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1. Introduction

Let U = {z ∈ C, |z| < 1} be the open unit disk and let A denote the class of the functions f(z)
of the form

f(z) = z + a2z
2 + a3z

3 + · · · , z ∈ U, (1.1)

which are analytic in the open disk U.
LetM(β) be the subclass ofA, consisting of the functions f(z), which satisfy the inequal-

ity

Re
{
zf ′(z)
f(z)

}
< β, z ∈ U, β > 1, (1.2)

and let N(β) be the subclass of A, consisting of functions f(z), which satisfy the inequality

Re
{
zf ′′(z)
f ′(z)

+ 1
}

< β, z ∈ U. (1.3)

These classes are studied by Uralegaddi et al. in [1], and Owa and Srivastava in [2].
Consider the integral operator Fn introduced by D. Breaz and N. Breaz in [3], having the

form

Fn(z) =
∫z

0

(
f1(t)
t

)α1

· · ·
(
fn(t)
t

)αn

dt, (1.4)

where fi(z) ∈ A and αi > 0, for all i ∈ {1, . . . , n}.
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Remark 1.1. This operator extends the integral operator of Alexander given by F(z) =∫z
0 (f(t)/t)dt.

Also, we consider the next integral operator denoted by Fα1,...,αn
that was introduced by

Breaz et al. in [4], having the form

Fα1,...,αn
(z) =

∫z

0

[
f ′
1(t)

]α1 · · · [f ′
n(t)

]αndt, (1.5)

where fi(z) ∈ A and αi > 0 for all i ∈ {1, . . . , n}.

It is easy to see that these integral operators are analytic operators.

2. Main results

Theorem 2.1. Let fi ∈ M(βi), for each i = 1, 2, 3, . . . , n with βi > 1. Then Fn(z) ∈ N(μ) with
μ = 1 +

∑ n
i=1 αi(βi − 1) and αi > 0, (i = 1, 2, 3, . . . , n).

Proof. After some calculi, we obtain that

zF ′′
n(z)

F ′
n(z)

=
n∑
i=1

αi

zf ′
i(z)

fi(z)
−

n∑
i=1

αi. (2.1)

The relation (2.1) is equivalent to

Re
(
zF ′′

n(z)
F ′
n(z)

+ 1
)

=
n∑
i=1

αi Re
(
zf ′

i(z)
fi(z)

)
−

n∑
i=1

αi + 1. (2.2)

Since fi ∈ M(βi), we have

Re
(
zF ′′

n(z)
F ′
n(z)

+ 1
)

<
n∑
i=1

αiβi −
n∑
i=1

αi + 1 =
n∑
i=1

αi

(
βi − 1

)
+ 1. (2.3)

Because
∑ n

i=1 αi(βi − 1) > 0, we obtain that Fn ∈ N(μ), where μ = 1 +
∑ n

i=1 αi(βi − 1).

Corollary 2.2. Let fi ∈ M(β) for each i = 1, 2, 3, . . . , n with β > 1. Then Fn(z) ∈ N(γ) with
γ = 1 + (β − 1)

∑ n
i=1αi and αi > 0, (i = 1, 2, 3, . . . , n).

Proof. In Theorem 2.1, we consider β1 = β2 = · · · = βn = β.

Corollary 2.3. Let f ∈ M(β) with β > 1. Then the integral operator F(z) =
∫z
0 (f(t)/t)

αdt
∈ N(δ) with δ = α(β − 1) + 1 and α > 0.

Proof. In Corollary 2.2, we consider n = 1 and α1 = α.

Corollary 2.4. Let f ∈ M(β) with β > 1. Then the integral operator of Alexander F(z) =∫z
0 (f(t)/t)dt ∈ N(β).
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Proof. We have

zF ′′(z)
F ′(z)

=
zf ′(z)
f(z)

− 1. (2.4)

From (2.4), we have

Re
(
zF ′′(z)
F ′(z)

+ 1
)

= Re
zf ′(z)
f(z)

< β. (2.5)

So relation (2.5) implies that Alexander operator is in N(β).

Theorem 2.5. Let fi ∈ N(βi) for each i = 1, 2, 3, . . . , n, with βi > 1. Then Fα1,...,αn
(z) ∈ N(ρ) with

ρ = 1 +
∑ n

i=1αi(βi − 1) and αi > 0, (i = 1, 2, 3, . . . , n).

Proof. After some calculi, we have

zF ′′
α1,...,αn

(z)

F ′
α1,...,αn

(z)
= α1

zf ′′
1 (z)

f ′
1(z)

+ · · · + αn
zf ′′

n(z)
f ′
n(z)

(2.6)

that is equivalent to

zF ′′
α1,...,αn

(z)

F ′
α1,...,αn

(z)
+ 1 = α1

(
zf ′′

1 (z)
f ′
1(z)

+ 1
)
+ · · · + αn

(
zf ′′

n(z)
f ′
n(z)

+ 1
)
−

n∑
i=1

αi + 1. (2.7)

Since fi ∈ N(βi), for all i ∈ {1, . . . , n}, we have

Re
(
zf ′′

n(z)
f ′
n(z)

+ 1
)

< βi. (2.8)

So we obtain

Re
(
zF ′′

α1,...,αn
(z)

F ′
α1,...,αn

(z)
+ 1

)
<

n∑
i=1

αiβi −
n∑
i=1

αi + 1 =
n∑
i=1

αi

(
βi − 1

)
+ 1 (2.9)

which implies that Fα1,...,αn
∈ N(ρ), where ρ = 1 +

∑ n
i=1αi(βi − 1).

Corollary 2.6. Let fi ∈ N(β) for each i = 1, 2, 3, . . . , n with β > 1. Then Fα1,...,αn
(z) ∈ N(η) with

η = 1 +
∑ n

i=1αi(β − 1) and αi > 0, (i = 1, 2, 3, . . . , n).

Proof. In Thorem 2.5, we consider β1 = β2 = · · · = βn = β.

Corollary 2.7. Let f ∈ N(β) with β > 1. Then the integral operator

Fα(z) =
∫z

0

[
f ′(t)

]α
dt (2.10)

is in the classN(α(β − 1) + 1) and α > 0.
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Proof. We have

zF ′′
α(z)

F ′
α(z)

= α
zf ′′(z)
f ′(z)

. (2.11)

From (2.11) we have

Re
(
zF ′′

α(z)
F ′
α(z)

+ 1
)

= αRe
(
zf ′′(z)
f ′(z)

+ 1
)
+ 1 − α < αβ + 1 − α = α(β − 1) + 1. (2.12)

So the relation (2.12) implies that the operator Fα is in N(α(β − 1) + 1).

Example 2.8. Let f(z) = (1/(2β − 1)){1 − (1 − z)2β−1} ∈ N(β). After some calculi, we obtain that

Fα(z) =
∫z

0

[
f ′(t)

]α
dt =

1
2α(1 − β) − 1

(1 − z)2α(β−1)+1 ∈ N(
α(β − 1) + 1

)
. (2.13)
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