2.2)

For the representation (2.1), we require from (2.2)

1
2
(x − α)2 + α1 − 1

2
(x − β)2 − β1 = 0,

1
2
(y − β)2 + β1 − 1

2
(y − γ)2 − γ1 = 0,

1
2
(1 + α)2 + α1 = 0,

1
2
(1 − γ)2 + γ1 = 0,

β − γ = −(1 − h),

α − β = −(1 − h),

1 + α = h,

1 − γ = h.

(2.3)

This gives through simple calculations:

α = −(1 − h), γ = (1 − h), β = 0,

γ1 = −1
2
h 2,

α1 = −1
2
h 2,

β1 =
1
2
− h + (1 − h)x

=
1
2
− h − (1 − h)y.

(2.4)
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Henceforth,

y = −x. (2.5)

So, we have

K(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(t + (1 − h))2 − 1

2
h2, t ∈ [−1, x],

1
2
t2 + (1 − h)x − h +

1
2
, t ∈ (x, y),

1
2
(t − (1 − h))2 − 1

2
h2, t ∈ [y, 1].

(2.6)

We further see that

∣∣∣∣
∫1

−1
K(x, t)f ′′(t)dt

∣∣∣∣ ≤ ‖f ′′‖∞
∫1

−1
|K(x, t)|dt. (2.7)

We are now required to find an x that minimizes
∫1
−1|K(x, t)|dt.

We next define

G(x) =
∫1

−1
|K(x, t)|dt

=
1
2

∫x

−1
|(t + (1 − h))2 − h2|dt +

∫y

x

∣∣∣∣12 t2 + (1 − h)x − h +
1
2

∣∣∣∣dt + 1
2

∫1

y

|(t − (1 − h))2 − h2|dt,

(2.8)

and consider the problem

minimize G(x), x ∈ [−1 + 2h, 1 − 2h], h ∈
[
0,

1
2

]
. (2.9)

Hence, we would like to find a global minimizer ofG. Recall that a global minimizer is a point
x∗ that satisfies

G(x∗) ≤ G(x) ∀x ∈ [−1 + 2h, 1 − 2h], h ∈
[
0,

1
2

]
. (2.10)
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We now consider the following cases.
(i) Let x ∈ [−(1 − 2h), (h − 1/2)/(1 − h)]. Then by symmetry, we may consider

G1(x) = −1
2

∫ −1+2h

−1
((t + (1 − h))2 − h2)dt

+
1
2

∫x

−1+2h
((t + (1 − h))2 − h2)dt

+
1
2

∫ −
√

2h−1−2(1−h)x

x

(t2 + 2(1 − h)x − 2h + 1)dt

− 1
2

∫0

−
√

2h−1−2(1−h)x
(t2 + 2(1 − h)x − 2h + 1)dt

=
1
6
− 1
2
(1 − h)x2 − 4

3
(1 − h)

√
2h − 1 − 2(1 − h)xx

+
4
3

(
h − 1

2

)√
2h − 1 − 2(1 − h)x +

4
3
h3 − h

2
.

(2.11)

We may note that

G(x) = 2G1(x). (2.12)

Combining (2.11) and (2.12)with (2.1) and (2.7), we get

∣∣∣∣
∫1

−1
f(t)dt − [hf(−1) + (1 − h)f(x) + (1 − h)f(−x) + hf(1)]

∣∣∣∣

≤
[
1
3
− (1 − h)x2 − 8

3
(1 − h)

√
2h − 1 − 2(1 − h)xx

+
8
3

(
h − 1

2

)√
2h − 1 − 2(1 − h)x +

8
3
h3 − h

]
‖f ′′‖∞.

(2.13)

Moreover, simple calculations show that G′
1(x) = 0 for

x1,2 = −4 + 4h ± 2
√
3 − 6h + 4h2. (2.14)

It is not difficult to find that

G′′
1(x1) > 0, G′′

1(x2) < 0. (2.15)



6 Journal of Inequalities and Applications

Thus, x1 is the local minimizer of G(x) for x ∈ [−(1 − 2h), (h − 1/2)/(1 − h)].We have

G1(x1) =
52
3
h3 − 44h2 +

83
2
h − 83

6
+ 8(1 − h)2

√
4h2 − 6h + 3

+
2
3
(8h2 − 14h + 7)

√
8h2 − 14h + 7 − 4(1 − h)

√
4h2 − 6h + 3

− 8
3
(1 − h)

√
8h2 − 14h + 7 − 4(1 − h)

√
4h2 − 6h + 3

√
4h2 − 6h + 3,

(2.16)

such that

G(x1) = 2G1(x1). (2.17)

(ii) Next, we check the point x3 = (h − 1/2)/(1 − h). We find that minh∈[0,1/2]G1(x1) <

minh∈[0,1/2]G1(x3).

Thus, from the above considerations, we find that x∗ = −4 + 4h + 2
√
3 − 6h + 4h2 is the

global minima of G. Therefore, we get the following conclusion.

Theorem 2.1. Let I ⊂ R be an open interval such that [−1, 1] ⊂ I and let f : I→R be a twice
differentiable function such that f

′′
is bounded and integrable. Then,

∫1

−1
f(t)dt

=[hf(−1)+(1−h)f(− 4 + 4h+2
√
3−6h + 4h2)+(1−h)f(4 − 4h−2

√
3−6h+4h2)+hf(1)]+R(f),

(2.18)

where

|R(f)| ≤ 2Δ(h)‖f ′′‖∞, (2.19)

h ∈ [0, 1/2], and Δ(h) is defined as

Δ(h) =
52
3
h3 − 44h2 +

83
2
h − 83

6
+ 8(1 − h)2

√
4h2 − 6h + 3

+
2
3
(8h2 − 14h + 7)

√
8h2 − 14h + 7 − 4(1 − h)

√
4h2 − 6h + 3

− 8
3
(1 − h)

√
8h2 − 14h + 7 − 4(1 − h)

√
4h2 − 6h + 3

√
4h2 − 6h + 3.

(2.20)

Proof. From the above discussion, we find that (2.18) holds with

R(f) =
∫1

−1
K(−4 + 4h + 2

√
3 − 6h + 4h2, t)f ′′(t)dt, (2.21)
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and K(x, t) is given by (2.6) with y = −x. We further have

|R(f)| ≤ ‖f ′′‖∞
∫1

−1
|K(−4 + 4h + 2

√
3 − 6h + 4h2, t)|dt

= G(−4 + 4h + 2
√
3 − 6h + 4h2)‖f ′′‖∞.

(2.22)

Since G(− 4 + 4h + 2
√
3 − 6h + 4h2) = 2G1(−4 + 4h + 2

√
3 − 6h + 4h2), thus (2.19) holds.

We would like now to mention here some special cases of (2.13).

Remark 2.2. As it has been mentioned in [6], we recapture the Gauss two-point quadrature
formula for h = 0 and x = −√3/3.

Remark 2.3. It may be noted that for h = 1/6 and x = −√5/5, we get Lobbato four-point
quadrature rule as follows:

∫1

−1
f(t)dt =

1
6

[
f(−1) + 5f

(
−
√
5
5

)
+ 5f

(√
5
5

)
+ f(1)

]
+ R1(f), (2.23)

where

|R1(f)| ≤ C1‖f ′′‖∞, (2.24)

and C1 = 1/81 + (4/27)(
√
−6 + 3

√
5)(

√
5 − 2) ≈ 0.0418.

Remark 2.4. For h = 1/4 and x = −1/3, we get 3/8 Simpson’s rule as follows:

∫1

−1
f(t)dt =

1
4

[
f(−1) + 3f

(
− 1
3

)
+ 3f

(
1
3

)
+ f(1)

]
+ R2(f), (2.25)

where

|R2(f)| ≤ C2‖f ′′‖∞, (2.26)

and C2 = 1/24 ≈ 0.0417.

Remark 2.5. Keeping in view the above special cases, (2.13) may be considered as a
generalization of Gauss two-point, Simpson’s 3/8 and Lobatto four-point quadrature rule
for twice differentiable mappings.

Remark 2.6. For h = 1/5, Δ(h) attains its minimum value.
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Corollary 2.7. Let the assumptions of Theorem 2.1 hold. Then, one has the following optimal quadra-
ture rule:

∫1

−1
f(t)dt =

1
5

[
f(−1) + 4f

(
− 2
5

)
+ 4f

(
2
5

)
+ f(1)

]
+ R3(f), (2.27)

|R3(f)| ≤ C3‖f ′′‖∞, (2.28)

where C3 = 14/375 ≈ 0.0373.

Remark 2.8. The comparison of (2.23), (2.25), and (2.27) shows that the latter presents a much
better estimate in the context of four-point quadrature rules of closed type.

By considering the problem on the interval [a, b], the following theorem is obvious.

Theorem 2.9. Let I ⊂ R be an open interval such that [a, b] ⊂ I and let f : I→R be a twice-
differentiable function such that f ′′ is bounded and integrable. Then,

∫ b

a

f(t)dt =
1
2
(b − a)[hf(a) + (1 − h)f(x1) + (1 − h)f(x2) + hf(b)] + R(f), (2.29)

where

x1 =
b − a

2
x∗ +

a + b

2
, x2 = −b − a

2
x∗ +

a + b

2
, (2.30)

with

x∗ = −4 + 4h + 2
√
3 − 6h + 4h2,

|R(f)| ≤ 1
4
Δ(h)(b − a)3‖f ′′‖∞,

(2.31)

h ∈ [0, 1/2], and Δ(h) is as defined above.

3. Generalized error inequalities

From the basic properties of the Lp(a, b) spaces for p = 1, 2,∞, we know that L2(a, b) is a
Hilbert space with the inner product defined as

〈f, g〉2 =
∫ b

a

f(t)g(t)dt. (3.1)

We now define X = (L2(a, b), 〈·, ·〉2). In the space X, the norm ‖·‖2 is defined in the usual
manner as

‖f‖2 =
(∫ b

a

f2(t)dt
)1/2

. (3.2)
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Let us also consider Y = (L2(a, b), 〈·, ·〉), where the inner product 〈·, ·〉 is defined by

〈f, g〉 =
1

b − a

∫ b

a

f(t)g(t)dt (3.3)

with the corresponding norm ‖ · ‖ defined by

‖f‖ =
√
〈f, f〉. (3.4)

We know that the Chebyshev functional is defined as

T(f, g) = 〈f, g〉 − 〈f, e〉〈g, e〉, (3.5)

where f, g ∈ L2(a, b) and e = 1 which satisfies the pre-Grüss inequality [4, page 296] or [5,
page 209]:

T2(f, g) ≤ T(f, f)T(g, g). (3.6)

Let us denote

σ(f) = σ(f ;a, b) =
√
(b − a)T(f, f) (3.7)

as defined in [6]. Moreover, the space L1(a, b) is a Banach space with the norm

‖f‖1 =
∫ b

a

|f(t)|dt, (3.8)

and the space L∞(a, b) is also a Banach space with the norm

‖f‖∞ = ess sup
t∈[a,b]

|f(t)|. (3.9)

So, if f ∈ L1(a, b) and g ∈ L∞(a, b), then we have

|〈f, g〉2| ≤ ‖f‖1‖g‖∞. (3.10)

Finally, we define

J(f) = J(f ;a, b;h)

=
∫ b

a

f(t)dt − 1
2
(b − a)[hf(a) + (1 − h)f(x1) + (1 − h)f(x2) + hf(b)],

(3.11)

where x1 and x2 are given by (2.30).
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We would also like to mention the following lemma [10].

Lemma 3.1. Let

f(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(t), t ∈ [a, x1],

f2(t), t ∈ [x1, x2],

f3(t), t ∈ [x2, b],

(3.12)

where a < x1 < x2 < b, f1 ∈ C1(a, x1), f2 ∈ C1(x1, x2), f3 ∈ C1(x2, b)f1(x1) = f2(x1), and
f2(x2) = f3(x2). If

sup
t∈(a,x1)

|f ′
1(t)| < ∞, sup

t∈(x1,x2)
|f ′

2(t)| < ∞, sup
t∈(x2,b)

|f ′
3(t)| < ∞, (3.13)

then the function f is an absolutely continuous function.

Theorem 3.2. Let f : [−1, 1]→R be a function such that f ′ ∈ L1(−1, 1). If there exists a real number
γ1, such that γ1 ≤ f ′(t), t ∈ [−1, 1], then

|J(f ;−1, 1;h)| ≤ 2Δ0(h)(S − γ1), (3.14)

and if there exists a real number Γ1, such that f ′(t) ≤ Γ1, t ∈ [−1, 1], then

|J(f ;−1, 1;h)| ≤ 2Δ0(h)(Γ1 − S), (3.15)

where J(f ;−1, 1;h) is defined by (3.11), S = (f(1) − f(−1))/2, and h ∈ [0, 1/2]. If there exist real
numbers γ1, Γ1, such that γ1 ≤ f ′(t) ≤ Γ1, t ∈ [−1, 1], then

|J(f ;−1, 1;h)| ≤ 1
2
Δ1(h)(Γ1 − γ1), (3.16)

Δ0(h) and Δ1(h) are defined as

Δ0(h) = 2
√
4h2 − 6h + 3 − 3(1 − h),

Δ1(h) = 58h2 − 98h + 49 − 28(1 − h)
√
4h2 − 6h + 3.

(3.17)

Proof. In order to prove (3.16), let us define

p1(t) =

⎧⎪⎪⎨
⎪⎪⎩
t + 1 − h, t ∈ [−1, x],
t, t ∈ (x, y),

t − (1 − h), t ∈ [y, 1],

(3.18)
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where x = −4 + 4h + 2
√
3 − 6h + 4h2 and y = −x. Note that since 〈p1, e〉2 = 0, thus

〈p1, f ′〉2 = −J(f ;−1, 1;h),
〈
f ′ − Γ1 + γ1

2
, p1

〉
2
= 〈f ′, p1〉2.

(3.19)

From (3.10),

∣∣∣∣
〈
f ′ − Γ1 + γ1

2
, p1

〉
2

∣∣∣∣ ≤
∥∥∥∥f ′ − Γ1 + γ1

2

∥∥∥∥
∞
‖p1‖1

≤ 1
2
Δ1(h)(Γ1 − γ1),

(3.20)

as

∥∥∥∥f ′ − Γ1 + γ1
2

∥∥∥∥
∞
≤ Γ1 − γ1

2
,

‖p1‖1 = 58h2 − 98h + 49 − 28(1 − h)
√
4h2 − 6h + 3.

(3.21)

From (3.19) and (3.20), it may be observed that (3.16) holds. Further, it can be seen that

|〈f ′ − γ1, p1〉2| ≤ ‖p1‖∞‖f ′ − γ1‖1
= 2Δ0(h)(S − γ1),

(3.22)

since

‖p1‖∞ = 2
√
4h2 − 6h + 3 − 3(1 − h),

‖f ′ − γ1‖1 =
∫1

−1
(f ′(t) − γ1)dt

= f(1) − f(−1) − 2γ1

= 2(S − γ1).

(3.23)

Hence, (3.14) holds. In the similar manner, we can prove (3.15).

Remark 3.3. It may be noted that Δ0(h) has its minimum value 0.396 at h = 0.259. In a similar
way, it may be observed that 1/2Δ1(h) attains its minimum value 0.1698 at h = 0.296.

Theorem 3.4. Let f : [a, b]→R be a function, such that f ′ ∈ L1(a, b). If there exists a real number
γ1, such that γ1 ≤ f ′(t), t ∈ [a, b], then

|J(f ;a, b;h)| ≤ 1
2
Δ0(h)(S − γ1)(b − a)2, (3.24)
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and if there exists a real number Γ1, such that f ′(t) ≤ Γ1, t ∈ [a, b], then

|J(f ;a, b;h)| ≤ 1
2
Δ0(h)(Γ1 − S)(b − a)2, (3.25)

where J(f ;a, b;h) is defined by (3.11) and S = (f(a)− f(b))/(b −a) and h ∈ [0, 1/2]. If there exist
real numbers γ1, Γ1, such that γ1 ≤ f ′(t) ≤ Γ1, t ∈ [a, b], then

|J(f ;a, b;h)| ≤ 1
8
Δ1(h)(Γ1 − γ1)(b − a)2, (3.26)

Δ0(h) and Δ1(h) are as defined in (3.17).

Theorem 3.5. Let f : [−1, 1]→R be an absolutely continuous function, such that f ′ ∈ L2(−1, 1).
Then,

|J(f ;−1, 1;h)| ≤
√
Δ2(h)σ(f ′;−1, 1), (3.27)

where σ(f ′;−1, 1) is defined by (3.7) and

Δ2(h) = −56h3 + 154h2 − 146h +
146
3

− 28(1 − h)2
√
4h2 − 6h + 3 (3.28)

for h ∈ [0, 1/2].

Proof. Let p1 be the same as defined above. We have

〈p1, f ′〉2 = −J(f ;−1, 1;h), (3.29)

since 〈p1, e〉2 = 0, if [a, b] = [−1, 1]. Moreover, 〈f, g〉 = (1/2)〈f, g〉2 and

〈p1, f ′〉 = T(f ′, p1). (3.30)

From (3.6), it follows that

T(f ′, p1) ≤
√
T(p1, p1)

√
T(f ′, f ′)

=
1
2
‖p1‖2σ(f ′;−1, 1)

=
1
2

√
Δ2(h)σ(f ′;−1, 1),

(3.31)

as

‖p1‖22 = −56h3 + 154h2 − 146h +
146
3

− 28(1 − h)2
√
4h2 − 6h + 3. (3.32)

Using (3.29), (3.30), (3.31), and (3.32), inequality (3.27) is proved.
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Remark 3.6.
√
Δ2(h) attains its minimum value 0.2799 at h = 0.2957.

Theorem 3.7. Let f : [a, b]→R be an absolutely continuous function, such that f ′ ∈ L2(a, b). Then,

|J(f ;a, b;h)| ≤ 1

2
√
2

√
Δ2(h)σ(f ′;a, b)(b − a)3/2, (3.33)

where σ(f ′;a, b) is defined by (3.7) and Δ2(h) is as defined above.

4. Applications in numerical integration

Let π = {x0 = a < x1 < · · · < xn = b} be a subdivision of the interval [a, b], such that
hi = xi+1 − xi = h = (b − a)/n. From (3.11), we have

J(f) = J(f ;xi, xi+1; δ)

=
∫ xi+1

xi

f(t)dt − h

2
[δf(xi) + (1 − δ)f(x1i) + (1 − δ)f(x2i) + δf(xi+1)],

(4.1)

where

x1i =
h

2
x∗ +

xi + xi+1

2
, x2 = −h

2
x∗ +

xi + xi+1

2
,

x∗ = −4 + 4δ + 2
√
3 − 6δ + 4δ2, δ ∈

[
0,

1
2

]
.

(4.2)

Summing-up the above relation from 1 to n − 1, we get

n−1∑
i=0

J(f ;xi, xi+1; δ) =
∫ b

a

f(t)dt − h

2

n−1∑
i=0

[δf(xi) + (1 − δ)f(x1i) + (1 − δ)f(x2i) + δf(xi+1)].
(4.3)

Let us denote

S(f ;a, b; δ) =
n−1∑
i=0

J(f ;xi, xi+1; δ). (4.4)

Theorem 4.1. Let the assumptions of Theorem 2.9 hold, then

|S(f ;a, b; δ)| ≤ 1
4n2

Δ(δ)‖f ′′‖∞(b − a)3, (4.5)

where S(f ;a, b; δ) is defined by (4.4), δ ∈ [0, 1/2], and Δ(δ) is defined by (2.20). However, π is the
uniform subdivision of [a, b].
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Theorem 4.2. Let the assumptions of Theorem 3.4 hold, then it follows that

|S(f ;a, b; δ)| ≤ 1
8
Δ1(δ)

Γ1 − γ1
n

(b − a)2,

|S(f ;a, b; δ)| ≤ 1
2n

Δ0(δ)(S − γ1)(b − a)2,

(4.6)

and if there exists a real number Γ1, such that f ′(t) ≤ Γ1, t ∈ [a, b], then

|S(f ;a, b; δ)| ≤ 1
2n

Δ0(δ)(Γ1 − S)(b − a)2, (4.7)

where S(f ;a, b; δ) is defined by (4.4),Δ0(δ),Δ1(δ) are defined by (3.17) and S = (f(a)−f(b))/(b−
a). However, π is the uniform subdivision of [a, b].

Theorem 4.3. Let the assumptions of Theorem 3.7 hold, then it follows that

|S(f ;a, b; δ)| ≤ (b − a)3/2

2
√
2n

√
Δ2(δ)σ(f ′), (4.8)

where S(f ;a, b; δ) is defined by (4.4), σ(f ′) is defined by (3.7), and Δ2(δ) is as defined by (3.28).
However, π is the uniform subdivision of [a, b].

Proof. Applying Theorem 3.7 on the interval [xi, xi+1],

∣∣∣∣
∫ xi+1

xi

f(t)dt − h

2
[δf(xi) + (1 − δ)f(x1i) + (1 − δ)f(x2i) + δf(xi+1)]

∣∣∣∣

≤ 1

2
√
2

√
Δ2(δ)h3/2

[∫xi+1

xi

(f ′(t))2dt − 1
h
(f(xi+1) − f(xi))

2
]1/2

.

(4.9)

Summing over i from 0 to n − 1,

|S(f ;a, b; δ)| ≤ 1

2
√
2

√
Δ2(δ)h3/2

n−1∑
i=0

[∫xi+1

xi

(f ′(t))2dt − 1
h
(f(xi+1) − f(xi))

2
]1/2

. (4.10)

Using Cauchy-Schwartz inequality and the relation h = (b − a)/n, we obtain the required
inequality:

|S(f ;a, b; δ)| ≤ 1

2
√
2

√
Δ2(δ)

(b − a)3/2

n3/2
n1/2

[
‖f ′‖22 −

n

b − a

n−1∑
i=0

(f(xi+1) − f(xi))
2
]1/2

≤ 1

2
√
2

√
Δ2(δ)

(b − a)3/2

n

[
‖f ′‖22 −

(f(b) − f(a))2

b − a

]1/2
.

(4.11)
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[8] N. Ujević, “Error inequalities for an optimal quadrature formula,” Journal of Applied Mathematics and
Computing, vol. 24, no. 1-2, pp. 65–79, 2007.

[9] Y. J. Cho, J. K. Kim, and S. S. Dragomir, Eds., Inequality Theory and Applications. Volume 4, Nova Science,
New York, NY, USA, 2007.
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