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Laboratoire G.A.F.O, Département de Mathmatiques & Informatique, Faculté des Sciences,
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1. Introduction

Let A be a unital complex Banach algebra. We denote by e the unit element of A. ‖ · ‖ is the
norm of A. For a ∈ A, σ(a), and ρ(a) denote, respectively, the spectrum and the spectral
seminorm of a.

A formal vectorial continued fraction is an expression of the form

y0 = b0 + a1 ·
(
b1 + a2 ·

(
b2 + · · · )−1)−1, (1.1)

where (an)n≥1 and (bn)n≥1 are two sequences of elements inA.
In order to discuss convergence or divergence of the vectorial continued fraction (1.1),

we associate a sequence (sn)n≥0 (called sequence of nth approximants) defined by:

s0 = b0,

s1 = b0 + a1 · b−11 ,

s2 = b0 + a1 ·
(
b1 + a2 · b−12

)−1
,

...
...

sn = b0 + a1 ·
(
b1 + a2 ·

(
b2 + · · · + an−1 ·

(
an−1 + an · b−1n

)−1)−1)−1
,

...
...

(1.2)
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By induction, it can be shown that

sn = b0 + pn · q−1n , (1.3)

where the expressions pn and qn are determined from recurrence relations

pn+1 = pn · bn+1 + pn−1 ·an+1,

qn+1 = qn · bn+1 + qn−1 ·an+1,
(1.4)

with initial conditions:

p0 = 0, p1 = a1.

q0 = e, q1 = b1.
(1.5)

pn and qn are respectively called nth numerator and nth denominator of (1.1).
Now, consider the following example.
Let a be a nonnull quasinilpotent element inA. Consider the vectorial continued fraction

defined by
[
(e + a) +

[(
1
4
e + a

)
+
[(

1
9
e + a

)
+ · · · +

[(
1
n2

e + a

)
+ · · ·

]−1]−1]−1]−1
, (1.6)

where for each positive integer n > 0, we have

bn =
1
n2

· e + a. (1.7)

So,

∥∥bn
∥∥ =

∥
∥∥∥a +

1
n2

e

∥
∥∥∥ ≥

∣
∣∣∣‖a‖ −

1
n2

∣
∣∣∣. (1.8)

Therefore, the series
∑∞

n=1‖bn‖ diverges.
By Fair [1, Theorem 2.2], we cannot ensure convergence or divergence of the vectorial

continued fraction (1.6). But, if we apply the spectral seminorm to (1.7), we get

ρ
(
bn
) ≤ 1

n2
+ ρ(a) =

1
n2

. (1.9)

So, the series
∑∞

n=1ρ(bn) converges. From Theorem 2.5 in Section 2 below, the vectorial
continued fraction (1.6) diverges according to the spectral seminorm so it diverges also
according to the norm because the spectral seminorm ρ satisfies

ρ(x) ≤ ‖x‖, ∀x ∈ A. (1.10)

In Section 3, we give another example of a vectorial continued fraction that converges
according to the spectral seminorm and diverges according to the norm algebra.

From the simple and particular example above and the example in Section 3, we see that
to study convergence or divergence of vectorial continued fractions we can use the spectral
seminorm of the algebra to include a large class of vectorial continued fractions.

First, we start by determining necessary conditions upon an and bn to ensure the
convergence.

Next, we give sufficient conditions to have the convergence.
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2. Convergence of vectorial continued fractions

In this section, we discuss some conditions upon the elements an and bn of the vectorial
continued fraction (1.1) (with b0 = 0)which are necessary to ensure the convergence.

Definition 2.1. The vectorial continued fraction (1.1) converges if q−1n exists starting from a
certain rank N, and the sequence of nth approximants sn converges. Otherwise, the vectorial
continued fraction (1.1) diverges.

For future use, we record the following theorem due to P. Wynn.

Theorem 2.2 ([2]). For all n ∈ N, we have

sn+1 − sn = pn+1 · q−1n+1 − pn · q−1n
= (−1)na1b

−1
1 q0a2q

−1
2 q1a3q

−1
3 q2a4q

−1
4 · · · qn−2anq

−1
n qn−1an+1q

−1
n+1.

(2.1)

Remark 2.3. In the commutative case, Theorem 2.2 above becomes as follows.
For all n ∈ N, one has

sn+1 − sn = (−1)n
(

i=n+1∏

i=1

ai

)

· q−1n+1 · q−1n . (2.2)

Since convergence or divergence of the vectorial continued fraction (1.1) is not affected
by the value of the additive term b0, we omit it from subsequent discussion (i.e., b0 = 0).

Now, we give a proposition that extends a result due to Wall [3] in the case of scalar
continued fractions.

Proposition 2.4. The vectorial continued fraction (1.1) where its terms are commuting elements in A
diverges, if its odd partial denominators b2n+1 are all quasinilpotent elements inA.

Proof. In fact, from relation (1.5) above, we have q1 = b1. So ρ(q1) = ρ(b1) = 0.
Since coefficients of (1.1) are commuting elements in A, it is easy to show that for all

positive integers n andm, we have

am · qn = qn ·am; bm · qn = qn · bm. (2.3)

So,

ρ
(
am · qn

) ≤ ρ
(
am

) · ρ(qn
)
; ρ

(
bm · qn

) ≤ ρ
(
bm

) ·σ(qn
)
. (2.4)

Now, suppose that for n ≥ 1, ρ(q2n−1) = 0.
From relations (1.4) and (2.4), we have

ρ
(
q2n+1

) ≤ ρ
(
q2n

) · ρ(b2n+1
)
+ ρ

(
q2n−1

) · ρ(a2n+1
)
. (2.5)

Then, ρ(q2n+1) = 0, consequently

∀n ≥ 0; ρ
(
q2n+1

)
= 0. (2.6)

So infinitely many denominators qn are not invertible.
The vectorial continued fraction (1.1) diverges.
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Theorem 2.5 below gives a necessary condition for convergence according to the spectral
seminorm. This result is an extension of von Koch Theorem [4], concerning the scalar case. A
similar theorem was given by Fair [1] for vectorial continued fractions according to the norm
convergence.

Theorem 2.5. Let an = e, for all n ≥ 1, and bn be a sequence of commuting elements in A. If the
vectorial continued fraction (1.1) converges according to spectral seminorm, then, the series

∑∞
n=1ρ(bn)

diverges.

Proof. Suppose
∑∞

n=1ρ(bn) is a converging series, and there exists a positive integerN such that
q−1n exists, for all n ≥ N.

By an induction argument, it is easy to show that for all n ∈ N, we have

ρ
(
q2n − e

) ≤ exp
(
K2n

) − 1, ρ
(
q2n+1

) ≤ exp
(
K2n+1

)
, (2.7)

where K0 = 0 and Kn =
∑n

k=1ρ(bk); for all n ≥ 1.
Since for all positive integer n, an = e, and all bn are commuting elements in A, from

Remark 2.3 above, we have

dn = s2n+1 − s2n = q−12n+1 · q−12n, ∀n ≥ E

[
N

2

]
+ 1. (2.8)

So,

ρ
(
dn

) ≥ [
ρ
(
d−1
n

)]−1 =
[
ρ
(
q2n+1 · q2n

)]−1
, ∀n ≥ E

[
N

2

]
+ 1. (2.9)

Then,

ρ
(
dn

) ≥ [
ρ
(
q2n+1

)]−1 · [ρ(q2n
)]−1

, ∀n ≥ E

[
N

2

]
+ 1. (2.10)

From this preceding,

ρ
(
dn

) ≥ 1
exp

(
K2n+1

) · 1
exp

(
K2n

) − 1
≥ 1
exp

(
2K2n+1

) ≥ 1
exp(2K)

> 0, (2.11)

where K =
∑∞

n=1ρ(bn).
So, the sequence (sn)n≥0 is not a ρ-Cauchy sequence inA.

Remark 2.6. In a Banach algebra A if ρ denotes the spectral seminorm in A it is not a
multiplicative seminorm in general.

Consider the vectorial subspace of A defined by Ker(ρ) = {x ∈ A | ρ(x) = 0}. The
quotient vectorial space A/Ker(ρ) becomes a normed vectorial space with norm defined by
ρ̇(ẋ) = ρ(x), x ∈ ẋ. “ẋ denotes the class of x modulo Ker(ρ).”

Generally, the normed vectorial space A/Ker(ρ) is not complete. Its complete normed

vectorial space is Â/Ker(ρ) witch is a Banach space. So, ρ-Cauchy sequences in (A, ρ) converge

in the Banach space Â/Ker(ρ).
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Remark 2.7. Whenever A is commutative, the vectorial continued fraction (1.1) diverges, if for
one character ψ, the series

∑
n≥1|ψ(bn)| converges.

Lemma 2.8. Let (un)n be a sequence of commuting elements inA.
If the series

∑
n≥1ρ(un) converges, then, there exists a positive integer N ≥ 1 such that for every

positive integer k ≥ 1, the finite product
∏k

p=1(e + uN+p) is invertible and ρ-bounded and its inverse is
also ρ-bounded.

Proof. Since the series
∑

n≥1ρ(un) converges, therefore, there exists a positive integer N ≥ 1
such that

ρ
(
un

)
< 1; ∀n ≥ N. (2.12)

Hence, for k ≥ 1 the product
∏k

p=1(e+uN+p) is invertible as finite product of invertible elements.
We have

ρ

(
k∏

p=1

(
e + uN+p

)
)

≤
k∏

p=1

(
1 + ρ

(
uN+p

)) ≤
+∞∏

p=1

(
1 + ρ

(
uN+p

))
. (2.13)

But

(
k∏

p=1

(
e + uN+p

)
)−1

=
k∏

p=1

(
e + uN+p

)−1 =
k∏

p=1

+∞∑

n=0

(−1)nun
N+p. (2.14)

Hence,

ρ

((
k∏

p=1

(
e + uN+p

)
)−1)

≤
k∏

p=1

+∞∑

n=0

ρn
(
uN+p

)
=

k∏

p=1

1
1 − ρ

(
uN+p

) =
1

∏k
p=1

(
1 − ρ

(
uN+p

)) ≤ 1
∏+∞

p=1
(
1 − ρ

(
uN+p

)) .

(2.15)

Theorem 2.9. Let in the vectorial continued fraction (1.1) an = e for all n ≥ 1 and (bn)n∈N be a
sequence of commuting elements inA. If both series

∑

n≥0
ρ
(
b2p+1

)
,

∑

n≥0
ρ
(
b2p+1

) · ρ2(b2p
)

(2.16)

converge, then, the vectorial continued fraction (1.1) diverges.

Proof of Theorem 2.9. Since both series
∑

n≥0ρ(b2p+1) and
∑

n≥0ρ(b2p+1) · ρ2(b2p) converge, it
follows that the series

∑
n≥0ρ(b2p+1) · ρ(b2p) converges too.

Therefore, from Lemma 2.8 above, there exists a positive integer N ≥ 1 such that for
k ≥ 1, the quantity θk =

∏k
p=1(1 + b2N+2p+1 · b2N+2p) is invertible.
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Now, consider the vectorial continued fraction

(
c1 +

(
c2 +

(
c3 + · · · )−1)−1)−1, (2.17)

where

c2k = b2N+2k+1 · θ−1
k−1 · θ−1

k , c2k−1 = −b2N+2k+1 · b22N+2k · θk−1 · θk , k = 1, 2, . . . . (2.18)

We will suppose that q−1n exists for all n ≥ N (otherwise, from Definition 2.1, the vectorial
continued fraction (1.1) diverges).

Before continuing the proof, we give the following lemma that will be used later.

Lemma 2.10. For all positive integers k ≥ 1, consider the quantities

U2k = p2N+2k+1 · θ−1
k
, V2k = q2N+2k+1 · θ−1

k
,

U2k+1 = p2N+2k · θk, V2k+1 = q2N+2k · θk,

c2k = b2N+2k+1 · θ−1
k−1 · θ−1

k
, c2k−1 = −b2N+2k+1 · b22N+2k · θk−1 · θk,

k = 1, 2, . . . ,
(
θ0 = e

)
.

(2.19)

Then,

Uk = Uk−1 · ck +Uk−2,

Vk = Vk−1 · ck + Vk−2, ∀k ≥ 2.
(2.20)

This lemma is proved by the same argument given by Wall [3, Lemma 6.1] for scalar
continued fractions.

Lemma 2.10 shows that Un and Vn are respectively the nth numerator and nth
denominator of the vectorial continued fraction (2.17).

Since both series
∑

n≥0ρ(b2p+1),
∑

n≥0ρ(b2p+1) · ρ(b2p)2 converge and from Lemma 2.8
above θk and θ−1

k
are bounded, we conclude that the series

∑
k≥1ρ(ck) converges.

Then, it follows as in the proof of Theorem 2.5, that the vectorial continued fraction (2.17)
diverges and

ρ
(
U2k+1 ·V −1

2k+1 −U2k ·V −1
2k

)
= ρ

(
p2N+2k · q−12N+2k − p2N+2k+1 · q−12N+2k+1

) ≥ exp

(

2
+∞∑

k=1

ρ
(
ck
)
)

> 0.

(2.21)

So,

ρ
(
s2N+2k+1 − s2N+2k

) ≥ exp

(

2
+∞∑

k=1

ρ
(
ck
)
)

> 0, ∀k ≥ 0. (2.22)

This shows that the sequence of nth approximants (sn)n≥1 is not a ρ-Cauchy sequence in A.
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Now, we state Theorem 2.13 to give a sufficient condition to have convergence of the
vectorial continued fraction (1.1).

A similar theorem was given by Peng and Hessel [5], to study convergence of the
vectorial continued fraction (1.1) in norm where for each positive integer n, an = e.

Before stating the proof of Theorem 2.13, we give the following lemmas.

Lemma 2.11. Let b and c be two commuting elements inA such that the spectrum of b−1 · c is satisfied,
σ(b−1 · c) ⊂ B(0, 1). Then, the element b + c is invertible and its inverse satisfies ρ((b + c)−1) ≤
ρ(b−1)/(1 − ρ(b−1 · c)).

Proof. Since σ(b−1 · c) ⊂ B(0, 1), we have ρ(b−1 · c) < 1. So the element b + c is invertible inA. Its
inverse is

(b + c)−1 = b−1
(
e + b−1 · c)−1 = b−1 ·

∞∑

n=0

(−1)n(b−1 · c)n. (2.23)

So,

ρ
(
(b + c)−1

) ≤ ρ
(
b−1

) ·
∞∑

n=0

ρn
(
b−1 · c) =

ρ
(
b−1

)

1 − ρ
(
b−1 · c) . (2.24)

Lemma 2.12. Let ε ∈]0, 1[, (an)n∈N and (bn)n∈N be two sequences of elements in A such that for each
positive integer n ≥ 1, the spectra of an · b−1n and b−1n lie in the open ball B(0, (1/2)ε). Then, for each
positive integer n ≥ 1, q−1n exists and ρ(q−1n · qn−1) < ε.

Where qn is the nth denominator of the vectorial continued fraction (1.1).

Proof. From recurrence relation (1.5) above, we have

q0 = e, q1 = b1, (2.25)

then, q−11 = b−11 and ρ(q−11 · q0) = ρ(b−11 ) ≤ (1/2)ε < ε .
Now, suppose that for n ≥ 2, q−1n−1 exists and ρ(q−1n−1 · qn−2) < ε.
Then, from recurrence relation (1.4) above, we have

qn = qn−1 · bn + qn−2 ·an = qn−1 ·
(
bn + q−1n−1 · qn−2 ·an

)
. (2.26)

Put

c = q−1n−1 · qn−2 ·an, b = bn. (2.27)

Appling Lemma 2.11, we have

ρ
(
b−1 · c) ≤ ρ

(
q−1n−1 · qn−2

) · ρ(b−1n ·an

)
<
1
2
ε . (2.28)

So (bn + q−1n−1 · qn−2 ·an) is invertible and its inverse satisfies

ρ
((
bn + q−1n−1 · qn−2 ·an

)−1)
<

(1/2)ε
1 − (1/2)ε

<
(1/2)ε
1 − 1/2

< ε . (2.29)

Therefore, q−1n exists. So, for all n ≥ 0, qn is invertible and ρ(q−1n · qn−1) < ε .



8 Journal of Inequalities and Applications

Theorem 2.13. Let ε ∈]0, 1[, an and bn be commuting terms of the vectorial continued fraction (1.1)
such that for each positive integer n ≥ 1, the spectra of an · b−1n and b−1n lie in the open ball B(0, (1/2)ε).
Then, the vectorial continued fraction (1.1) converges.

Proof of Theorem 2.13. For positive integers n ≥ 1 and m ≥ 1, we introduce the finite vectorial
continued fraction

s
(n)
m = an+1 ·

(
bn+1 + an+2 ·

(
bn+2 + · · · + an+m−1 ·

(
bn+m−1 + an+m · b−1n+m

)−1)−1)−1 (2.30)

with initial conditions

s
(n)
0 = 0, s

(0)
m = sm , (2.31)

where sm is themth approximant of the continued fraction (1.1).
It is easily shown from (2.30) that

s
(n)
m = an+1 ·

(
bn+1 + s

(n+1)
m−1

)−1
. (2.32)

By the repeated use of Lemma 2.11 in each iteration in (2.30) for every n ≥ 1 and every m ≥ 1,
we can show that for each n andm, (bn+1 + s

(n+1)
m−1 )−1 exists and

ρ
(
s
(n)
m

)
< ε . (2.33)

We have

(
bn+1 + s

(n+1)
m

)−1 − (
bn+1 + s

(n+1)
m−1

)−1 =
(
bn+1 + s

(n+1)
m

)−1 · [s(n+1)m−1 − s
(n+1)
m

] · (bn+1 + s
(n+1)
m−1

)−1
. (2.34)

Thus, from relations (2.32) and (2.34), we have

s
(n)
m+1 − s

(n)
m = an+1 ·

((
bn+1 + s

(n+1)
m

)−1 − (
bn+1 + s

(n+1)
m−1

)−1)

= an+1 ·
(
bn+1 + s

(n+1)
m

)−1 · (s(n+1)m−1 − s
(n+1)
m

) · (bn+1 + s
(n+1)
m−1

)−1

= an+1 · b−2n+1 ·Km · (s(n+1)m − s
(n+1)
m−1

) ·Km−1 ,

(2.35)

where Km = (e + b−1n+1 · s
(n+1)
m )−1, for m ∈ N

∗.
Then,

ρ
(
s
(n)
m+1 − s

(n)
m

) ≤ ρ
(
an+1 · b−1n+1

) · ρ(b−1n+1
) · ρ(Km

) · ρ(s(n+1)m − s
(n+1)
m−1

) · ρ(Km−1
)
. (2.36)

Since from (2.33) ρ(b−1n+1 · s
(n+1)
m ) ≤ ρ(b−1n+1) · ρ(s

(n+1)
m ) ≤ (1/2)ε2 < 1/2, then, using Lemma 2.11,

ρ
(
Km

) ≤ 1

1 − ρ
(
b−1n+1 · s

(n+1)
m

) < 2, for m ∈ N
∗, (2.37)

we have ρ(an+1 · b−1n+1) ≤ (1/2)ε and ρ(b−1n+1) ≤ (1/2)ε.
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Then,

ρ
(
s
(n)
m+1 − s

(n)
m

) ≤ ε2 · ρ(s(n+1)m − s
(n+1)
m−1

)
. (2.38)

Gradually, we get

ρ
(
s
(n)
m+1 − s

(n)
m

) ≤ ε2m · ρ(s(n+m)
1 − s

(n+m)
0

)
. (2.39)

Besides, we have s(n+m)
0 = 0 and sn+m1 = an+m+1 · b−1n+m+1.

Thus,

ρ
(
s
(n)
m+1 − s

(n)
m

) ≤ ε2m · ρ(s(n+m)
1

)
= ε2m · ρ(an+m+1 · b−1n+m+1

)
<
1
2
ε2m+1. (2.40)

Now, considerm > 1, p ≥ 1, we have

ρ
(
s
(n)
m+p − s

(n)
m

) ≤
i=p−1∑

i=0

ρ
(
s
(n)
m+i+1 − s

(n)
m+i

) ≤ 1
2
·
(

i=p−1∑

i=0

ε2m+2i+1

)

=
1
2
· ε

2m+1(1 − ε2p
)

1 − ε2
≤ 1
2
· ε

2m+1

1 − ε2
.

(2.41)

In these inequalities n is arbitrary, thus we can choose n = 0.
Then,

ρ
(
sm+p − sm

) ≤ 1
2
· ε

2m+1

1 − ε2
. (2.42)

Hence, the sequence (sm)m∈N ofmth approximants of the vectorial continued fraction (1.1) is a
ρ-Cauchy sequence inA.

Consequently, sm converges and from Lemma 2.12, q−1n exists thus the vectorial
continued fraction (1.1) converges.

Theorem 2.14. Let an be a sequence of commuting elements in A such that for each positive integer
n ≥ 1, σ(an) = {αn}, where 0 ≤ αn ≤ 1/4. Then, the vectorial continued fraction

a1
(
e − a2

(
e − a3

(
e − a4(e − · · · )−1)−1)−1)−1 (2.43)

converges.

Proof. By relations (1.4) and (1.5), we have q1 = e, thus,

σ
(
q1
)
=
{
β1
}

with β1 =
1 + 1
2

= 1. (2.44)

And q2 = q1 − q0a2 = e − a2, thus,

σ
(
q2
)
=
{
β2
}

with β2 = 1 + α2 ≥ 1 − 1
4
=
3
4
· β1. (2.45)
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By induction, we show that for all n ≥ 2

σ
(
qn
)
=
{
βn
}
, (2.46)

such that

βn ≥ n + 1
2n

βn−1,

βn = βn−1 − αn βn−2.
(2.47)

Hence,

βn ≥ n + 1
2n

β0 ≥ n + 1
2n

> 0; ∀n ≥ 1. (2.48)

So q−1n exists for all n ≥ 1.
Since all an are commuting elements, then by Remark 2.3 above

sn = s1 +
n∑

k=2

(
sk − sk−1

)
= s1 +

n∑

k=2

dk q
−1
k q−1k−1, (2.49)

where

dk = (−1)k−1
i=k∏

i=1

( − ai

)
=

i=k∏

i=1

ai. (2.50)

We have

0 ≤ ρ
(
dk

) ≤
i=k∏

i=1

ρ
(
ai

) ≤ 1
4k

. (2.51)

Hence,

ρ
(
dk q

−1
k q−1k−1

) ≤ ρ
(
dk

)
ρ
(
q−1k

)
ρ
(
q−1k−1

)
=

1
βk βk−1

ρ
(
dk

) ≤ 1
4k

2k

k + 1
2k−1

k
=

1
2k(k + 1)

. (2.52)

Therefore, for positive integers n andm such that n > m, we have

ρ
(
sn − sm

) ≤
n∑

m+1

ρ
(
dk · q−1k · q−1k−1

) ≤
n∑

k=m+1

1
2k(k + 1)

<
1

m + 1
. (2.53)

So,

ρ
(
sn − sm

) ≤
∞∑

k=m+1

1
2k(k + 1)

<
1

m + 1
. (2.54)

It follows that (sn)n≥1 is a ρ-Cauchy sequence inA.
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3. Example

Here, we give an example of a vectorial continued fraction that converges according to the
spectral seminorm and does not converge according to the norm.

LetA be a unital complex Banach algebra and T a nonnull quasinilpotent element in A.
Consider the sequence inA defined for each positive integer n > 0, by

un = T +
1
n2

· e. (3.1)

For each positive integer n > 0, un is then invertible.
Let (an)n∈N and (bn)n∈N be two sequences in A defined for each positive integer n > 0,

by

an =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1 =
1
2
·u1

a2n = −e, ∀n ≥ 1,

a2n+1 = −un+1 ·u−1
n , ∀n ≥ 1,

bn =

⎧
⎨

⎩

b1 = e

bn = e − an, ∀n ≥ 2.

(3.2)

Consider the vectorial continued fraction (1.1) formed with the sequences (an)n∈N and
(bn)n∈N. Using recurrence relations (1.4) and (1.5), we can easily show that for each positive
integer n ≥ 1, qn = e (thus qn is invertible, for all n ≥ 1).

The (2n)th approximant and the (2n + 1)th approximant of the vectorial continued
fraction (1.1) are, respectively, equal to

s2n = p2n =
n∑

k=1

uk =
n∑

k=1

T +
1
k2

· e = nT +
n∑

k=1

1
k2

· e,

s2n+1 = p2n+1 =
n∑

k=1

uk +
un+1

2
= nT +

n∑

k=1

1
k2

· e + 1
2

(
T +

1

(n + 1)2
· e
)
.

(3.3)

Obviously, the sequence (sn)n≥0 is not a Cauchy sequence according to the norm, so the
vectorial continued fraction (1.1) does not converge in norm.

Now, we use the spectral seminorm, we have

ρ
(
s2n+1 − s2n

)
=
1
2
ρ
(
u2n+1

) ≤ 1
2

(
ρ(T) +

1
2n2

)
=
1
2

(
1
2n2

)
−→ 0,

ρ

(

s2n −
∞∑

k=1

1
k2

· e
)

= ρ

(

nT +
∞∑

k=n+1

1
k2

· e
)

≤ nρ(T) +
∞∑

k=n+1

1
k2

=
∞∑

k=n+1

1
k2

−→ 0 whenn −→ +∞.

(3.4)

The sequence (sn)n≥0 of the nth approximants converges according to the spectral seminorm.
Consequently, the vectorial continued fraction (1.1) converges according to the spectral

seminorm to the value
∑∞

k=n+1(e/k
2).
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