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LetH be a real Hilbert space, Ω a nonempty closed convex subset ofH, and T : Ω → 2H a maximal
monotone operator with T−10/=∅. Let PΩ be the metric projection of H onto Ω. Suppose that, for
any given xn ∈ H, βn > 0, and en ∈ H, there exists xn ∈ Ω satisfying the following set-valued
mapping equation: xn + en ∈ xn + βnT(xn) for all n ≥ 0, where {βn} ⊂ (0,+∞) with βn → + ∞ as
n → ∞ and {en} is regarded as an error sequence such that

∑∞
n=0‖en‖2 < +∞. Let {αn} ⊂ (0, 1] be a

real sequence such that αn → 0 as n → ∞ and
∑∞

n=0αn = ∞. For any fixed u ∈ Ω, define a sequence
{xn} iteratively as xn+1 = αnu + (1 − αn)PΩ(xn − en) for all n ≥ 0. Then {xn} converges strongly to a
point z ∈ T−10 as n → ∞, where z = lim t→∞ Jtu.

Copyright q 2008 Yeol Je Cho et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction and preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and norm ‖ · ‖. A set T ⊂ H × H is
called a monotone operator onH if T has the following property:

〈x − x′, y − y′〉 ≥ 0, ∀(x, y), (x′, y′) ∈ T. (1.1)

A monotone operator T on H is said to be maximal monotone if it is not properly contained in
any other monotone operator onH. Equivalently, a monotone operator T is maximal monotone
if R(I + tT) = H for all t > 0. For a maximal monotone operator T , we can define the resolvent
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of T by

Jt = (I + tT)−1, ∀t > 0. (1.2)

It is well known that Jt : H → D(T) is nonexpansive. Also we can define the Yosida approxima-
tion Tt by

Tt =
1
t

(
I − Jt

)
, ∀t > 0. (1.3)

We know that Ttx ∈ TJtx for all x ∈ H, ‖Ttx‖ ≤ |Tx| for all x ∈ D(T),where |Tx| = inf{‖y‖ : y ∈
Tx}, and T−10 = F(Jt) for all t > 0.

Throughout this paper, we assume that Ω is a nonempty closed convex subset of a real
Hilbert spaceH and T : Ω → 2H is a maximal monotone operator with T−10/=∅.

It is well known that, for any u ∈ H, there exists uniquely y0 ∈ Ω such that
∥
∥u − y0

∥
∥ = inf

{∥
∥u − y

∥
∥ : y ∈ Ω

}
. (1.4)

When a mapping PΩ : H → Ω is defined by PΩu = y0 in (1.4), we call PΩ the metric projection of
H onto Ω. The metric projection PΩ of H onto Ω has the following basic properties:

(i) 〈PΩx
′ − x, x′ − PΩx

′〉 ≥ 0 for all x ∈ Ω and x′ ∈ H,

(ii) ‖PΩx − PΩy‖2 ≤ 〈x − y, PΩx − PΩy〉 for all x, y ∈ H,

(iii) ‖PΩx − PΩy‖ ≤ ‖x − y‖ for all x, y ∈ H,

(iv) xn → x0 weakly and Pxn → y0 strongly imply that Px0 = y0.

Finding zeroes of maximal monotone operators is the central and important topic in
nonlinear functional analysis. A classical method to solve the following set-valued equation:

0 ∈ Tz, (1.5)

where T : Ω → 2H is a maximal monotone operator, is the proximal point algorithm which,
starting with any point x0 ∈ H, updates xn+1 iteratively conforming to the following recursion:

xn ∈ xn+1 + βnTxn+1, ∀n ≥ 0, (1.6)

where {βn} ⊂ [β,∞), β > 0, is a sequence of real numbers. However, as pointed out in [1], the
ideal form of the algorithm is often impractical since, in many cases, solving the problem (1.6)
exactly is either impossible or as difficult as the original problem (1.5). Therefore, one of the
most interesting and important problems in the theory of maximal monotone operators is to
find an efficient iterative algorithm to compute approximately zeroes of T .

In 1976, Rockafellar [2] gave an inexact variant of the method

xn + en+1 ∈ xn+1 + βnTxn+1, ∀n ≥ 0, (1.7)

where {en} is regarded as an error sequence. This method is called an inexact proximal point algo-
rithm. It was shown that if

∑∞
n=0‖en‖ < +∞, then the sequence {xn} defined by (1.7) converges

weakly to a zero of T . Güler [3] constructed an example showing that Rockafellar’s proximal
point algorithm (1.7) does not converge strongly, in general. This gives rise to the following
question.
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Question 1. How to modify Rockafellar’s algorithm so that strong convergence is guaranteed?

Xu [4] gave one solution to Question 1. However, this requires that the error sequence
{en} is summable, which is too strong. This gives rise to the following question.

Question 2. Is it possible to establish some strong convergence theorems under the weaker
assumption on the error sequence {en} given in (1.7)?

It is our purpose in this paper to give an affirmative answer to Question 2 under aweaker
assumption on the error sequence {en} in Hilbert spaces. For this purpose, we collect some
lemmas that will be used in the proof of the main results in the next section.

The first lemma is standard and it can be found in some textbooks on functional analysis.

Lemma 1.1. For all x, y ∈ H and λ ∈ [0, 1],

∥
∥λx + (1 − λ)y

∥
∥2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)

∥
∥x − y

∥
∥2
. (1.8)

Lemma 1.2 (see [5, Lemma 1]). For all u ∈ H, limt→∞Jtu exists and it is the point of T−10 nearest
to u.

Lemma 1.3 (see [1, Lemma 2]). For any given xn ∈ H, βn > 0, and en ∈ H, there exists xn ∈ Ω
conforming to the following set-valued mapping equation (in short, SVME):

xn + en ∈ xn + βnTxn, ∀n ≥ 0. (1.9)

Furthermore, for any p ∈ T−10, one has

〈
xn − p, xn − xn + en

〉 ≥ 〈
xn − xn, xn − xn + en

〉
,

∥
∥xn − en − p

∥
∥2 ≤ ∥

∥xn − p
∥
∥2 − ∥

∥xn − xn

∥
∥2 +

∥
∥en

∥
∥2
.

(1.10)

Lemma 1.4 (see [6, Lemma 1.1]). Let {an}, {bn}, and {cn} be three real sequences satisfying

an+1 ≤
(
1 − tn

)
an + bn + cn, ∀n ≥ 0, (1.11)

where {tn} ⊂ [0, 1],
∑∞

n=0tn = ∞, bn = ◦(tn), and
∑∞

n=0cn < ∞. Then an → 0 as n → ∞.

2. The main results

Now we give our main results in this paper.

Theorem 2.1. LetH be a real Hilbert space,Ω a nonempty closed convex subset ofH, and T : Ω → 2H

a maximal monotone operator with T−10/=∅. Let PΩ be the metric projection ofH ontoΩ. Suppose that,
for any given xn ∈ H, βn > 0, and en ∈ H, there exists xn ∈ Ω conforming to the SVME (1.9), where
{βn} ⊂ (0,+∞) with βn → +∞ as n → ∞ and

∑∞
n=0‖en‖2 < +∞. Let {αn} be a real sequence in [0, 1]

such that

(i) αn → 0 as n → ∞,

(ii)
∑∞

n=0αn = ∞.
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For any fixed u ∈ Ω, define the sequence {xn} iteratively as follows:

xn+1 = αnu +
(
1 − αn

)
PΩ

(
xn − en

)
, ∀n ≥ 0. (2.1)

Then {xn} converges strongly to a fixed point z of T, where z = limt→∞Jtu.

Proof
Claim 1. {xn} is bounded.

Fix p ∈ T−10 and set M = max{‖u − p‖2, ‖x0 − p‖2}. First, we prove that

∥
∥xn − p

∥
∥2 ≤ M +

n−1∑

j=0

∥
∥ej

∥
∥2
, ∀n ≥ 0. (2.2)

When n = 0, (2.2) is true. Now, assume that (2.2) holds for some n ≥ 0. We will prove that (2.2)
holds for n + 1. By using the iterative scheme (2.1) and Lemmas 1.1 and 1.3, we have

∥
∥xn+1 − p

∥
∥2

= αn‖u − p‖2 + (
1 − αn

)∥
∥PΩ

(
xn − en

) − p
∥
∥2 − αn

(
1 − αn

)∥
∥u − PΩ

(
xn − en

)∥
∥2

≤ αnM +
(
1 − αn

)∥
∥xn − en − p

∥
∥2 ≤ αnM +

(
1 − αn

)∥
∥xn − p

∥
∥2 +

∥
∥en

∥
∥2

≤ αnM +
(
1 − αn

)
M +

n∑

j=0

∥
∥ej

∥
∥2 = M +

n∑

j=0

∥
∥ej

∥
∥2
.

(2.3)

By induction, we assert that

∥
∥xn − p

∥
∥2 ≤ M +

n−1∑

j=0

∥
∥ej

∥
∥2

< M +
∞∑

j=0

∥
∥ej

∥
∥2

< +∞, ∀n ≥ 0. (2.4)

This implies that {xn} is bounded and so is {Jβnxn}.
Claim 2. limn→∞〈u − z, xn+1 − z〉 ≤ 0, where z = limt→∞Jtu,which is guaranteed by Lemma 1.2.

Noting that T is maximal monotone, u − Jtu = tTtu, Ttu ∈ TJtu, xn − Jβnxn = βnTβnxn,
Tβnxn ∈ TJβnxn, and βn → +∞ (n → ∞),we have

〈
u − Jtu, Jβnxn − Jtu

〉
= −t〈Ttu, Jtu − Jβnxn

〉

= −t〈Ttu − Tβnxn, Jtu − Jβnxn

〉 − t
〈
Tβnxn, Jtu − Jβnxn

〉

≤ − t

βn

〈
xn − Jβnxn, Jtu − Jβnxn

〉

−→ 0 (n −→ ∞), ∀t > 0

(2.5)

and hence

lim
n→∞

〈
u − Jtu, Jβnxn − Jtu

〉 ≤ 0. (2.6)

Note that ‖Jβn(xn + en) − Jβnxn‖ ≤ ‖en‖ → 0 as n → ∞, and so it follows from (2.6) that

lim
n→∞

〈
u − Jtu, Jβn

(
xn + en

) − Jtu
〉 ≤ 0. (2.7)
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Note that ‖PΩ(xn − en) − Jβn(xn + en)‖ ≤ ‖en‖ → 0 as n → ∞ and so it follows from (2.7) that

lim
n→∞

〈
u − Jtu, PΩ

(
xn − en

) − Jtu
〉 ≤ 0. (2.8)

Since αn → 0 as n → ∞, from (2.1)we have

xn+1 − PΩ
(
xn − en

) −→ 0 (n −→ ∞). (2.9)

It follows from (2.8) and (2.9) that

lim
n→∞

〈
u − Jtu, xn+1 − Jtu

〉 ≤ 0, ∀t > 0, (2.10)

and so, from z = limt→∞Jtu and (2.10), we have

lim
n→∞

〈
u − z, xn+1 − z

〉 ≤ 0. (2.11)

Claim 3. xn → z as n → ∞.
Observe that

(
1 − αn

)(
PΩ

(
xn − en

) − z
)
=
(
xn+1 − z

) − αn(u − z) (2.12)

and so

(
1 − αn

)2∥∥PΩ
(
xn − en

) − PΩz
∥
∥2 ≥ ∥

∥xn+1 − z
∥
∥2 − 2αn

〈
u − z, xn+1 − z

〉
, (2.13)

which implies that

∥
∥xn+1 − z

∥
∥2 ≤ (

1 − αn

)∥
∥xn − en − z

∥
∥2 + 2αn

〈
u − z, xn+1 − z

〉
. (2.14)

It follows from Lemma 1.3 and (2.14) that

∥
∥xn+1 − z

∥
∥2 ≤ (

1 − αn

)∥
∥xn − z

∥
∥2 − (

1 − αn

)∥
∥xn − xn

∥
∥2 +

∥
∥en

∥
∥2 + 2αn

〈
u − z, xn+1 − z

〉

≤ (
1 − αn

)∥
∥xn − z

∥
∥2 + 2αn

〈
u − z, xn+1 − z

〉
+
∥
∥en

∥
∥2
.

(2.15)

Set σn = max{〈u − z, xn+1 − z〉, 0}. Then σn → 0 as n → ∞. Indeed, by the definition of σn, we
see that σn ≥ 0 for all n ≥ 0. On the other hand, by (2.11), we know that for arbitrary ε > 0,
there exists some fixed positive integer N such that 〈u − z, xn+1 − z〉 ≤ ε for all n ≥ N. This
implies that 0 ≤ σn ≤ ε for all n ≥ N, and the desired conclusion follows. Set an = ‖xn − z‖2,
bn = 2αnσn, and cn = ‖en‖2. Then (2.15) reduces to

an+1 ≤
(
1 − αn

)
an + bn + cn, ∀n ≥ 0, (2.16)

where
∑∞

n=0αn = ∞, bn = ◦(αn), and
∑∞

n=0cn < +∞. Thus it follows from Lemma 1.4 that an → 0
as n → 0, that is, xn → z ∈ T−10 as n → ∞. This completes the proof.
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Remark 2.2. The maximal monotonicity of T is only used to guarantee the existence of solutions
to the SVME (1.9) for any given xn ∈ H and βn > 0. If we assume that T : Ω → 2H is monotone
(need not be maximal) and T satisfies the range condition

D(T) = Ω ⊂
⋂

r>0

R(I + rT), (2.17)

then for any given xn ∈ Ω and βn > 0, we may find xn ∈ Ω and en ∈ H satisfying the SVME
(1.9). Furthermore, Lemma 1.2 also holds for u ∈ Ω, and hence Theorem 2.1 still holds true for
monotone operators which satisfy the range condition.

Following the proof lines of Theorem 2.1, we can prove the following corollary.

Corollary 2.3. LetH be a real Hilbert space,Ω a nonempty closed convex subset ofH, and S : Ω → Ω
a continuous and pseudocontractive mapping with a fixed point in Ω. Suppose that, for any given
xn ∈ Ω, βn > 0, and en ∈ H, there exists xn ∈ Ω such that

xn + en =
(
1 + βn

)
xn − βnSxn, ∀n ≥ 0, (2.18)

where βn → ∞ (n → ∞) and {en} satisfies the condition
∑∞

n=0‖en‖2 < +∞. Let {αn} ⊂ (0, 1] be a real
sequence such that αn → 0 as n → ∞ and

∑∞
n=0αn = ∞. For any fixed u ∈ Ω, define the sequence {xn}

iteratively as follows:

xn+1 = αnu +
(
1 − αn

)
PΩ

(
xn − en

)
, ∀n ≥ 0. (2.19)

Then {xn} converges strongly to a fixed point z of S, where z = limt→∞Jtu, and Jt = (I + t(I − S))−1

for all t > 0.

Proof. Let T = I − S. Then T : Ω → 2H is continuous and monotone and satisfies the range
condition

D(T) = Ω ⊂
⋂

r>0

R(I + rT). (2.20)

Now we only need to verify the last assertion. For any y ∈ Ω and r > 0, define an
operator G : Ω → Ω by

Gx =
r

1 + r
Sx +

1
1 + r

y. (2.21)

Then G : Ω → Ω is continuous and strongly pseudocontractive. By Kamimura et al. [7, Corol-
lary 1],G has a unique fixed point x inΩ, that is, x = (r/(1+r))Sx+(1/(1+r))y,which implies
that y ∈ R(I + rT) for all r > 0. In particular, for any given xn ∈ Ω and βn > 0, there exist xn ∈ Ω
and en ∈ H such that

xn + en = xn + βnT xn, ∀n ≥ 0, (2.22)

which means that

xn + en =
(
1 + βn

)
xn − βnSxn, ∀n ≥ 0, (2.23)

and the relation (2.18) follows. The reminder of proof is the same as in the corresponding part
of Theorem 2.1. This completes the proof.
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Remark 2.4. In Corollary 2.3, we do not know wether the continuity assumption on S can be
dropped or not.

Remark 2.5. In Theorem 2.1, if the operator T is defined on the whole space H, then the metric
projection mapping PΩ is not needed.

Remark 2.6. Our convergence results are different from those results obtained by Kamimura
et al. [7].

Theorem 2.7. LetH be a real Hilbert space,Ω a nonempty closed convex subset ofH, and T : Ω → 2H

a maximal monotone operator with T−10/=∅. Suppose that, for any given xn ∈ H, βn > 0, and en ∈ H,
there exists xn ∈ Ω conforming to the following relation:

xn + en ∈ xn + βnT xn, ∀n ≥ 0, (2.24)

where limn→∞βn > 0 and
∑∞

n=0‖en‖2 < +∞. Let {αn} be a sequence in [0, 1] with limn→∞αn < 1 and
define the sequence {xn} iteratively as follows:

x0 ∈ Ω

xn+1 = αnxn +
(
1 − αn

)
PΩ

(
xn − en

)
, ∀n ≥ 0.

(2.25)

Then {xn} converges weakly to a point p ∈ T−10.

Proof
Claim 1. {xn} is bounded.

Since T−10/=∅, we can take some w ∈ T−10. By using (2.25) and Lemmas 1.1 and 1.3, we
obtain

∥
∥xn+1 −w

∥
∥2

= αn

∥
∥xn −w

∥
∥2 +

(
1 − αn

)∥
∥PΩ

(
xn − en

) −w
∥
∥2 − αn

(
1 − αn

)∥
∥xn − PΩ

(
xn − en

)∥
∥2

≤ αn

∥
∥xn −w

∥
∥2 +

(
1 − αn

)∥
∥xn − en −w

∥
∥2

≤ αn

∥
∥xn −w

∥
∥2 +

(
1 − αn

)∥
∥xn −w

∥
∥2 − (

1 − αn

)∥
∥xn − xn

∥
∥2 +

∥
∥en

∥
∥2

=
∥
∥xn −w

∥
∥2 − (

1 − αn

)∥
∥xn − xn

∥
∥2 +

∥
∥en

∥
∥2

≤ ∥
∥xn −w

∥
∥2 +

∥
∥en

∥
∥2

(2.26)

and so (2.26) together with
∑∞

n=0‖en‖2 < +∞ implies that limn→∞‖xn − w‖2 exists. Therefore,
{xn} is bounded.
Claim 2. xn − Jβnxn → 0 as n → ∞.

It follows from (2.26) that
(
1 − αn

)∥
∥xn − xn

∥
∥2 ≤ ∥

∥xn −w
∥
∥2 − ∥

∥xn+1 −w
∥
∥2 +

∥
∥en

∥
∥2 (2.27)

and so (2.26) together with limn→∞αn < 1 implies that

xn − xn −→ 0 (n −→ ∞). (2.28)
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Since xn = Jβn(xn + en) and Jβn is nonexpansive, we have

∥
∥xn − Jβnxn

∥
∥ ≤ ∥

∥xn − xn

∥
∥ +

∥
∥xn − Jβnxn

∥
∥ ≤ ∥

∥xn − xn

∥
∥ +

∥
∥en

∥
∥ −→ 0 (2.29)

as n → ∞ and consequently, xn − Jβnxn → 0 as n → ∞.
Claim 3. {xn} converges weakly to a point p ∈ T−10 as n → ∞.

Set yn = Jβnxn and let p ∈ H be a weak subsequential limit of {xn} such that {xnj
}

converges weakly to a point p as j → ∞. Thus it follows that {ynj
} converges weakly to p as

j → ∞. Observe that

∥
∥yn − J1yn

∥
∥ =

∥
∥
(
I − J1

)
yn

∥
∥ =

∥
∥T1yn

∥
∥ ≤ inf

{‖z‖ : z ∈ Tyn

}
=
∥
∥Tβnxn

∥
∥ =

∥
∥
∥
∥
xn − yn

βn

∥
∥
∥
∥. (2.30)

By assumption lim n→∞βn > 0,we have

yn − J1yn −→ 0 (n −→ ∞). (2.31)

Since J1 is nonexpansive, by Browder’s demiclosedness principle, we assert that p ∈ F(J1) =
T−10. Now Opial’s condition of H guarantees that {xn} converges weakly to p ∈ T−1(0) as
n → ∞. This completes the proof.

From Theorem 2.7 and the same proof of Corollary 2.3, we have the following corollary.

Corollary 2.8. LetH be a real Hilbert space,Ω a nonempty closed convex subset ofH, andU : Ω → Ω
a continuous and pseudocontractive mapping with a fixed point. Set T = I −U. Suppose that, for any
given xn ∈ Ω, βn > 0, and en ∈ H, there exists xn ∈ Ω such that

xn + en =
(
1 + βn

)
xn − βnUxn, ∀n ≥ 0. (2.32)

Define the sequence {xn} iteratively as follows:

x0 ∈ Ω,

xn+1 = αnxn +
(
1 − αn

)
PΩ

(
xn − en

)
, ∀n ≥ 0,

(2.33)

where {αn} ⊂ [0, 1] with limn→∞ αn < 1, {βn} ⊂ (0,+∞) with limn→∞ βn > 0, and {en} ⊂ H with
∑∞

n=0‖en‖2 < +∞. Then {xn} converges weakly to a fixed point p of U.

3. Applications

We can apply Theorems 2.1 and 2.7 to find a minimizer of a convex function f . Let H be a real
Hilbert space and f : H → (−∞,∞] a proper convex lower semicontinuous function. Then the
subdifferential ∂f of f is defined as follows:

∂f(z) =
{
v∗ ∈ H : f(y) ≥ f(z) +

〈
y − z, v∗〉, y ∈ H

}
, ∀ z ∈ H. (3.1)
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Theorem 3.1. Let H be a real Hilbert space and f : H → (−∞,∞] a proper convex lower semicon-
tinuous function. Suppose that, for any xn ∈ H, βn > 0, and en ∈ H, there exists xn conforming
to

xn + en ∈ xn + βn∂f
(
xn

)
, ∀n ≥ 0, (3.2)

where {βn} is a sequence in (0,∞) with βn → ∞ (n → ∞) and
∑∞

n=0‖en‖2 < +∞. Let {αn} be a
sequence in [0, 1] such that αn → 0 (n → ∞) and

∑∞
n=0αn = ∞. For any fixed u ∈ H, let {xn} be the

sequence generated by

u, x0 ∈ H,

xn = argmin
z∈H

{

f(z) +
1
2βn

∥
∥z − xn − en

∥
∥2
}

,

xn+1 = αnu +
(
1 − αn

)(
xn − en

)
, ∀n ≥ 0.

(3.3)

If ∂f−10/=∅, then {xn} converges strongly to the minimizer of f nearest to u.

Proof. Since f : H → (−∞,∞] is a proper convex lower semicontinuous function, by [2], the
subdifferential ∂f of f is a maximal monotone operator. Noting that

xn = argmin
z∈H

{

f(z) +
1
2βn

∥
∥z − xn − en

∥
∥2
}

(3.4)

is equivalent to

0 ∈ ∂f
(
xn

)
+

1
βn

(
xn − xn − en

)
, (3.5)

we have

xn + en ∈ xn + βn∂f
(
xn

)
, ∀n ≥ 0. (3.6)

Therefore, using Theorem 2.1, we have the desired conclusion. This completes the proof.

Theorem 3.2. Let H be a real Hilbert space and f : H → (−∞,∞] a proper convex lower semicon-
tinuous function. Suppose that, for any given xn ∈ H, βn > 0, and en ∈ H, there exists xn ∈ H such
that

xn + en ∈ xn + βn∂f
(
xn

)
, ∀n ≥ 0, (3.7)

where {βn} is a sequence in (0,∞) with limn→∞βn > 0 and
∑∞

n=0‖en‖2 < +∞. Let {αn} be a sequence
in [0, 1] with limn→∞αn < 1 and let {xn} be the sequence generated by

x0 ∈ H,

xn = argmin
z∈H

{

f(z) +
1
2βn

∥
∥z − xn − en

∥
∥2
}

,

xn+1 = αn xn +
(
1 − αn

)(
xn − en

)
, ∀n ≥ 0.

(3.8)

If ∂f−10/=∅, then {xn} converges weakly to the minimizer of f nearest to u.
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Proof. As shown in the proof lines of Theorem 3.1, ∂f : H → H is a maximal monotone opera-
tor, and so the conclusion of Theorem 3.2 follows from Theorem 2.7.
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