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1. Introduction

Let H be a real Hilbert space with inner product (-, -) and norm ||-||. Let C be a nonempty closed
convex subset of H, and let F : C — H be an operator. The classical variational inequality
problem: find u* € C such that

VI(F,C) (F(u*),v-u*)>0, YveC(C, (1.1)

was initially studied by Kinderlehrer and Stampacchia [1]. It is also known that the VI(F, C) is
equivalent to the fixed-point equation

u* = Pc(u* — puF(u*)), (1.2)

where Pc is the (nearest point) projection from H onto C, that is, Pcx = argminyecﬂx - y|| for
each x € H and where p > 0 is an arbitrarily fixed constant. If F is strongly monotone and
Lipschitzian on C and p > 0 is small enough, then the mapping determined by the right-hand
side of this equation is a contraction. Hence the Banach contraction principle guarantees that
the Picard iterates converge in norm to the unique solution of the VI(F,C). Such a method
is called the projection method. However, Zeng and Yao [2] point out that the fixed-point
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equation involves the projection Pc which may not be easy to compute due to the complexity
of the convex set C. To reduce the complexity problem probably caused by the projection Pc, a
class of hybrid steepest-descent methods for solving VI(F, C) has been introduced and studied
recently by many authors (see, e.g., [3, 4]). Zeng and Yao [2] have established the method of
two-step relaxed hybrid steepest-descent for variational inequalities. A natural arising problem
is whether there exists a general relaxed hybrid steepest-descent algorithm that is more than
two steps for finding approximate solutions of VI(F, C) or not. Motivated and inspired by the
recent research work in this direction, we introduce the following finite step relaxed hybrid
steepest-descent algorithm for finding approximate solutions of VI(F, C) and aim to unify the
convergence results of this kind of methods.

Algorlthm 1.1. Let {a (k)} c [0,1), {A,&k)} Cc (0,1), for k = 1,2,...,m, and take fixed numbers
)€ (0,2n/%%), k = 1,2,...,m. Starting with arbitrarily chosen initial points u(()l) € H, compute the
sequences {u;k)} such that

u) = g0y, (D +(1- an))[Tun — AW 4@ F(Tu )],

n+l — n+1
u® = a@ul + (1- al )[Tu(a) )Lgilt(z)F (Tuf))],
u® = aluld + (1- al )[Tu(4) )Lglt(?’)F(Tu,(f))], (1.3)
u™ = al"ul) + (1-al") [Tunl) /\n+1 ’")F(Tu(l))].

We will prove a strong convergence result for Algorithm 1.1 under suitable restrictions imposed
on the parameters.

2. Preliminaries
The following lemmas will be used for proving the main result of the paper in next section.

Lemma 2.1 (see [5]). Let {s,} be a sequence of nonnegative real numbers satisfying the inequality
Snn1 S (L= an)sp+ anTy+7yn, VYn20, (2.1)

where {a,}, {Tn}, and {y,} satisfy the following conditions:
(i) {an} € [0,1], X2 pan = oo, or equivalently, [ ;2o (1 — ay,) = 0;
(i) limsup,,_, 7, <0;
(111) {Yn} c [O/ OO), Z:f:OY" < o0.
Then lim,,_,.»s,, = 0.
Lemma 2.2 (see [6]). Demiclosedness principle: assume that T is a nonexpansive self-mapping on a
nonempty closed convex subset C of a Hilbert space H. If T has a fixed point, then I — T is demiclosed;

that is, whenever {x,} is a sequence in C weakly converging to some x € C and the sequence { (I-T)x,}
strongly converges to some y € H, it follows that (I — T)x = y. Here I is the identity operator of H.
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The following lemma is an immediate consequence of an inner product.

Lemma 2.3. In a real Hilbert space H, there holds the inequality
I+ yl? < llxl? +2(y, x +y), Vx,y € H. (2.2)

Lemma 2.4. Let C be a nonempty closed convex subset of H. For any x,y € H and z € C, the
following statements hold:

(i) (Pcx —x,z—Pcx) 2 0;

(it) [|Pcx = Peyll® < llx = yII* = [|[Pex - x + y - Peyl*.

3. Convergence theorem

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let F :
C — H be an operator such that for some constants «, 77 > 0, F is x-Lipschitzian and #7-strongly
monotone on C; that is, F satisfies the conditions

|[Fx - Fyl| <xlx-yl|, VYx,yeC, (3.1)
(Fx-Fy, x-y) >7lx-yl? Vx,yeC, '

respectively. Since F is 7-strongly monotone, the variational inequality problem VI(F,C) has a
unique solution u* € C (see, e.g., [7]).
Assume that T : H — H is a nonexpansive mapping with the fixed points set Fix(T) = C.
Note that obviously Fix(Pc) = C. For any given numbers A € (0,1) and u € (0,217/x%), we
define the mapping Tlﬁ‘ :H — H by
Tyx := Tx — AuF(Tx), Vx € H.
Lemma 3.1 (see [3]). Let T/ﬁ‘ be a contraction provided that 0 < A < 1and 0 < p < 2n/%>. Indeed,

|Thx— Tyl < A=A7)|x—yll, Vx,y€H, (3.2)

wheret =1 - \/1 - pu(2n—pux?) € (0,1).
We now state and prove the main result of this paper.

Theorem 3.2. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H.
Let F : C — H be an operator such that for some constants «,1 > 0, F is x-Lipschitzian and -
strongly monotone on C. Assume that T : H — H is a nonexpansive mapping with the fixed points set

Fix(T) = C, the real sequences {a;k) }, {Aﬁ,k) }, fork =1,2,...,m,in Algorithm 1.1 satisfy the following
conditions:

@) Z;?;ﬂ“r(zk) - a7(1k_)1| <oo fork=1,2,...,m;

(ii) limy—oary) = 0 and lim,—oay) =1, for k =2,3,...,m;
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(i) limyooody) = 0, limyoee (A5 /A1) = 1, 22,050 =

(iv) A > max{A 1 k=2,3,...,m), forall n > 1.

Then the sequences { u®) generated by Algorithm 1.1 converge strongly to u* which is the
unique solution of the VI(F, C).

Proof. Since F is 1-strongly monotone, by [7], the VI(F, C) has the unique solution u* € C. Next
we divide the rest of the proof into several steps. O

Step 1. Let {u (k)} is bounded for each k = 1,2,...,m. Indeed, let us denote that TtA *=Tu* -
AMF(Tu*), then we have

el = ] = [l + (1= )Tl |

<ol [ - |+ (- T -

(3.3)
)‘ * n+ * *
<afl )~ + (- ) [T - Tl [T - o]
<ap[lun —u ||+ (1-a) [(1= 07O | = || + €V F () |]],
where 7 =1 - \/1 -t (27 —tMx2) € (0,1). Moreover, we also have
I~ = flaPul + (1 - )T ul |
<al ) —u | + (L) [Tl - T | + [T — o] (3.4)

<o =+ (1= ) [(1= N2 7)) 0| + 25O F () ]

<apuy) — |+ (U= a?) i = u ||+ (1= )AL P F ),

where 7? =1 - \/1 -t@2n-t@x2) € (0,1),and fork =2,3,...,m-1,

(k)
1w = [l + (1 - )Tl - vl
< el [+ (1 -l [Tl - T | + [T ]
< el ~u[+ (1 -l [(1 - A;’?w“)nu“‘“) [+ A% O E)|]

< [l =[] + (1= ) ™ =0t + (1= YL P | F (),
(3.5)
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where 70 =1 — \/1 -t (25 - t0)x2) € (0,1), and

) = flaul + (1 - af) T ) — |
< ailm)”uill) —u*” " (1 _ a}({ﬂ)) [”Tt(::l Tt(::rl *” " ”T n+1u —u ”]

<an” flun” = ||+ (U= a™) [(1= 2,07 | =0t || + L F )]

n+1

<l =l + A5 | F

(3.6)

where 70" =1 - \/1 —tm (2 - ttMx2) € (0,1).
Thus we obtain

™ - ]

<oy s —w ||+ (U= ™) ™ = [+ A7V E Q)|

n+l

< al Dl -+ (1=l ) [l =+ A E G ]+ AL D E G )

n+l

< Jlun” = ||+ (1= ")y max (47, L7 () + 4D [F () ),

I = < = 1+ 0= 02 (500 )

(3.7)
fork =2,3,...,m— 1. In particular,
I <l < -l = =o)L (S0 IFOL 6w
2<j<m n+1 .
Hence, substituting (3.8) in (3.3) and by condition (iv), we obtain
gy =207
<y fluy =+ (1= ) [(1= A7) [l )| + 22 €O F ()]
<o ul - ]|+ (1-ail) [<1 ATl - |
(3.9)

e max (17 SO F (| + A0 <1>||F<u*>||]
j=2

2<j<m

<o flun” =] + (1~ a(”)[(l Ahr ) us” || + max () ) Zt(’ I (" )II]

l<]<
By induction, it is easy to see that

|ul) —w|| <M, Vn>0, (3.10)
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where M = max| ||uél) —u*, ((Zﬁlt(”)/i'(l))lllf(u*)|| }. Indeed, for n = 0, from (3.9) we obtain

. m .
= <o =1 =) | (1A = puanal? (350 Y|

<al"M+(1-a”)[(1-2P70)M + 2"z OM] = M.
(3.11)

Suppose that ||ufl —u*|| < M, for n > 1. We want to claim that ||u(1) —u*|| < M. Indeed,

e, = )] < =]+ (1 - [(1 A0 ) u||+An+1ztf>||P<u>||]
<al’M+(1-a)[(1 -1 rOYM + 10 2O M] = M.
(3.12)

Therefore, we have ||u$ —u*|| < M, foralln > 0, and ||u{™ —u*|| < M+)Lfl'fir(1)]\7 < (Q+7MYM,
for all n > 0. In this case, from (3.8), it follows that

[l —w|| < M+ max (A7 }zOM < (1+70)M, ¥n>0,Vk=2,3,...,m-1. (3.13)

k<j<m

Step 2. Let ||u(1) Tu,&1 || = 0,n — oo. Indeed by Step 1, { } is bounded for 1 < k < m and

n+1
so are {Tu,(f)} and {F (Tun )} for 1 < k < m. Thus from the conditions that hm,Hmtx =0,
limnéooa;k) =1,fork=2,3,...,mand hmnqw/\( =0,wehave, fork=2,...,m,

[ uff)ll

= ||a,, Y (1= alP) (Tul - AW 1

n+l

FTu)) - ul|

(3.14)
<= (a0 + (1) (T - R T |
< (1= )l || + (1= @) (| Toa™ || + 2P | F (T [[) — 0
and so
o6 = T
= e+ (1 - (Tu® - LD OF (Tu®)) - Tl
”“(1)(”( Tu(l)) F(1- al )((Tu(z) Tu(l)) )Ln+lt(1)F(Tu£l2)))|| (3.15)
<aPful) = TuP || + 1= aPY T - Tul || + (1 - a) AN 1D F(Tuld) |
<o u =Tl + i - )+ A F D) — 0 asn— oo,
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Step 3. Let ||u u,(f) || = 0, as n — oo. Indeed, we observe that

n+l

) _
[[4n 1l

= [lalmu) - a™ u® b (1- )T O (1 "y TN

< Oln ||u (1) ” + |(X (M) ”u(l) ” " (1 a(m)>||T o (1) Tt<:’”;1 (1)1”

- T D, - (- al) T |

<ol [l D[+ 12— al |-+ (1= al”) (=27 ) |
e = a7+ (1= al)Al - (1= DA | ) |

=(1-(1- “ ))‘n+1T )””1(11)_”;1—)1”

H (= a)T = (L= a7 [ O ETu ) ||+ e = a1 - (] + 1T )

<l = w20+ 1= ™) = (L= )" | €| F (T, ) |
+lan” =" (L + 1T ),

(3.16)

and, for2<k<m-1,

[
= ”“;k)”;(} 1(1k)1u L+ (1 a(k))Tt(:ﬂ }(1k+1) (1 (X(k) )T(k’;) k+l) ”
(k)
< afﬁ)“uf}) | + |a(k) (k) ”u ” + (1 a! )) ”T ) (k+1) Tt<Z” k+1)”

)
+||<1 “ )Ttdm nkil) (1- “n 1>Tk> (k+1)”

< al|[u® = u ||+ 1a® = a® ||+ (1= a®) (1 - 28 70 D &)
k k k k)N 4 (k k (k
la? - alf [ ITu )+ 1= A, - (1= a0 ()|
k k (k
= o s =, |+ e = a2 (a2 + TS0

# (1=l (1= 28,7 D= D 4 (1 ), -

n+l

(1= a0 |- O F (T )],
(3.17)

n+1T
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o~ < ) =2+l - (|

T ) + 1= ™) = (L= a D" | F (Tw, ),

n+1

o™ =< s = a2+ (1= ™) = (L= "D FTa, |
H (=" )Y = (L= )Y [H D FTa | (3.18)
e ="V (s )+ (T )
+ o =" ([ + [T D,

o = w2 || < o -, |I+ZI(1 )0 = (L= a2 ) 07 (9| FTu %P |

n+1

m-1
+kZ|af1k) a s [ Gy I+ 1T SN + ™ = ™ (g ]+ (T )
=2

(3.19)

Hence it follows from the above inequalities (3.17)—(3.19) that

|
= Nla 1 —aul, + (1 - )T — (1l )T W, |
<ol i |+ ) [ + (1 - @) T - T

Q@) 1 M (2
+][(1- “ )Tnl”( -(1- zx()) I ;(17)1”

3.20
<o [ = |+ al® = ] )+ (1= 2Py (@A O ) - G
1o —a® [Tl [+ 1= a0 = (1= alDAP ] DT
k (k+1
= oDl = u® ]+ ol = | (] T

(=) (1= L) u? - w2 |

H (= a )0 = (= a )0 O E(Tu2) .

n+l
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Let us substitute (3.19) into (3.20), then we have

s = i

n+1

< !+ (=) 0= 2 ) [l 2+ Sl - (7 )

+(1- vc(’"))ftflfi (1-a” 1))&’" O ETUD, | + (ol — o (u

A+ T 1)
= (1= (1 =a YA e lu? = w2, ||+ (1 =&)AL v, + 65,
(3.21)
where
= (k) (k) (k 1) (m) (m) (1) (1)
+ m m
) | (e + ITag V1) + o™ = )] - a2y [+ 1T ),
|
1 (m)y y (m) m m
T (I(1 — YA = (L= )" || FTu) | (3.22)
n+l
1= - (- T )
We put
_ CONTI ") . _
¢=sup{||uy’|| :n >0} +sup {||Tu,’|| :n>0,k=1,2,..., m}
+sup{||FTu(k)||:nZO,kzl,Z,...,m}, (323)
s s (S0 )Ir 2
k=1
Then 6, <2M > 1|an - a(k) | = 0, asn — o0, and
(& )
v, < t M
=M e
(3.24)

(Bl - a-af - a - a-aZ)a )
k=2
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From (ii)—(iv), we obtain v, — 0 as n — co. Furthermore, from (i), 32,6, < co. By Lemma 2.1,

) (1

we deduce that [ju, ; - un)|| — 0asn— co.

Step 4. Let ||u§ll) - Tug) || = 0 as n — oo. From Steps 2 and 3, we have

A O R R P B 625)

n+1 n+l

as n — Qoo.

Step 5. Let lim supn_)oo<—F(u*),Tu,(1k) -u*)<0,fork=2,3,...,m. Let {Tu,(i)} be a subsequence
of {Tuﬁ,l)} such that

lim sup( - F(u"), Tul) - u*y =lim( - F(u"), Tu,(fi) —u*). (3.26)

n—oo

Without loss of generality, we assume that Tu,(fi) — u® weakly for some #!) € H. By Step 4,
we derive ufi) — %) weakly. But by Lemma 2.2 and Step 4, we have %) € Fix(T) = C. Since

u* is the unique solution of the VI(F, C), we obtain

limsup( — F(u*), Tul” —u*) = (- F(u*),#" - u*) <0. (3.27)
From the proof of Step 2,
ITul =TV < 1u? - ulP|| — 0, asn—s oo, (3.28)

fork=2,3,...,m. Then

lim sup( - F(u*),Tuflk) —-u*) =limsup[( - F(u*),Tuilk) - Tuﬁ,”) +(- F(u*),Tu,(f) —-u*)]
n—oo

n—oo

< limsup( - F(u*),Tu;k) - Tu,(f)> +limsup( - F(u*),Tu,(f) - u*)

n—aoo n—aoo

= lim sup( - F(u*),Tuﬁll) —-u*)

n—aoo

<0,
(3.29)

fork=2,3,...,m.
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Step 6. Let u,(f) — u* in norm and so does {u;k)} for k = 2,3,...,m. Indeed using Lemma 2.3
and (3.7) we get

= fla @~ ut) + (- ) (Tl ) |

<aul) |+ (1= D) T - |

=ap luy) —' ||+ (1-a “)II(T P - Ti) + (T *—u*)||:Z

M
<ol [ul) —u P+ (1= a) [T ~ T P+ 2T -, T — )]
< | (1= af) (1= e il -

+2t00 (— F(ur), Tul? - At OF (Tul) - u*)

n+l

2 " (j
< oD = [P+ (1= ) (1 - A0, 20 [||u$>—u||+<1 an>>max{xn+1}<z )||F<u>||]
j=2

+2(1 - a )AL O (= F(u), Tu? = A0 O F (Tu?) =)

< (o + (1= ) (1= 7)) s — |

201 o) (1 - a®) (1 - A7) a1 (zt<f>) I - ]

2<j<m

- (1-af) (-0 -20 0 (paeal ><th>)2||F<u*>||2

+ 2t(1))»,(11+)1< - F(u*),Tuﬁlz) —ut =AW O

n+l

F(Tu,”))

< (1= - a0l - 20-) -0 020 ) (S0 ) e

2<]<m ].:2

(- al) (1- a1 - 20, r)? <m () > <th>>

+ 200 4

n+l

1)<—F(u*),Tu£,2)—u* A0 F(Tu ))

n+l

1 1
< (1= (1 =a )Y s = P+ (1= ) e
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24O~ F(u*), Tuy —u* - A
(1 -al)

LOF(Tul))

n+1

X

2(1 a) (1= A0, 70) maxajon (A} (St D) M2

n+l
@M
T )Ln+1

+ (1- “512))2(1 - )‘511:17(1))2(max2<j<m{’\221 })Z(Z?:Zt(j))ZM2:I
1)@

n+l

1 1
< (1= (=a )Rl D) u P+ (1= )20 70

240 (= F(u*), Tul —ur - AL t<1>P(Tu<2>)>

m
X T(l)(l a(l))nJrl . (1 ‘xn)>(1 )‘n+17(1))2<zt(])>M2
—@n

j=2
1 1 2421 )L(l) (1))2 )L(]) mt(j) 2Mz
5 (1-an’) (1= 4,70)"( max(d,,,) ]Z; :

From (ii), (iii), and Step 5, we have limnﬁmaﬁ) = limnﬁm)tff) =0, fork =1,2,...,m and

limnqwaflk) =1,fork=2,...,m,lim supn_)oo(—F(u*),Tu,(f)—u*) <0,and {F(Tuf))} is bounded;
by Lemma 2.4, we conclude that

2t ( - F(u*), Tul) - u* Aﬁﬁﬂ”F(TufU} 2(1 - ) (1= A7 D) (St ) M2
(1 - a1(11)) 1)

(3.30)

lim sup

n—oo

(a0 1>>2<ma><zggmmf£1}><z;z2t<f>>2M2)

PGy
(1) 2 t(l /\(1)
<11msup2t— (= F(u"), Tu® —u >+11msupL”Irl (—F(u*),—F(Tuf?))
n—oo (1) (1 — ) oo T (1 ))

<0+0=0.
(3.31)

Consequently from Lemma 2.1, we obtain ||u£11) — u*|| — 0 and hence it follows from ||u§lk) -
ui,l)H —0,fork=2,3,...,m, that ||u(k) —u*||—=0,fork=2,3,...,m
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