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1. Introduction

In this paper, we consider the existence of solutions for the followingweighted p(r)-Laplacian
ordinary equation with right-hand terms depending on the first-order derivative:

− (
w(r)

∣∣u′∣∣p(r)−2u′)′ + f
(
r, u,

(
w(r)

)1/(p(r)−1)
u′) = 0, ∀r ∈ (

T1, T2
)
, (P)

with one of the following boundary value conditions:

u
(
T1
)
= c, u

(
T2
)
= d, (1.1)

g
(
u
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)u′(T1

))
= 0, u

(
T2
)
= d, (1.2)

g
(
u
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)u′(T1

))
= 0, h

(
u
(
T2
)
,
(
w
(
T2
))1/(p(T2)−1)u′(T2

))
= 0, (1.3)

u
(
T1
)
= u

(
T2
)
, w

(
T1
)∣∣u′(T1

)∣∣p(T1)−2u′(T1
)
= w

(
T2
)∣∣u′(T2

)∣∣p(T2)−2u′(T2
)
, (1.4)

where p ∈ C([T1, T2],R) and p(r) > 1; w ∈ C([T1, T2],R) satisfies 0 < w(r), ∀r ∈ (T1, T2),
and (w(r))−1/(p(r)−1) ∈ L1(T1, T2); −(w(r)|u′|p(r)−2u′)

′
is called the weighted p(r)-Laplacian; the
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notation (w(T1))
1/(p(T1)−1)u′(T1)means limr→ T+

1
(w(r))1/(p(r)−1)u′(r) exists and

(
w
(
T1
))1/(p(T1)−1)u′(T1

)
:= lim

r→ T+
1

(
w(r)

)1/(p(r)−1)
u′(r), (1.5)

similarly

(
w
(
T2
))1/(p(T2)−1)u′(T2

)
:= lim

r→ T−
2

(
w(r)

)1/(p(r)−1)
u′(r); (1.6)

where g(x, y) and h(x, y) are continuous and increasing in y for any fixed x, respectively.
The study of differential equations and variational problems with nonstandard p(r)-

growth conditions is a new and interesting topic. Many results have been obtained on these
kinds of problem, for example, [1–18]. If w(r) ≡ p(r) ≡ p (a constant), (P) is the well-known
p-Laplacian problem. Because of the nonhomogeneity of p(x)-Laplacian, p(x)-Laplacian
problems are more complicated than those of p-Laplacian, many methods and results for
p-Laplacian problems are invalid for p(x)-Laplacian problems. For example,

(1) if Ω ⊂ R
n is an open bounded domain, then the Rayleigh quotient

λp(x) = inf
u∈W1,p(x)

0 (Ω)\{0}

∫
Ω

(
1/p(x)

)|∇u|p(x)dx
∫
Ω

(
1/p(x)

)|u|p(x)dx
(1.7)

is zero in general, and only under some special conditions λp(x) > 0 (see [4]), but the fact that
λp > 0 is very important in the study of p-Laplacian problems. In [19], the author considers
the existence and nonexistence of positive weak solution to the following quasilinear elliptic
system:

−Δpu = λf(u, v) = λuαvγ in Ω,

−Δqv = λg(u, v) = λuδvβ in Ω,

u = v = 0 on ∂Ω,

(S)

the first eigenfunction is used to constructing the subsolution of problem (S) successfully.
On the p(x)-Laplacian problems, maybe p(x)-Laplacian does not have the first eigenvalue
and the first eigenfunction. Because of the nonhomogeneity of p(x)-Laplacian, the first
eigenfunction cannot be used to construct the subsolution of p(x)-Laplacian problems, even
if the first eigenfunction of p(x)-Laplacian exists.On the existence of solutions for p(x)-
Laplacian equations Dirichlet problems via subsuper solution methods, we refer to [13, 14];

(2) if w(r) ≡ p(r) ≡ p (a constant) and −Δpu > 0, then u is concave, this property is
used extensively in the study of one-dimensional p-Laplacian problems, but it is invalid for
−Δp(r). It is another difference on −Δp and −Δp(r) := −(|u′|p(r)−2u′)

′
;

(3) on the existence of solutions of the typical p(r)-Laplacian problem:

−(∣∣u′∣∣p(r)−2u′)′ = |u|q(r)−2u + C, r ∈ (0, 1), (1.8)

because of the nonhomogeneity of p(t)-Laplacian, when we use critical point theory to deal
with the existence of solutions, we usually need the corresponding functional is coercive or
satisfy Palais-Smale conditions. If 1 ≤ maxr∈[0,1] q(r) < minr∈[0,1] p(r), then the corresponding
functional is coercive, if maxr∈[0,1] p(r) < minr∈[0,1] q(r), then the corresponding functional
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satisfies Palais-Smale conditions (see [3]). But if minr∈[0,1] p(r) ≤ q(r) ≤ maxr∈[0,1] p(r),
one can see that the corresponding functional is neither coercive nor satisfying Palais-Smale
conditions, the results on this case are rare.

There are many papers on the existence of solutions for p-Laplacian boundary value
problems via subsuper solution method (see [20–24]). But results on the sub-super-solution
method for p(x)-Laplacian equations and systems are rare. In this paper, when p(r) is
a general function, we establish several sub-super-solution theorems for the existence of
solutions for weighted p(r)-Laplacian equation with Dirichlet, Robin, and Periodic boundary
value conditions. Moreover, the case of minr∈[0,1] p(r) ≤ q(r) ≤ maxr∈[0,1] p(r) is discussed.
Our results partially generalize the results of [13, 14, 20, 25].

Let T1 < T2 and I = [T1, T2], the function f : I × R × R → R is assumed to be
Caratheodory, by this we mean the following:

(i) for almost every t ∈ I, the function f(t, ·, ·) is continuous;
(ii) for each (x, y) ∈ R × R, the function f(·, x, y) is measurable on I;

(iii) for each ρ > 0, there is a αρ ∈ L1(I,R) such that, for almost every t ∈ I and every
(x, y) ∈ R × Rwith |x| ≤ ρ, |y| ≤ ρ, one has

∣∣f(t, x, y)
∣∣ ≤ αρ(t). (1.9)

We set C = C(I,R), C1 = {u ∈ C | u′ is continuous in (T1, T2), limr→ T+
1
w(r)|u′|p(r)−2u′(r)

and limr→ T−
2
w(r)|u′|p(r)−2u′(r) exist}. Denote ‖u‖0 = supr∈(T1,T2) |u(r)| and ‖u‖1 = ‖u‖0 +

‖(w(r))1/(p(r)−1)u′‖0. The spaces C and C1 will be equipped with the norm ‖·‖0 and ‖·‖1,
respectively.

We say a function u : I → R is a solution of (P), if u ∈ C1 and w(r)|u′|p(r)−2u′(r) is
absolutely continuous and satisfies (P) almost every on I.

Functions α, β ∈ C1 are called subsolution and supersolution of (P), if |α′|p(r)−2α′(r) and
|β′|p(r)−2β′(r) are absolutely continuous and satisfy

−(w(r)
∣∣α′∣∣p(r)−2α′)′ + f

(
r, α,

(
w(r)

)1/(p(r)−1)
α′) ≤ 0, a.e. on I,

−(w(r)
∣∣β′

∣∣p(r)−2β′
)′
+ f

(
r, β,

(
w(r)

)1/(p(r)−1)
β′
) ≥ 0, a.e. on I.

(1.10)

Throughout this paper, we assume that α ≤ β are subsolution and supersolution,
respectively. Denote

Ω0 =
{
(t, x) | t ∈ I, x ∈ [

α(t), β(t)
]}
,

Ω1 =
{
(t, x, y) | t ∈ I, x ∈ [

α(t), β(t)
]
, y ∈ R

}
.

(1.11)

We also assume that
(H1) |f(t, x, y)| ≤ A1(t, x)K1(t, x, y) + A2(t, x)K2(t, x, y), for all (t, x, y) ∈ Ω1, where

Ai(t, x) (i = 1, 2) are positive value and continuous on Ω0, Ki(t, x, y) (i = 1, 2) are positive
value and continuous on Ω1.

(H2) There exist positive numbers M1 and M2 such that K1(t, x, y) ≤ |y|φ(|y|),
K2(t, x, y) ≤ M1φ(|y|), for |y| ≥ M2, where φ ∈ C([1,+∞), [1,+∞)) is increasing and satisfies∫+∞
1 (1/φ(y1/(p−−1)))dy = ∞, where p− = minr∈I p(r).
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Our main results are as the following theorem.

Theorem 1.1. If f is Caratheodory and satisfies (H1) and (H2), α and β satisfy α(T1) ≤ c ≤ β(T1),
α(T2) ≤ d ≤ β(T2), then (P) with (1.1) possesses a solution.

Theorem 1.2. If f is Caratheodory and satisfies (H1) and (H2), α and β satisfy α(T2) ≤ d ≤ β(T2),
and

g
(
α
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)α′(T1

)) ≥ 0 ≥ g
(
β
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)β′

(
T1
))
, (1.12)

then (P) with (1.2) possesses a solution.

Theorem 1.3. If f is Caratheodory and satisfies (H1) and (H2), α and β satisfy

g
(
α
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)α′(T1

)) ≥ 0 ≥ g
(
β
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)β′

(
T1
))
,

h
(
α
(
T2
)
,
(
w
(
T2
))1/(p(T2)−1)α′(T2

)) ≤ 0 ≤ h
(
β
(
T2
)
,
(
w
(
T2
))1/(p(T2)−1)β′

(
T2
))
,

(1.13)

then (P) with (1.3) possesses a solution.

Theorem 1.4. If f is Caratheodory and satisfies (H1) and (H2), α and β satisfy

α
(
T1
)
= α

(
T2) < β

(
T1) = β

(
T2),

w
(
T1
)∣∣α′(T1

)∣∣p(T1)−2α′(T1
) ≥ w

(
T2
)∣∣α′(T2

)∣∣p(T2)−2α′(T2
)
,

w
(
T1
)∣∣β′

(
T1
)∣∣p(T1)−2β′

(
T1
) ≤ w

(
T2
)∣∣β′

(
T2
)∣∣p(T2)−2β′

(
T2
)
,

(1.14)

then (P) with (1.4) possesses a solution.

As an application, we consider the existence of weak solutions for the following p(x)-
Laplacian partial differential equation:

−div(|∇u|p(x)−2∇u
)
+ f

(
x, u, |x|(n−1)/(p(x)−1)|∇u|) = 0, ∀x ∈ Ω, (1.15)

where Ω is a bounded symmetric domain in R
n, p ∈ C(Ω;R) is radially symmetric. We will

write p(x) = p(|x|) = p(r), and p(r) satisfies 1 < p(r) ∈ C, f ∈ C(Ω × R × R,R) is radially
symmetric with respect to x, namely, f(x, u, v) = f(|x|, u, v) = f(r, u, v), and f satisfies the
Caratheodory condition.

2. Preliminary

Denote ϕ(r, x) = |x|p(r)−2x, ∀(r, x) ∈ I × R. Obviously, ϕ has the following properties.

Lemma 2.1. ϕ is a continuous function and satisfies

(i) for any r ∈ [T1, T2], ϕ(r, ·) is strictly increasing;
(ii) ϕ(r, ·) is a homeomorphism from R to R for any fixed r ∈ I.
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For any fixed r ∈ I, denote ϕ−1(r, ·) as

ϕ−1(r, x) = |x|(2−p(r))/(p(r)−1)x, for x ∈ R \ {0}, ϕ−1(r, 0) = 0. (2.1)

It is clear that ϕ−1(r, ·) is continuous and send bounded sets into bounded sets.
Let us now consider the simple problem

(
w(r)ϕ

(
r, u′(r)

))′ = f(r), (2.2)

with boundary value condition (1.1), where f ∈ L1. If u is a solution of (2.2) with (1.1), by
integrating (2.2) from T1 to r, we find that

w(r)ϕ
(
r, u′(r)

)
= w

(
T1
)
ϕ
(
T1, u

′(T1
))

+
∫ r

T1

f(t)dt. (2.3)

Denote

F(f)(r) =
∫ r

T1

f(t)dt, a = w
(
T1
)
ϕ
(
T1, u

′(T1
))
, (2.4)

then

u(r) = u
(
T1
)
+
∫ r

T1

ϕ−1[r,
(
w(r)

)−1(
a + F(f)(r)

)]
dr. (2.5)

The boundary conditions imply that

∫T2

T1

ϕ−1[r,
(
w(r)

)−1(
a + F(f)(r)

)]
dr = d − c. (2.6)

For fixed h ∈ C, we denote

Λh(a) =
∫T2

T1

ϕ−1[r,
(
w(r)

)−1(
a + h(r)

)]
dr + c − d. (2.7)

We have the following lemma.

Lemma 2.2. The function Λh has the following properties. (i) For any fixed h ∈ C, the equation

Λh(a) = 0 (2.8)

has a unique solution ã(h) ∈ R.
(ii) The function ã : C → R, defined in (i), is continuous and sends bounded sets to bounded

sets.

Proof. (i) Obviously, for any fixed h ∈ C, Λh(·) is continuous and strictly increasing, then, if
(2.8) has a solution, it is unique.

Since (w(r))−1/(p(r)−1) ∈ L1(T1, T2) and h ∈ C, it is easy to see that

lim
a→+∞

Λh(a) = +∞, lim
a→−∞

Λh(a) = −∞. (2.9)
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It means the existence of solutions of Λh(a) = 0.
In this way, we define a function ã(h) : C[T1, T2] → R, which satisfies

∫T2

T1

ϕ−1[r,
(
w(r)

)−1(
ã(h) + h(r)

)]
dr = 0. (2.10)

(ii)We claim that

∣
∣ã(h)

∣
∣ ≤

{
|c − d|

∫T2
T1
ϕ−1[r,

(
w(r)

)−1]
dr

+ 1

}p++1

+ ‖h‖0, ∀h ∈ C. (2.11)

If it is false. Without loss of generality, we may assume that there are some h ∈ C such
that

ã(h) >

{
|c − d|

∫T2
T1
ϕ−1[r,

(
w(r)

)−1]
dr

+ 1

}p++1

+ ‖h‖0, (2.12)

then

ã(h) + h >

{
|c − d|

∫T2
T1
ϕ−1[r,

(
w(r)

)−1]
dr

+ 1

}p++1

,

∫T2

T1

ϕ−1[r,
(
w(r)

)−1(
ã(h) + h(r)

)]
dr + d − c

>

{
|c − d|

∫T2
T1
ϕ−1[r,

(
w(r)

)−1]
dr

+ 1

}∫T2

T1

ϕ−1[r,
(
w(r)

)−1]
dr + d − c

= |c − d| +
∫T2

T1

ϕ−1[r,
(
w(r)

)−1]
dr + d − c

> 0.

(2.13)

It is a contradiction. Thus, (2.11) is valid. It mens that ã sends bounded sets to bounded
sets.

Finally, to show the continuity of ã, let {un} be a convergent sequence in C and un →
u, as n → +∞. Obviously, {ã(un)} is a bounded sequence, then it contains a convergent
subsequence {ã(unj )}. Let ã(unj ) → a0 as j → +∞. Since

∫T2

T1

ϕ−1[r,
(
w(r)

)−1(
ã
(
unj

)
+ unj (r)

)]
dr = 0, (2.14)

letting j → +∞, we have

∫T2

T1

ϕ−1[r,
(
w(r)

)−1(
a0 + u(r)

)]
dr = 0, (2.15)

from (i), we get a0 = ã(u), it means ã is continuous.
This completes the proof.
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Now, we define a : L1 → R is defined by

a(h) = ã
(
F(h)

)
. (2.16)

It is clear that a is a continuous function which send bounded sets of L1 into bounded
sets of R, and hence it is a complete continuous mapping.

We continue now with our argument previous to Lemma 2.2. By solving for u′ in (2.3)
and integrating, we find

u(r) = u
(
T1
)
+ F

{
ϕ−1[r,

(
w(r)

)−1(
a(f) + F(f)(r)

)]}
(r). (2.17)

Let us define

K(h)(t) = F
{
ϕ−1[r,

(
w(r)

)−1(
a(h) + F(h)

)]}
(t), ∀t ∈ [

T1, T2
]
. (2.18)

We denote by Nf(u) : C1 × [T1, T2] → L1, the Nemytsky operator associated to f
defined by

Nf(u)(r) = f
(
r, u(r),

(
w(r)

)1/(p(r)−1)
u′(r)

)
, a.e. on I. (2.19)

It is easy to see the following lemma.

Lemma 2.3. u is a solution of (P) with boundary value condition (1.1) if and only if u is a solution
of the following abstract equation:

u = c +K
(
Nf(u)

)
. (2.20)

Lemma 2.4. The operatorK is continuous and sends equi-integrable sets in L1 into relatively compact
sets in C1.

Proof. It is easy to check that K(h)(t) ∈ C1. Since (w(r))−1/(p(r)−1) ∈ L1, and
(
w(t)

)1/(p(t)−1)
K(h)′(t) = ϕ−1[t,

(
a(h) + F(h)

)]
, ∀t ∈ [

T1, T2
]
, (2.21)

it is easy to check that K is a continuous operator from L1 to C1.
Let now U be an equi-integrable set in L1, then there exists ρ ∈ L1, such that

∣∣u(t)
∣∣ ≤ ρ(t) a.e. in I, for any u ∈ U. (2.22)

We want to show that K(U) ⊂ C1 is a compact set.
Let {un} be a sequence in K(U), then there exist a sequence {hn} ∈ U such that un =

K(hn). For t1, t2 ∈ I, we have that

∣∣F
(
hn

)(
t1
) − F

(
hn

)(
t2
)∣∣ ≤

∣∣∣∣

∫ t2

t1

ρ(t)dt
∣∣∣∣. (2.23)

Hence, the sequence {F(hn)} is uniformly bounded and equicontinuous, then there
exists a subsequence of {F(hn)} which is convergent in C, and we name the same. Since
the operator ã is bounded and continuous, we can choose a subsequence of {a(hn) + F(hn)}
(which we still denote {a(hn) + F(hn)}) that is convergent in C, then

w(t)ϕ
(
t,
(
K(hn)

)′(t)
)
= a

(
hn

)
+ F

(
hn

)
(2.24)

is convergent in C. Since

K
(
hn

)
(t) = F

{(
w(r)

)−1/(p(r)−1)
ϕ−1[r,

(
a
(
hn

)
+ F

(
hn

)]}
(t), ∀t ∈ [

T1, T2
]
, (2.25)

according to the continuous of ϕ−1 and the integrability of (w(r))−1/(p(r)−1) in L1, then K(hn)
is convergent in C. Then, we can conclude that {un} convergent in C1.
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Lemma 2.5. Let α, β ∈ C1 be subsolution and supersolution of (P), respectively, which satisfies
α(t) ≤ β(t) for any t ∈ [T1, T2], then there exists a positive constant L such that, for any solution x of
(P) with (1.1) whichsatisfies α(t) ≤ x(t) ≤ β(t),one has ‖(w(t))1/(p(t)−1)x′‖0 ≤ L.

Proof. We denote

μ0 =
∫T2

T1

[
A1

(
t, x(t)

)
+A2

(
t, x(t)

)]
dt, a0 = max

{(
w(r)

)1/(p(r)−1) | r ∈ [
T1, T2

]}
,

σ = max
{
β(s) − α(t) | t, s ∈ [T1, T2]

}
,

γ = max
{(

w(t)
)1/(p(t)−1)

A1(t, x) | (t, x) ∈ Ω0
}
,

(2.26)

then there exists a t0 ∈ (T1, T2) such that
∣
∣(w

(
t0
))1/(p(t0)−1)x′(t0

)∣∣ ≤ a0
∣
∣x′(t0

)∣∣ ≤ a0
σ

T2 − T1
. (2.27)

From (H2), there exist positive numbers σ1 and N1 such that

N1 ≥ σ1 ≥ max
r∈I

(
M2 + a0

σ

T2 − T1
+ 1

)p(r)

,

∫N1

σ1

1
φ
(
y1/(p(r)−1))dy > γσ +M1μ0, for r ∈ [

T1, T2
]
uniformly.

(2.28)

Assume that our conclusion is not true, combining (2.27), then there exists [t1, t2] ⊂
[T1, T2] such that (w(r))1/(p(r)−1)x′ keeps the same sign on [t1, t2], and

w
(
t1
)∣∣x′∣∣p(t1)−2x′(t1

)
= σ1, w

(
t2
)∣∣x′∣∣p(t2)−2x′(t2

)
= N1, (2.29)

or inversely

w
(
t1
)∣∣x′∣∣p(t1)−2x′(t1

)
= −σ1, w

(
t2
)∣∣x′∣∣p(t2)−2x′(t2

)
= −N1. (2.30)

For simplicity, we assume that the former appears. Hence,

γσ +M1μ0 <

∣∣∣∣∣

∫N1

σ1

1
φ
(
y1/(p(r)−1))dy

∣∣∣∣∣

=

∣∣∣∣∣

∫ t2

t1

(
w(r)

∣∣x′∣∣p(r)−1
)′

φ
((

w(r)
∣∣x′∣∣p(r)−1

)1/(p(r)−1))dr

∣∣∣∣∣

=
∫ t2

t1

∣∣∣∣∣

f
(
r, x,

(
w(r)

)1/(p(r)−1)
x′
)

φ
((

w(r)
)1/(p(r)−1)∣∣x′∣∣

)

∣∣∣∣∣
dr

≤
∫ t2

t1

(
w(r)

)1/(p(r)−1)
A1

(
r, x(r)

)∣∣x′∣∣dr +M1μ0

≤ γσ +M1μ0,

(2.31)

which is impossible. The proof is completed.
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Let us consider the auxiliary SBVP of the form

(
w(r)

∣
∣u′∣∣p(r)−2u′)′ = f

(
r, R(r, u), R1

[(
w(r)

)1/(p(r)−1)
u′]) + R2(r, u)

def= f̃(r, u), r ∈ (
T1, T2

)
,

(2.32)

where

R(t, u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β(t), u(t) > β(t),

u, α(t) ≤ u(t) ≤ β(t),

α(t), u(t) < α(t),

R1[y] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1, y > L1,

y, |y| ≤ L1,

−L1, y < −L1,

(2.33)

where

L1 = 1 +max
{
L, sup

r∈(T1,T2)

∣∣(w(r)
)1/(p(r)−1)

β′(r)
∣∣, sup

r∈(T1,T2)

∣∣(w(r)
)1/(p(r)−1)

α′(r)
∣∣
}
, (2.34)

where L is defined in Lemma 2.5, and

R2(t, u) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e(t, u)
u − β(t)
1 + u2

u(t) > β(t),

0, α(t) ≤ u(t) ≤ β(t),

e(t, u)
u − α(t)
1 + u2

u(t) < α(t),

(2.35)

where e(t, u) = 1 +A1(t, R(t, u)) +A2(t, R(t, u)).

Lemma 2.6. Let the conditions of Lemma 2.5 hold, and let u(t) be any solution of SBVP with (1.1)
satisfies α(T1) ≤ c ≤ β(T1) and α(T2) ≤ d ≤ β(T2), then α(t) ≤ u(t) ≤ β(t), for any t ∈ [T1, T2].

Proof. We will only prove that u(t) ≤ β(t) for any t ∈ [T1, T2]. The argument of the case of
α(t) ≤ u(t) for any t ∈ [T1, T2] is similar.

Assume that u(t) > β(t) for some t ∈ (T1, T2), then there exist a t0 ∈ (T1, T2) and a
positive number δ such that u(t0) = β(t0) + δ, u(t) ≤ β(t) + δ, for any t ∈ [T1, T2]. Hence,

(
w
(
t0
))1/(p(t0)−1)u′(t0

)
=
(
w
(
t0
))1/(p(t0)−1)β′

(
t0
)
. (2.36)

There exists a positive number η such that u(t) > β(t), for any t ∈ J := (t0 − η, t0 + η) ⊂
[T1, T2]. From the definition of β, u, and f̃ we conclude that

(
w(r)

∣∣β′
∣∣p(r)−2β′

)′ ≤ f
(
r, β,

(
w(r)

)1/(p(r)−1)
β′
)
= f̃(r, β) < f̃(r, u) on

[
t0 − η1, t0 + η1

]
, (2.37)
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where η1 ∈ (0, η) is small enough. For any r ∈ (t0, t0 + η1], we have
∫ r

t0

(
w(r)

∣
∣β′

∣
∣p(r)−2β′

)′
dr <

∫ r

t0

f̃(r, u)dr =
∫ r

t0

(
w(r)

∣
∣u′∣∣p(r)−2u′)′dr. (2.38)

From (2.36) and (2.38), we have
∣
∣β′

∣
∣p(r)−2β′ <

∣
∣u′∣∣p(r)−2u′ on

(
t0, t0 + η1

]
, (2.39)

it means that

(β + δ)′ < u′ on
(
t0, t0 + η1

]
. (2.40)

It is a contradiction to the definition of t0, so u(t) ≤ β(t), for any t ∈ [T1, T2].

3. Proofs of main results

In this section, we will deal with the proofs of main results.

Proof of Theorem 1.1. From Lemmas 2.5 and 2.6, we only need to prove the existence of
solutions for SBVP with (1.1). Obviously, u is a solution of SBVP with (1.1) if and only if
u is a solution of

u = Φf̃(u) := c +K
(
Nf̃(u)

)
. (3.1)

We set

C1
c,d =

{
u ∈ C1 | u(T1

)
= c, u

(
T2
)
= d

}
. (3.2)

Obviously, Nf̃(u) sends C1 into equi-integrable sets in L1. Similar to the proof of
Lemma 2.4, we can conclude that K sends equi-integrable sets in L1 into relatively compact
sets in C1, then Φf̃(u) is compact continuous.

Obviously, for any u ∈ C1, we have Φf̃(u) ∈ C1
c,d, and Φf̃(C

1) is bounded. By virtue
of Schauder fixed point theorem, Φf̃(u) has at least one fixed point u in C1

c,d
. Then, u is a

solution of SBVP with (1.1). This completes the proof.

Proof of Theorem 1.2. Let dwith α(T2) ≤ d ≤ β(T2) be fixed. According to Theorem 1.1, (P)with
the following boundary value condition:

u1
(
T1
)
= α

(
T1
)
, u1

(
T2
)
= d, (3.3)

possesses a solution u1 such that

α(t) ≤ u1(t) ≤ β(t), ∀t ∈ [
T1, T2

]
. (3.4)

Since limr→ T+
1
w(r)

∣∣u′
1

∣∣p(r)−2u′
1(r) exists, we have

u1(r) − u1
(
T1
)
=
∫ r

T1

(
w(t)

)−1/(p(t)−1)[(
w(t)

)1/(p(t)−1)
u′
1(t)

]
dt

=
(
w
(
T1
))1/(p(T1)−1)u′

1

(
T1
)
∫ r

T1

(
w(t)

)−1/(p(t)−1)(1 + o(1)
)
dt.

(3.5)
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Similarly,

α(r) − α
(
T1
)
=
(
w
(
T1
))1/(p(T1)−1)α′(T1

)
∫ r

T1

(
w(t)

)−1/(p(t)−1)(1 + o(1)
)
dt. (3.6)

Obviously

0 ≤ lim
r→ T+

1

u1(r) − α(r)
∫ r
T1

(
w(t)

)−1/(p(t)−1)
dt

=
(
w
(
T1
))1/(p(T1)−1)u′

1

(
T1
) − (

w
(
T1
))1/(p(T1)−1)α′(T1

)
, (3.7)

then, we can conclude that

(
w
(
T1
))1/(p(T1)−1)u′

1

(
T1
) ≥ (

w
(
T1
))1/(p(T1)−1)α′(T1

)
. (3.8)

Since u1(T1) = α(T1), and g(x, y) is increasing in y, we have

g
(
u1
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)u′

1

(
T1
)) ≥ g

(
α
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)α′(T1

)) ≥ 0. (3.9)

Wemay assume that g(u1(T1), (w(T1))
1/(p(T1)−1)u′

1(T1)) > 0, or we get a solution for (P)
with (1.2).

Since u1 is a solution of (P), it is also a subsolution of (P). Similarly, (P)with boundary
value condition

v1
(
T1
)
= β

(
T1
)
, v1

(
T2
)
= d, (3.10)

possesses a solution v1 such that

u1(t) ≤ v1(t) ≤ β(t), ∀t ∈ [
T1, T2

]
, (3.11)

which satisfies

(
w
(
T1
))1/(p(T1)−1)v′

1

(
T1
) ≤ (

w
(
T1
))1/(p(T1)−1)β′

(
T1
)
, (3.12)

then

g
(
v1
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)v′

1

(
T1
)) ≤ g

(
β
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)β′

(
T1
)) ≤ 0. (3.13)

Obviously, u1(t) and v1(t) are subsolution and supersolution of (P) with (1.2),
respectively. According to Theorem 1.1, (P) with boundary value condition

x
(
T1
)
=

u1
(
T1
)
+ v1

(
T1
)

2
, x

(
T2
)
= d, (3.14)

possesses a solution x such that

u1(t) ≤ x(t) ≤ v1(t), ∀t ∈ [
T1, T2

]
. (3.15)

We may assume that g(x(T1), (w(T1))
1/(p(T1)−1)x′(T1))/= 0, or we get a solution for (P)

with (1.2).
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If g(x(T1), (w(T1))
1/(p(T1)−1)x′(T1)) > 0, then denote u2(t) = x(t) and v2(t) = v1(t); if

g(x(T1), (w(T1))
1/(p(T1)−1)x′(T1)) < 0, then denote v2(t) = x(t) and u2(t) = u1(t). It is easy to

see that u2(t) and v2(t) both are solutions of (P) and satisfy

g
(
u2
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)u′

2

(
T1
))

> 0 > g
(
v2
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)v′

2

(
T1
))
,

u2(t) ≤ v2(t), ∀t ∈ [
T1, T2

]
,

[
u2(t), v2(t)

] ⊆ [
u1(t), v1(t)

]
, ∀t ∈ [

T1, T2
]
,

u2
(
T2
)
= d = v2

(
T2
)
,

v2
(
T1
) − u2

(
T1
)
=

v1
(
T1
) − u1

(
T1
)

2
.

(3.16)

Repeated the step, we get two sequences {un} and {vn}, all are solutions of (P), and
satisfy

g
(
un

(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)u′

n

(
T1
))

> 0 > g
(
vn

(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)v′

n

(
T1
))
, (3.17)

un(t) ≤ vn(t), ∀t ∈ [
T1, T2

]
,

[
un+1(t), vn+1(t)

] ⊆ [
un(t), vn(t)

]
, ∀t ∈ [

T1, T2
]
, (3.18)

un

(
T2
)
= d = vn

(
T2
)
, (3.19)

vn+1
(
T1
) − un+1

(
T1
)
=

vn

(
T1
) − un

(
T1
)

2
. (3.20)

According to Lemma 2.5, {un(t)} and {vn(t)} both are bounded in C1, then
{(w(T1))

1/(p(T1)−1)u′
n(T1)} is a bounded set and has a convergent subsequence. Note that

{un(t)} are solutions of (P) and satisfy

w(r)ϕ
(
r, u′

n(r)
)
= an + F

(
Nf

(
un

))
(r), (3.21)

where

F
(
Nf

(
un

))
(r) =

∫ r

T1

Nf

(
un

)
dt, an = w

(
T1
)
ϕ
(
T1, u

′
n

(
T1
))
. (3.22)

Similar to the proof of Lemma 2.4, {un(t)} possesses a convergent subsequence {uni(t)}
in C1, and then {an} is bounded. From [2], we can see that {un(t)} and {vn(t)} have uniform
C1,α regularity. We may assume that uni(t) → u(t) in C1 and vnj (t) → v(t) in C1.

It is easy to see that u(t) ≤ v(t) both are solutions of (P). From the definition of {un(t)}
and {vn(t)}, we can see that

u
(
T2
)
= d = v

(
T2
)
. (3.23)

Combining (3.18) and (3.20), we have

u(t) ≤ v(t), ∀t ∈ [
T1, T2

]
,

u(T1) = lim
j→∞

uni

(
T1
)
= lim

j→∞
vni

(
T1
)
= v

(
T1
)
.

(3.24)

Similar to (3.7), we have

(
w
(
T1
))1/(p(T1)−1)u′(T1

) ≤ (
w
(
T1
))1/(p(T1)−1)v′(T1

)
. (3.25)
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From (3.17) and the continuity of g, we can see that

g
(
u
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)u′(T1

)) ≥ 0 ≥ g
(
v(T1

)
,
(
w
(
T1
))1/(p(T1)−1)v′(T1

))
. (3.26)

From (3.25), (3.26), and the increasing property of g(x, y) with respect to y, we have

g
(
u
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)u′(T1

))
= 0 = g

(
v
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)v′(T1

))
. (3.27)

Thus, u and v both are solutions of (P) with (1.2). This completes the proof.

Proof of Theorem 1.3. According to Theorem 1.2, (P) possesses a solution u1 such that

g
(
u1
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)u′

1

(
T1
))

= 0,

u1
(
T2
)
= α

(
T2
)
,

α(t) ≤ u1(t) ≤ β(t), ∀t ∈ [
T1, T2

]
.

(3.28)

Similar to the proof of (3.7), we have

(
w
(
T2
))1/(p(T2)−1)u′

1

(
T2
) ≤ (

w
(
T2
))1/(p(T2)−1)α′(T2

)
. (3.29)

Obviously, h(u1(T2), (w(T2))
1/(p(T2)−1)u′

1(T2)) ≤ 0. We may assume that

h(u1(T2), (w(T2))
1/(p(T2)−1)u′

1(T2)) < 0, (3.30)

or we get a solution for (P)with (1.3), then u1 is a subsolution of (P) with (1.3).
According to Theorem 1.2, (P) possesses a solution v1 such that

g
(
v1
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)v′

1

(
T1
))

= 0,

v1
(
T2
)
= β

(
T2
)
,

u1(t) ≤ v1(t) ≤ β(t), ∀t ∈ [
T1, T2

]
.

(3.31)

Similarly, h(v1(T2), (w(T2))
1/(p(T2)−1)v′

1(T2)) ≥ 0. We may assume that

h
(
v1
(
T2
)
,
(
w
(
T2
))1/(p(T2)−1)v′

1

(
T2
))

> 0, (3.32)

or we get a solution for (P)with (1.3), then v1 is a supersolution of (P) with (1.3).
According to Theorem 1.2, (P) possesses a solution x such that

g
(
x
(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)x′(T1

))
= 0, x

(
T2
)
=

u1
(
T2
)
+ v1

(
T2
)

2
,

u1(t) ≤ x(t) ≤ v1(t), ∀t ∈ [
T1, T2

]
.

(3.33)

We may assume that h(x(T2), (w(T2))
1/(p(T2)−1)x′(T2))/= 0, or we get a solution for (P)

with (1.3). If h(x(T2), (w(T2))
1/(p(T2)−1)x′(T2)) > 0, then denote v2(t) = x(t) and u2(t) = u1(t),
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if h(x(T2), (w(T2))
1/(p(T2)−1)x′(T2)) < 0, then denote v2(t) = v1(t) and u2(t) = x(t). It is easy to

see that u2(t) and v2(t) both are solutions of (P) and satisfy

h
(
u2
(
T2
)
,
(
w
(
T2
))1/(p(T2)−1)u′

2

(
T2
))

< 0 < h
(
v2
(
T2
)
,
(
w
(
T2
))1/(p(T2)−1)v′

2

(
T2
))
,

u2(t) ≤ v2(t), ∀t ∈ [
T1, T2

]
,

[
u2(t), v2(t)

] ⊆ [
u1(t), v1(t)

]
, ∀t ∈ [

T1, T2
]
,

v2
(
T2
) − u2

(
T2
)
=

v1
(
T2
) − u1

(
T2
)

2
.

(3.34)

Repeating the step, similar to the proof of Theorem 1.2, we get two sequences {un} and
{vn}, all are solutions of (P), and satisfy

g
(
un

(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)u′

n

(
T1
))

= 0 = g
(
vn

(
T1
)
,
(
w
(
T1
))1/(p(T1)−1)v′

n

(
T1
))
,

h
(
un

(
T2
)
,
(
w
(
T2
))1/(p(T2)−1)u′

n

(
T2
))

< 0 < h
(
vn

(
T2
)
,
(
w
(
T2
))1/(p(T2)−1)v′

n

(
T2
))
,

un(t) ≤ vn(t), ∀t ∈ [
T1, T2

]
,

[
un+1(t), vn+1(t)

] ⊆ [
un(t), vn(t)

]
, ∀t ∈ [

T1, T2
]
.

vn+1
(
T2
) − un+1

(
T2
)
=

vn

(
T2
) − un

(
T2
)

2
.

(3.35)

Similar to the proof of Theorem 1.2, {un(t)} and {vn(t)} possess convergent
subsequence {uni(t)} and {vnj (t)} in C1, respectively. We may assume that uni(t) → u(t)
in C1, and similar vnj (t) → v(t) in C1. It is easy to see that u(t) ≤ v(t) both are solutions of
(P) with (1.3). This completes the proof.

Proof of Theorem 1.4. According to Theorem 1.1, (P) possesses solution u1 which satisfies

u1
(
T1
)
= α

(
T1
)
, u1

(
T2
)
= α

(
T2
)
, α(t) ≤ u1(t) ≤ β(t), t ∈ [

T1, T2
]
. (3.36)

We may assume that w(T1)ϕ(T1, u′
1(T1))/=w(T2)ϕ(T2, u′

1(T2)), or we get a solution for
(P) with (1.4), then w(T1)ϕ(T1, u′

1(T1)) > w(T2)ϕ(T2, u′
1(T2)), and u1 is a subsolution of (P).

According to Theorem 1.1, (P) possesses solutions v1 which satisfies

v1
(
T1
)
= β

(
T1
)
, v1

(
T2
)
= β

(
T2
)
, u1(t) ≤ v1(t) ≤ β(t), t ∈ [

T1, T2
]
. (3.37)

We may assume that w(T1)ϕ(T1, v′
1(T1))/=w(T2)ϕ(T2, v′

1(T2)), or we get a solution for
(P) with (1.4), then w(T1)ϕ(T1, v′

1(T1)) < w(T2)ϕ(T2, v′
1(T2)), and v1 is a supersolution of (P).

According to Theorem 1.1, (P) possesses solutions x and satisfies

x
(
T1
)
=

u1
(
T1
)
+ v1

(
T1
)

2
= x

(
T2
)
, u1(t) ≤ x(t) ≤ v1(t), t ∈ [

T1, T2
]
. (3.38)

Similar to the proof of Theorem 1.2, we obtain u and v that are solutions of (P), which
satisfy

u(t) ≤ v(t), t ∈ [
T1, T2

]
, (3.39)

u
(
T1
)
= u

(
T2
)
= v

(
T1
)
= v

(
T2
)
, (3.40)

w
(
T1
)
ϕ
(
T1, u

′(T1
)) ≥ w

(
T2
)
ϕ
(
T2, u

′(T2
))
, (3.41)

w
(
T1
)
ϕ
(
T1, v

′(T1
)) ≤ w

(
T2
)
ϕ
(
T2, v

′(T2
))
. (3.42)
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From (3.39) and (3.40), we have

w
(
T1
)
ϕ
(
T1, u

′(T1
)) ≤ w

(
T1
)
ϕ
(
T1, v

′(T1
))
,

w
(
T2
)
ϕ
(
T2, u

′(T2
)) ≥ w

(
T2
)
ϕ
(
T2, v

′(T2
))
.

(3.43)

From (3.41), (3.42), and (3.43), we can conclude that (P)with (1.4) possesses a solution.
This completes the proof.

On the case of minr∈[−R,R] p(r) ≤ q(r) ≤ maxr∈[−R,R] p(r), we consider

−(|u′|p(r)−2u′)
′
= C|u|q(r)−2u + e(r) r ∈ (−R,R),
u(−R) = u(R) = 0,

(I)

where q(r), e(r) ∈ C([−R,R],R+), minr∈[−R,R] p(r) ≤ q(r) ≤ maxr∈[−R,R] p(r), C is a positive
constant. Denote

p+ = max
r∈[−R,R]

p(r), p− = min
r∈[−R,R]

p(r). (3.44)

We have the following corollary.

Corollary 3.1. If p ∈ C(R, (1,+∞)) is even, R satisfies

R ≤
[
1 + C + max

r∈[−R,R]
e(r)

]−(p+−1)/(p+(p−−1))
, (3.45)

then (I) possesses at least a nontrivial solution.

Proof. It is easy to see that α ≡ 0 is a subsolution of (I). Denote

β(r) = 1 −
∫ r

0
|μs|1/(p(s)−1)−1μsds, (3.46)

where μ is a positive constant satisfying β(R) = 0. Since p is even, then β(−R) = 0. It is easy to
see that 0 ≤ β(r) ≤ 1, ∀r ∈ [−R,R], and

−(∣∣β′∣∣p(r)−2β′)′ = μ =
(∫R

0
|s|1/(p(s)−1)ds

)1−p(ξ)
≥
(∫R

0
|s|1/(p+−1)ds

)1−p(ξ)

≥
(∫R

0
|s|1/(p+−1)ds

)1−p−

≥ 1 + C + max
r∈[−R,R]

e(r) ≥ C|β|q(r)−2β + e(r),

(3.47)

where ξ ∈ [−R,R]. Then, β is a supersolution of (I). From Theorem 1.1, one can see that (I)
possesses at least a nontrivial solution.
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4. Applications in PDE

Let Ω ⊂ R
n be an open bounded domain. In this section, we always denote

p+ = max
x∈Ω

p(x), p− = min
x∈Ω

p(x). (4.1)

Let us now consider (1.15) with one of the following boundary value conditions:

u|∂Ω = 0, (4.2)

∇u = 0, ∀x ∈ ∂Ω. (4.3)

If u is a radial solution of (1.15), then it can be transformed into

−(rn−1∣∣u′∣∣p(r)−2u′)′ + rn−1f
(
r, u, |r|(n−1)/(p(r)−1)∣∣u′∣∣) = 0, r ∈ (

T1, T2
)
, where T1 ≥ 0, (4.4)

and the boundary value condition will be transformed into (1.1), (1.2), or (1.3), respectively.

Theorem 4.1. If (4.4) has subsolution and supersolution α and β, respectively, satisfying α(t) ≤ β(t)
for any t ∈ [T1, T2], and f is continuous and satisfies (H1)-(H2), in each of the following cases:

(i) 0 < T1 < T2, Ω = {x ∈ R
n | T1 < |x| < T2}, α(T1) ≤ 0 ≤ β(T1), and α(T2) ≤ 0 ≤ β(T2);

(ii) 0 = T1 < T2, Ω = {x ∈ R
n | T1 < |x| < T2} = B(0; T2) \ {0}, and p− > n; α(T1) ≤ 0 ≤

β(T1), α(T2) ≤ 0 ≤ β(T2);

(iii) 0 = T1 < T2, Ω = {x ∈ R
n | |x| < T2} = B(0; T2), and p− > n; (w(T1))

1/(p(T1)−1)α′(T1) ≥
0 ≥ (w(T1))

1/(p(T1)−1)β′(T1), α(T2) ≤ 0 ≤ β(T2);

then (1.15) with (4.2) has at least one weak radially symmetric solution u.

Proof. Notice that (rn−1)−1/(p(r)−1) ∈ L1(0, T2) and satisfies 0 < rn−1, ∀r ∈ (0, T2). We can
conclude the existence of solutions for (4.4) with (1.1), (1.2), or (1.3), from Theorems 1.1,
1.2, and 1.3. If limr→ 0 r

n−1|u′|p(r)−2u′(r) = 0, notice that

∣∣∣∣u′∣∣p(r)−2u′(r)
∣∣ ≤ r1−n

∫ r

0
tn−1

∣∣f
(
t, u, |t|(n−1)/(p(t)−1)∣∣u′∣∣)∣∣dt

≤
∫ r

0

∣∣f
(
t, u, |t|(n−1)/(p(t)−1)∣∣u′∣∣)∣∣dt −→ 0 (as r −→ 0),

(4.5)

then we have u′(0) = 0. This completes the proof.

Similarly, we have the following theorem.

Theorem 4.2. If (4.4) has subsolution and supersolution α and β, respectively, satisfying α(t) ≤ β(t)
for any t ∈ [T1, T2], and

(
w
(
T1
))1/(p(T1)−1)α′(T1

) ≥ 0 ≥ (
w
(
T1
))1/(p(T1)−1)β′

(
T1
)
,

(
w
(
T2
))1/(p(T2)−1)α′(T2

) ≤ 0 ≤ (
w
(
T2
))1/(p(T2)−1)β′

(
T2
)
,

(4.6)
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and f is continuous and satisfies (H1)-(H2), in each of the following cases:

(i) 0 < T1 < T2; Ω = {x ∈ R
n | T1 < |x| < T2};

(ii) 0 = T1 < T2;Ω = {x ∈ R
n | T1 < |x| < T2} = B(0; T2)\{0} orΩ = B(0; T2); p ∈ C1(Ω;R)

and p− > n;

then (1.15) with (4.3) has at least one weak radially symmetric solution u.

On the case of p− ≤ q(x) ≤ p+, we consider

−div(|∇u|p(x)−2∇u
)
= C|u − 1|q(x)−2u + e(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(II)

where Ω = {x ∈ R
n | 0 < |x| < R}, q(x), e(x) ∈ C(Ω,R+), 2 ≤ n < p− ≤ q(x) ≤ p+, C is a

positive constant.
We have the following corollary.

Corollary 4.3. If p ∈ C(Rn, (1,+∞)) is radial, and R satisfies

R ≤ min

{

1,
[(

1 − 1
2
(
p− − 1

)
)p+−1 (n − 3/2)

1 + C +maxx∈Ω e(x)

]1/(p−−3/2)}

, (4.7)

then (II) possesses at least a nontrivial solution.

Proof. It is easy to see that α ≡ 0 is a subsolution of (II). Denote

β(r) = 1 −
∫ r

0

∣∣μs−1/2
∣∣1/(p(s)−1)ds, (4.8)

where μ is a positive constant satisfying β(R) = 0. It is easy to see that 0 ≤ β(r) ≤ 1, ∀r ∈ [0, R],
and

−(rn−1∣∣β′∣∣p(r)−2β′)′ = μ

(
n − 3

2

)
rn−5/2 =

(∫R

0
|s|−1/2(p(s)−1)ds

)1−p(ξ)(
n − 3

2

)
rn−5/2

≥
(∫R

0
|s|−1/2(p−−1)ds

)1−p(ξ)(
n − 3

2

)
rn−1

≥ (
R−1/2(p−−1)+1)1−p−

(
1 − 1

2
(
p− − 1

)
)p+−1(

n − 3
2

)
rn−1

≥ rn−1
[
1 + C +max

x∈Ω
e(x)

]
≥ rn−1

[
C|β − 1|q(x)−2β + e(x)

]
,

(4.9)

where ξ ∈ Ω. Then, β is a supersolution of (II). From Theorem 4.1, one can see that (II)
possesses at least a nontrivial solution.
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