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1. Introduction

Throughout this paper, we always assume thatH is a real Hilbert space with norm and inner
product denoted by ‖·‖ and 〈·, ·〉, respectively. 2H denotes the family of all the nonempty
subsets of H.

Let A : H → H be a single-valued nonlinear mapping and M : H → 2H be a set-
valued mapping. We consider the following variational inclusion, which is to find a point
u ∈ H such that

θ ∈ A(u) +M(u), (1.1)

where θ is the zero vector inH. The set of solutions of problem (1.1) is denoted by I(A,M). If
H = Rm, then problem (1.1) becomes the generalized equation introduced by Robinson [1]. If
A = 0, then problem (1.1) becomes the inclusion problem introduced by Rockafellar [2]. It is
known that (1.1) provides a convenient framework for the unified study of optimal solutions
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in many optimization-related areas including mathematical programming, complementarity,
variational inequalities, optimal control, mathematical economics, equilibria, game theory,
and so forth. Also various types of variational inclusions problems have been extended and
generalized, for more details, please see [3–20] and the references therein.

There are many algorithms for solving variational inclusions (see [3, 5, 7, 8, 10–13,
16–20] and the references therein). We note that recently Zhang et al. [20] introduced the
following new iterative scheme for finding a common element of the set of solutions to the
problem (1.1) and the set of fixed points of nonexpansivemappings inHilbert spaces. Starting
with an arbitrary point x1 = x ∈ H, define sequences {xn} by

xn+1 = αnx +
(
1 − αn

)
Syn,

yn = JM,λ

(
xn − λAxn

)
, ∀n ≥ 0,

(1.2)

where JM,λ = (I + λM)−1 is the resolvent operator associated with M and a positive number
λ, {αn} is a sequence in the interval [0, 1].

Let F be a bifunction from C × C to R, where R is the set of real numbers. The
equilibrium problem for F : C × C → R is to find x ∈ C such that

F(x, y) ≥ 0, ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by EP(F). The problem (1.3) is very general in
the sense that it includes, as special cases, optimization problems, variational inequalities,
minimax problems, Nash equilibrium problem in noncooperative games, and others; for
more details (see [21]).

Recall that a mapping S of a closed convex subset C into itself is nonexpansive if there
holds that

‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C. (1.4)

A mapping f : C → C is called contractive if there exists a constant α ∈ (0, 1) such that

‖fx − fy‖ ≤ α‖x − y‖, ∀x, y ∈ C. (1.5)

We denote the set of fixed points of S by Fix(S). It is known that Fix(S) is closed
convex, but possibly empty. There are some methods for approximation of fixed points of
a nonexpansive mapping. In 2000, Moudafi [22] introduced the viscosity approximation
method for nonexpansive mappings.

Somemethods have been proposed to solve the equilibrium problem; see, for instance,
[23–30] and the references therein. Recently, S. Takahashi and W. Takahashi [23] introduced
the following Mann iterative scheme by the viscosity approximation method for finding a
common element of the set of solutions of problem (1.3) and the set of fixed points of a
nonexpansive mapping in a Hilbert space. Starting with an arbitrary point x1 ∈ H, define
sequences {xn} and {un} by

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf
(
xn

)
+
(
1 − αn

)
Sun, ∀n ∈ N.

(1.6)
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They proved that under certain appropriate conditions imposed on {αn} and {rn}, the
sequences {xn} and {un} generated by (1.6) converge strongly to z ∈ F(S) ∩ EP(F), where
z = PFix(S)∩EP(F)f(z).

The purpose of this paper is twofold. On one hand, it is easy to see that the authors
in [28–32] introduced some algorithms for finding a common element of the set of solutions
of an equilibrium problem, the set of fixed points of a nonexpansive mapping and the set
of solutions of a variational inequality. It is natural to raise and to give an answer to the
following question: can one construct algorithms for finding a common element of the set of
solutions of an equilibrium problem, the set of fixed points of a nonexpansive mapping, and
the set of solutions of a variational inclusion? In other words, can we construct algorithms for
finding a solution of a mathematical model which consists of an equilibrium problem and a
variational inclusion if this mathematical model has a solution? In this paper, we will give a
positive answer to this question. By combining the algorithm (1.2) for a variational inclusion
problem and the algorithm (1.6) for an equilibrium problem, we introduce the following
iterative scheme by the viscosity approximation method for finding a common element of the
set of solutions of the variational inclusion with a set-valued maximal monotone mapping
and an inverse strongly monotone mapping, the set of solutions of equilibrium problem
and the set of fixed points of a nonexpansive mapping in a Hilbert space. Starting with an
arbitrary point x1 ∈ H, define sequences {xn}, {yn}, and {un} by

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf
(
xn

)
+
(
1 − αn

)
Syn,

yn = JM,λ

(
un − λAun

)
, ∀n ≥ 0,

(1.7)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞).
On the other hand, we will show that the sequences {xn}, {yn}, and {un} generated

by (1.7) converge strongly to z ∈ F(S) ∩ EP(F) ∩ I(A,M) if the parameter sequences {αn}
and {rn} satisfy appropriate conditions. The results in this paper unify, extend, and improve
some corresponding results in [20, 23] and the references therein.

2. Preliminaries

In a real Hilbert space H, it is well known that
∥∥λx + (1 − λ)y

∥∥2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 (2.1)

for all x, y ∈ H and λ ∈ [0, 1].
For any x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such that

‖x − PC(x)‖ ≤ ‖x − y‖ for all y ∈ C. The mapping PC is called the metric projection of H onto
C. We know that PC is a nonexpansive mapping fromH onto C. It is also known that PCx ∈ C
and

〈
x − PC(x), PC(x) − y

〉 ≥ 0 (2.2)

for all x ∈ H and y ∈ C.
It is easy to see that (2.2) is equivalent to

‖x − y‖2 ≥ ∥∥x − PC(x)
∥∥2 +

∥∥y − PC(x)
∥∥2 (2.3)

for all x ∈ H and y ∈ C.
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Recall that a mapping A : H → H is called α-inverse strongly monotone, if there
exists an α > 0 such that

〈Ax −Ay, x − y〉 ≥ α‖Ax −Ay‖2, ∀x, y ∈ H. (2.4)

Let I be the identity mapping on H. It is well known that if A : H → H is an α-
inverse strongly monotone, thenA is (1/α)-Lipschitz continuous and monotone mapping. In
addition, if 0 < λ ≤ 2α, then I − λA is a nonexpansive mapping.

Let symbols → and⇀ denote strong and weak convergence, respectively. It is known
that H satisfies the Opial condition [33], that is, for any sequence {xn} ⊂ H with xn ⇀ x, the
inequality

lim inf
n→∞

∥
∥xn − x

∥
∥ < lim inf

n→∞
∥
∥xn − y

∥
∥ (2.5)

holds for every y ∈ H with x /=y. A set-valued mapping M : H → 2H is called monotone
if for all x, y ∈ H, f ∈ Mx, and g ∈ My imply 〈x − y, f − g〉 ≥ 0. A monotone mapping
M : H → 2H is maximal if its graph G(M) := {(f, x) ∈ H × H | f ∈ M(x)} of M is
not properly contained in the graph of any other monotone mapping. It is known that a
monotone mapping M is maximal if and only if for (x, f) ∈ H × H, 〈x − y, f − g〉 ≥ 0 for
every (y, g) ∈ G(M) implies f ∈ Mx.

Let the set-valued mapping M : H → 2H be maximal monotone. We define the
resolvent operator JM,λ associated withM and λ as follows:

JM,λ(u) = (I + λM)−1(u), u ∈ H, (2.6)

where λ is a positive number. It is worth mentioning that the resolvent operator JM,λ is single-
valued, nonexpansive, and 1-inverse strongly monotone, (see, e.g., [34]), and that a solution
of problem (1.1) is a fixed point of the operator JM,λ(I − λA) for all λ > 0 (see, e.g., [35]).

For solving the equilibrium problem, let us assume that the bifunction F satisfies the
following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for any x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

F
(
tz + (1 − t)x, y

) ≤ F(x, y), (2.7)

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

We recall some lemmas which will be needed in the rest of this paper.

Lemma 2.1 (see [21]). Let C be a nonempty closed convex subset of H, let F be a bifunction from
C × C to R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C. (2.8)
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Lemma 2.2 (see [23, 24]). Let C be a nonempty closed convex subset ofH, let F be a bifunction from
C × C to R satisfying (A1)–(A4). For r > 0 and x ∈ H, define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F(z, y) +

1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
(2.9)

for all x ∈ H. Then, the following statements hold

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H

∥
∥Tr(x) − Tr(y)

∥
∥2 ≤ 〈

Tr(x) − Tr(y), x − y
〉
, (2.10)

(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.

Lemma 2.3 (see [34]). Let M : H → 2H be a maximal monotone mapping and A : H → H be
a Lipschitz continuous mapping. Then the mapping S = M +A : H → 2H is a maximal monotone
mapping.

Remark 2.4. Lemma 2.3 implies that I(A,M) is closed and convex if M : H → 2H is a
maximal monotone mapping and A : H → H be an inverse strongly monotone mapping.

Lemma 2.5 (see [36, 37]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1 − γn

)
αn + δn, (2.11)

where γn is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∞∑

n=1

γn = ∞,

(ii) lim sup
n→∞

δn
γn

≤ 0 or
∞∑

n=1

∣∣δn
∣∣ < ∞.

(2.12)

Then, limn→∞αn = 0.

3. Strong convergence theorem

In this section, we establish a strong convergence theorem which solves the problem of
finding a common element of the set of solutions of variational inclusion, the set of solutions
of an equilibrium problem and the set of fixed points of a nonexpansive mapping in Hilbert
space.

Theorem 3.1. Let C be a nonempty closed convex subset of H. Let F be a bifunction from C × C to
R satisfying (A1)–(A4) and let S be a nonexpansive mapping of C into H. Let A : H → H be an
α-inverse strongly monotone mapping, M : H → 2H be a maximal monotone mapping such that
Ω = Fix(S) ∩ EP(F) ∩ I(A,M)/=∅, and let f : H → H be a contraction mapping with a constant
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ξ ∈ (0, 1). Let x1 be an arbitrary point in H, {xn}, {un}, and {yn} be sequences generated by
algorithm (1.7). If {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy the following conditions:

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

∣
∣αn+1 − αn

∣
∣ < ∞,

lim inf
n→∞

rn > 0,
∞∑

n=1

∣
∣rn+1 − rn

∣
∣ < ∞.

(3.1)

Then, {xn}, {yn}, and {un} converge strongly to z ∈ Ω, where z = PΩf(z).

Proof. We show that PΩf is a contraction mapping. In fact, we have

∥
∥PΩf(x) − PΩf(y)

∥
∥ ≤ ∥

∥f(x) − f(y)
∥
∥ ≤ ξ‖x − y‖ (3.2)

for any x, y ∈ H. Since H is complete, there exists a unique element z ∈ H such that z =
PΩf(z). Let v ∈ Ω. Then, from un = Trnxn, we have

∥∥un − v
∥∥ =

∥∥Trnxn − Trnv
∥∥ ≤ ∥∥xn − v

∥∥, (3.3)

for all n ∈ N. It is easy to see that v = JM,λ(v − λAv). As I − λA is nonexpansive, we have

∥∥yn − v
∥∥ =

∥∥JM,λ

(
un − λAun

) − JM,λ

(
v − λAv

)∥∥

≤ ∥∥(un − λAun

) − (
v − λAv)

∥∥

≤ ∥∥un − v
∥∥

≤ ∥∥xn − v
∥∥,

(3.4)

for all n ∈ N. It follows from (1.7) and (3.4) that

∥∥xn+1 − v
∥∥ =

∥∥αnf
(
xn

)
+
(
1 − αn

)
Syn − v

∥∥

=
∥∥αn

(
f
(
xn

) − v
)
+
(
1 − αn

)(
Syn − v

)∥∥

≤ αn

∥∥f
(
xn

) − v
∥∥ +

(
1 − αn

)∥∥Syn − v
∥∥

≤ αn

(∥∥f
(
xn

) − f(v)
∥∥ +

∥∥f(v) − v
∥∥) +

(
1 − αn

)∥∥yn − v
∥∥

≤ αnξ
∥∥xn − v

∥∥ + αn

∥∥f(v) − v
∥∥ +

(
1 − αn

)∥∥xn − v
∥∥

=
[
1 − αn(1 − ξ)

]∥∥xn − v
∥∥ + αn(1 − ξ)

1
1 − ξ

∥∥f(v) − v
∥∥

≤ max
{∥∥xn − v

∥∥;
1

1 − ξ

∥∥f(v) − v
∥∥
}

≤ · · ·

≤ max
{∥∥x1 − v

∥∥;
1

1 − ξ

∥∥f(v) − v
∥∥
}

(3.5)
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for all n ≥ 1. This implies that {xn} is bounded. Fromwhich it follows that {un}, {yn}, {f(xn)},
{Syn}, and {Aun} are also bounded. Next, we show that limn→∞‖xn+1 −xn‖ = 0. In fact, since
I − λA is nonexpansive, we have

∥
∥yn+1 − yn

∥
∥ =

∥
∥JM,λ

(
un+1 − λAun+1

) − JM,λ

(
un − λAun

)∥∥

≤ ∥
∥un+1 − λAun+1 −

(
un − λAun

)∥∥

≤ ∥
∥un+1 − un

∥
∥.

(3.6)

It follows from (1.7) and (3.6) that
∥
∥xn+1 − xn

∥
∥ =

∥
∥αnf

(
xn

)
+
(
1 − αn

)
Syn − αn−1f

(
xn−1

) − (
1 − αn−1

)
Syn−1

∥
∥

=
∥
∥αnf

(
xn

) − αnf
(
xn−1

)
+ αnf

(
xn−1

) − αn−1f
(
xn−1

)

+
(
1 − αn

)
Syn −

(
1 − αn

)
Syn−1 +

(
1 − αn

)
Syn−1 −

(
1 − αn−1

)
Syn−1

∥
∥

≤ αnξ
∥∥xn − xn−1

∥∥ +K
∣∣αn − αn−1

∣∣ +
(
1 − αn

)∥∥Syn − Syn−1
∥∥

≤ αnξ
∥∥xn − xn−1

∥∥ +K
∣∣αn − αn−1

∣∣ +
(
1 − αn

)∥∥yn − yn−1
∥∥

≤ αnξ
∥∥xn − xn−1

∥∥ +K
∣∣αn − αn−1

∣∣ +
(
1 − αn

)∥∥un − un−1
∥∥,

(3.7)

where K = sup{‖f(xn)‖ + ‖Syn‖, n ≥ 1}.
On the other hand, from un = Trnxn and un+1 = Trn+1xn+1, we have

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0 ∀y ∈ C, (3.8)

F
(
un+1, y

)
+

1
rn+1

〈
y − un+1, un+1 − xn+1

〉 ≥ 0 ∀y ∈ C. (3.9)

Putting y = un+1 in (3.8) and y = un in (3.9), we have

F
(
un, un+1

)
+

1
rn

〈
un+1 − un, un − xn

〉 ≥ 0,

F
(
un+1, un

)
+

1
rn+1

〈
un − un+1, un+1 − xn+1

〉 ≥ 0.
(3.10)

It follows from the monotonicity of F that
〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0. (3.11)

Thus,
〈
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1

(
un+1 − xn+1

)
〉

≥ 0. (3.12)

Without loss of generality, let us assume that there exists a real number b such that rn > b > 0
for all n ∈ N. Then, we have

∥∥un+1 − un

∥∥2 ≤
〈
un+1 − un, xn+1 − xn +

(
1 − rn

rn+1

)
(
un+1 − xn+1

)
〉

≤ ∥∥un+1 − un

∥∥
{∥∥xn+1 − xn

∥∥ +
∣∣∣∣1 −

rn
rn+1

∣∣∣∣
∥∥un+1 − xn+1

∥∥
}
.

(3.13)
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It follows that

∥
∥un+1 − un

∥
∥ ≤ ∥

∥xn+1 − xn

∥
∥ +

1
rn+1

∣
∣rn+1 − rn

∣
∣
∥
∥un+1 − xn+1

∥
∥

≤ ∥
∥xn+1 − xn

∥
∥ +

L

b

∣
∣rn+1 − rn

∣
∣,

(3.14)

where L = sup{‖un − xn‖ : n ∈ N}. From (3.7) and (3.14), we have

∥
∥xn+1 − xn

∥
∥ ≤ αnξ

∥
∥xn − xn−1

∥
∥ +K

∣
∣αn − αn−1

∣
∣ +

(
1 − αn

)∥∥xn − xn−1
∥
∥ +

(
1 − αn

)L
b

∣
∣rn − rn−1

∣
∣

≤ (
1 − αn(1 − ξ)

)∥∥xn − xn−1
∥
∥ +K

∣
∣αn − αn−1

∣
∣ +

L

b

∣
∣rn − rn−1

∣
∣.

(3.15)

It follows from Lemma 2.5 that

lim
n→∞

∥∥xn+1 − xn

∥∥ = 0. (3.16)

From (3.14) and |rn+1 − rn| → 0, we have

lim
n→∞

∥∥un+1 − un

∥∥ = 0. (3.17)

It follows from (3.6) that

lim
n→∞

∥∥yn+1 − yn

∥∥ = 0. (3.18)

Since xn = αn−1f(xn−1) + (1 − αn−1)Syn−1, we have

∥∥xn − Syn

∥∥ ≤ ∥∥xn − Syn−1
∥∥ +

∥∥Syn−1 − Syn

∥∥

≤ αn−1
∥∥f

(
xn−1

) − Syn−1
∥∥ +

∥∥yn−1 − yn

∥∥.
(3.19)

It follows from αn → 0 that ‖xn − Syn‖ → 0.
Now we prove that for any given v ∈ Ω,

∥∥Aun −Av
∥∥ −→ 0. (3.20)

In fact, for v ∈ Ω,we have

∥∥un − v
∥∥2 =

∥∥Trnxn − Trnv
∥∥2

≤ 〈
Trnxn − Trnv, xn − v

〉

=
〈
un − v, xn − v

〉

=
1
2
(∥∥un − v

∥∥2 +
∥∥xn − v

∥∥2 − ∥∥xn − un

∥∥2)
,

(3.21)

and hence,

∥∥un − v
∥∥2 ≤ ∥∥xn − v

∥∥2 − ∥∥xn − un

∥∥2
. (3.22)
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It follows from (1.7), (3.4), and (3.22) that
∥
∥xn+1 − v

∥
∥2 =

∥
∥αnf

(
xn

)
+
(
1 − αn

)
Syn − v

∥
∥2

≤ αn

∥
∥f

(
xn

) − v
∥
∥2 +

(
1 − αn

)∥∥Syn − v
∥
∥2

≤ αn

∥
∥f

(
xn

) − v
∥
∥2 +

(
1 − αn

)∥∥yn − v
∥
∥2

≤ αn

∥
∥f

(
xn

) − v
∥
∥2 +

(
1 − αn

)[∥∥xn − v
∥
∥2 − ∥

∥xn − un

∥
∥2]

≤ αn

∥
∥f

(
xn

) − v
∥
∥2 +

∥
∥xn − v

∥
∥2 − (

1 − αn

)∥∥xn − un

∥
∥2

.

(3.23)

Thus, we have
(
1 − αn

)∥∥xn − un

∥∥2 ≤ αn

∥∥f
(
xn

) − v
∥∥2 +

∥∥xn − v
∥∥2 − ∥∥xn+1 − v

∥∥2

≤ αn

∥
∥f

(
xn

) − v
∥
∥2 +

∥
∥xn − xn+1

∥
∥(

∥
∥xn − v

∥
∥ +

∥
∥xn+1 − v

∥
∥).

(3.24)

Since αn → 0, ‖xn − xn+1‖ → 0, and {xn} is bounded, we have ‖xn − un‖ → 0. From ‖un −
xn+1‖ ≤ ‖un − xn‖ + ‖xn − xn+1‖, we get ‖un − xn+1‖ → 0.

Equation (3.23), the nonexpansiveness of JM,λ, and the inverse strongly monotonicity
of A imply that

∥∥xn+1 − v
∥∥2 ≤ αn

∥∥f
(
xn

) − v
∥∥2 +

(
1 − αn

)∥∥yn − v
∥∥2

≤ αn

∥∥f
(
xn

) − v
∥∥2 +

(
1 − αn

)∥∥un − λAun −
(
v − λAv

)∥∥2

≤ αn

∥∥f
(
xn

) − v
∥∥2 +

(
1 − αn

){∥∥un − v
∥∥2 + λ

(
λ − 2α

)∥∥Aun −Av
∥∥2}

≤ αn

∥∥f
(
xn

) − v
∥∥2 +

∥∥un − v
∥∥2 +

(
1 − αn

)
λ
(
λ − 2α

)∥∥Aun −Av
∥∥2
.

(3.25)

Thus, we have
(
1 − αn

)
λ
(
λ − 2α

)∥∥Aun −Av
∥∥2 ≤ αn

∥∥f
(
xn

) − v
∥∥2 +

(∥∥un − v
∥∥2 − ∥∥xn+1 − v

∥∥2)

≤ αn

∥∥f
(
xn

) − v
∥∥2 +

(∥∥un − xn+1
∥∥)(∥∥un − v

∥∥ +
∥∥xn+1 − v

∥∥).
(3.26)

Since αn → 0, ‖un − xn+1‖ → 0, {un} and {xn} are bounded, we have
∥∥Aun −Av

∥∥ −→ 0. (3.27)

Next, we show that ‖Syn − yn‖ → 0. Indeed, for any v ∈ Ω,
∥∥yn − v

∥∥2 =
∥∥JM,λ

(
un − λAun

) − JM,λ

(
v − λAv

)∥∥2

≤ 〈
un − λAun −

(
v − λAv

)
, yn − v

〉

=
1
2
{∥∥un−λAun−

(
v−λAv

)∥∥2+
∥∥yn−v

∥∥2−∥∥un−λAun−
(
v−λAv

)−(yn−v
)∥∥2}

≤ 1
2
{∥∥un − v

∥∥2 +
∥∥yn − v

∥∥2 − ∥∥un − yn − λ
(
Aun −Av

)∥∥2}

=
1
2
{∥∥un−v

∥∥2+
∥∥yn−v

∥∥2−∥∥un−yn

∥∥2+2λ
〈
un−yn, Aun−Av

〉−λ2∥∥Aun−Av
∥∥2}

.

(3.28)
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Thus, we have

∥
∥yn − v

∥
∥2 ≤ ∥

∥un − v
∥
∥2 − ∥

∥un − yn

∥
∥2 + 2λ

〈
un − yn,Aun −Av

〉 − λ2
∥
∥Aun −Av

∥
∥2

. (3.29)

As the function ‖·‖2 is convex, by (3.29) and (3.23), we have

∥
∥xn+1 − v

∥
∥2 ≤ αn

∥
∥f

(
xn

) − v
∥
∥2 +

(
1 − αn

)∥∥yn − v
∥
∥2

≤ αn

∥
∥f

(
xn

) − v
∥
∥2 +

(
1 − αn

)

× {∥∥un − v
∥
∥2 − ∥

∥un − yn

∥
∥2 + 2λ

〈
un − yn,Aun −Av

〉 − λ2
∥
∥Aun −Av

∥
∥2}

.

(3.30)

Thus, we get

(
1 − αn

)∥∥un − yn

∥
∥2 ≤ αn

∥
∥f

(
xn

) − v
∥
∥2 +

(∥∥un − v
∥
∥2 − ∥

∥xn+1 − v
∥
∥2)

+ 2
(
1 − αn

)
λ
〈
un − yn,Aun −Av

〉 − (
1 − αn

)
λ2
∥∥Aun −Av

∥∥2

≤ αn

∥∥f
(
xn

) − v
∥∥2 +

(∥∥un − xn+1
∥∥)(∥∥un − v

∥∥ − ∥∥xn+1 − v
∥∥)

+ 2
(
1 − αn

)
λ
〈
un − yn,Aun −Av

〉 − (
1 − αn

)
λ2
∥∥Aun −Av

∥∥2
.

(3.31)

Since αn → 0, ‖Aun − Av‖ → 0, and ‖un − xn+1‖ → 0, we have ‖un − yn‖ → 0. From the
triangle inequality ‖xn − yn‖ = ‖xn − un‖ + ‖un − yn‖, we deduce that ‖xn − yn‖ → 0. It then
follows from the inequality ‖Syn−yn‖ ≤ ‖Syn−xn‖+‖xn−un‖+‖un−yn‖ that ‖Syn−yn‖ → 0.

Next, we show that

lim sup
n→∞

〈
f(z) − z, xn − z

〉 ≤ 0, (3.32)

where z = PΩf(z). To show this inequality, we choose a subsequence {xni} of {xn} such that

lim
ni →∞

〈
f(z) − z, xni − z

〉
= lim sup

n→∞

〈
f(z) − z, xn − z

〉
. (3.33)

Since {uni} is bounded, there exists a subsequence {unij
} of {uni} which converges

weakly tow. Without loss of generality, we can assume that {uni} ⇀ w. From ‖un − yn‖ → 0,
we also obtain that yni ⇀ w. Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C.

Let us show w ∈ EP(F). By un = Trnxn, we have

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.34)

From (A2), we also have

1
rn

〈
y − un, un − xn

〉 ≥ F
(
y, un

)
, (3.35)

and hence,
〈
y − uni ,

uni − xni

rni

〉
≥ F

(
y, uni

)
. (3.36)
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Since (uni − xni)/rni → 0 and uni ⇀ w, from (A4), we have

F(y,w) ≤ 0, ∀y ∈ C. (3.37)

For twith 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)w. Since, y ∈ C andw ∈ C, we obtain yt ∈ C
and hence, F(yt,w) ≤ 0. So we have

0 = F
(
yt, yt

) ≤ tF
(
yt, y

)
+
(
1 − t

)
F
(
yt,w

) ≤ tF
(
yt, y

)
. (3.38)

Dividing by t, we get

F(yt, y) ≥ 0. (3.39)

Letting t → 0 and from (A3), we get

F(w,y) ≥ 0 (3.40)

for all y ∈ C and hence w ∈ EP(F).
We next show that w ∈ Fix(S). Assume w /∈ Fix(S). Since yni ⇀ w and w/=Sw, from

the Opial theorem [33]we have

lim inf
i→∞

∥∥yni −w
∥∥ < lim inf

i→∞

∥∥yni − Sw
∥∥

≤ lim inf
i→∞

{∥∥yni − Syni

∥∥ +
∥∥Syni − Sw

∥∥}

≤ lim inf
i→∞

∥∥yni −w
∥∥.

(3.41)

This is a contradiction. So, we get w ∈ Fix(S).
We now show that w ∈ I(A,M). In fact, since A is an α-inverse strongly monotone,

A is an (1/α)-Lipschitz continuous monotone mapping and D(A) = H. It follows from
Lemma 2.3 that M +A is maximal monotone. Let (p, g) ∈ G(M +A), that is, g −Ap ∈ M(p).
Again since yni = JM,λ(uni − λAuni),we have uni − λAuni ∈ (I + λM)(yni), that is,

1
λ

(
uni − yni − λAuni

) ∈ M
(
yni

)
. (3.42)

By virtue of the maximal monotonicity of M +A, we have

〈
p − yni , g −Ap − 1

λ

(
uni − yni − λAuni

)
〉

≥ 0, (3.43)

and so

〈
p − yni , g

〉 ≥
〈
p − yni , Ap +

1
λ

(
uni − yni − λAuni

)
〉

=
〈
p − yni , Ap −Ayni +Ayni −Auni +

1
λ

(
uni − yni

)
〉

≥ 0 +
〈
p − yni , Ayni −Auni

〉
+
〈
p − yni ,

1
λ

(
uni − yni

)
〉
.

(3.44)
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It follows from ‖un − yn‖ → 0, ‖Aun −Ayn‖ → 0 and yni ⇀ w that

lim
ni →∞

〈
p − yni , g

〉
=
〈
p −w, g

〉 ≥ 0. (3.45)

It follows from the maximal monotonicity ofA+M that θ ∈ (M+A)(w), that is,w ∈ I(A,M).
This implies that w ∈ Ω.

Since z = PΩf(z), we have

lim sup
n→∞

〈
f(z) − z, xn − z

〉
= lim

i→∞
〈
f(z) − z, xni − z

〉

= lim
i→∞

〈
f(z) − z, uni − z

〉

=
〈
f(z) − z, w − z

〉 ≤ 0.

(3.46)

From xn+1 − z = αn(f(xn) − z) + (1 − αn)(Syn − z) and (3.4), we have

∥∥xn+1 − z
∥∥2 =

〈
αn

(
f
(
xn

) − z
)
+
(
1 − αn

)(
Syn − z

)
, xn+1 − z

〉

≤ αn

〈
f
(
xn

)−f(z), xn+1−z
〉
+αn

〈
f
(
z
)−z, xn+1−z

〉
+
(
1 − αn

)∥∥Syn − z
∥∥∥∥xn+1 − z

∥∥

≤ αnξ
∥∥xn − z

∥∥∥∥xn+1 − z
∥∥ + αn

〈
f
(
z
) − z, xn+1 − z

〉
+
(
1 − αn

)∥∥yn − z
∥∥∥∥xn+1 − z

∥∥

≤ 1
2
αnξ

{∥∥xn − z
∥∥2 +

∥∥xn+1 − z
∥∥2} + αn

〈
f
(
z
) − z, xn+1 − z

〉

+
1
2
(
1 − αn

){∥∥yn − z
∥∥2 +

∥∥xn+1 − z
∥∥2}

≤ 1
2
αnξ

{∥∥xn − z
∥∥2 +

∥∥xn+1 − z
∥∥2} + αn

〈
f
(
z
) − z, xn+1 − z

〉

+
1
2
(
1 − αn

){∥∥xn − z
∥∥2 +

∥∥xn+1 − z
∥∥2}

≤ 1
2
(
1 − αn

(
1 − ξ

))∥∥xn − z
∥∥2 +

1
2
∥∥xn+1 − z

∥∥2 + αn

〈
f
(
z
) − z, xn+1 − z

〉
.

(3.47)

It follows that

∥∥xn+1 − z
∥∥2 ≤ (

1 − αn

(
1 − ξ

))∥∥xn − z
∥∥2 + 2αn

〈
f
(
z
) − z, xn+1 − z

〉
. (3.48)

Lemma 2.5 implies that xn → z = PΩf(z). Since ‖xn − un‖ → 0 and ‖yn − un‖ → 0,
we also obtain that un → z and yn → z. The proof is now complete.

By Theorem 3.1, we can obtain some new and interesting results as follows: let
V I(C,A) denote the solution set of the following variational inequality: finding u ∈ C such
that

〈
A(u), v − u

〉 ≥ 0, ∀v ∈ C, (3.49)

where C is a closed convex subset of H.
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Theorem 3.2. Let C be a nonempty closed convex subset of H. Let F be a bifunction from C × C to
R satisfying (A1)–(A4) and let S be a nonexpansive mapping of C into H. Let A : C → H be an α-
inverse strongly monotone mapping such that Γ = Fix(S) ∩ EF(F) ∩ V I(C,A)/=∅, where V I(C,A)
is the set of solutions of problem (3.49). Let f : H → H be a contraction mapping with a constant
ξ ∈ (0, 1) and x1 be an arbitrary point in H. Let {xn}, {un}, and {yn} be sequences generated by

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf
(
xn

)
+
(
1 − αn

)
Syn,

yn = PC

(
un − λAun

)

(3.50)

for all n ∈ N. If λ ∈ (0, 2α], {αn} ⊂ [0, 1], and {rn} ⊂ (0,∞) satisfy the following conditions:

lim
n→∞

αn = 0,
∞∑

n=1

αnref = ∞,
∞∑

n=1

∣
∣αn+1 − αn

∣
∣ < ∞,

lim inf
n→∞

rn > 0,
∞∑

n=1

∣∣rn+1 − rn
∣∣ < ∞.

(3.51)

Then, {xn}, {yn}, and {un} converge strongly to z ∈ Γ where z = PΓf(z).

Proof. In Theorem 3.1 take M = ∂δC : H → 2H, where δC : H → [0,∞] is the indicator
function of C, that is,

δC(x) =

⎧
⎨

⎩

0, x ∈ C,

+∞, v /∈C.
(3.52)

Then, the problem (1.1) is equivalent to problem (3.49). Again, sinceM = ∂δC, then JM,λ = PC,
so we have

yn = PC(un − λAun). (3.53)

The conclusion of Theorem 3.2 can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let C be a nonempty closed convex subset of H. Let F be a bifunction from C × C to
R satisfying (A1)–(A4) and let S be a nonexpansive mapping of C into H, Let A : H → H be an
α-inverse strongly monotone mapping, M : H → 2H be a maximal monotone mapping such that
Ω = Fix(S) ∩ EP(F) ∩ I(A,M)/=∅. Let x1 = x be an arbitrary point inH and let {xn}, {un}, and
{yn} be sequences generated by

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnx +
(
1 − αn

)
Syn,

yn = JM,λ

(
un − λAun

)

(3.54)

for all n ≥ 1, where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy the following conditions:

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞,
∞∑

n=1

∣∣αn+1 − αn

∣∣ < ∞,

lim inf
n→∞

rn > 0,
∞∑

n=1

∣∣rn+1 − rn
∣∣ < ∞.

(3.55)

Then, {xn}, {yn}, and {un} converge strongly to z ∈ Ω where z = PΩx.
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Proof. Putting f(y) = x, for all y ∈ H in Theorem 3.1. Then, f(xn) = x for all n ≥ 1. By
Theorem 3.1, we obtained the desired result.

Remark 3.4. Putting A = 0 in Theorem 3.2, then yn = un. By Theorem 3.2, we recover [23,
Theorem 3.1]. Putting C = H and F(x, y) = 0 for all x, y ∈ H in Theorem 3.3, then un =
PHxn = xn. By Theorem 3.3, we recover [20, Theorem 2.1]. Hence, Theorem 3.1 unifies and
extends the main results in [20, 23] and the references therein.
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