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1. Introduction

Jensen’s inequality is of great interest in the theory of differential and difference equations, as
well as other areas of mathematics. The original Jensen’s inequality can be stated as follows.

Theorem 1.1 (see[1]). If g ∈ C([a, b], (c, d)) and f ∈ C((c, d),R) is convex, then

f

(∫b
a g(s)ds
b − a

)
≤
∫b
a f

(
g(s)

)
ds

b − a
. (1.1)

Jensen’s inequality on time scales via Δ-integral has been recently obtained by Agarwal,
Bohner, and Peterson.

Theorem 1.2 (see[2]). If g ∈ Crd([a, b], (c, d)) and f ∈ C((c, d),R) is convex, then

f

(∫b
a g(s)Δs

b − a

)
≤
∫b
a f

(
g(s)

)
Δs

b − a
. (1.2)

Under similar hypotheses, we may replace the Δ-integral by the ∇-integral and get a
completely analogous result [3]. The aim of this paper is to extend Jensen’s inequality to an
arbitrary time scale via the diamond-α integral [4].
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There have been recent developments of the theory and applications of dynamic
derivatives on time scales. From the theoretical point of view, the study provides a unification
and extension of traditional differential and difference equations. Moreover, it is a crucial tool
in many computational and numerical applications. Based on the well-known Δ (delta) and
∇ (nabla) dynamic derivatives, a combined dynamic derivative, the so-called ♦α (diamond-α)
dynamic derivative, was introduced as a linear combination of Δ and ∇ dynamic derivatives
on time scales [4]. The diamond-α derivative reduces to theΔ derivative for α = 1 and to the∇
derivative for α = 0. On the other hand, it represents a “weighted dynamic derivative” on any
uniformly discrete time scale when α = 1/2. We refer the reader to [4–6] for an account of the
calculus associated with the diamond-α dynamic derivatives.

The paper is organized as follows. In Section 2, we briefly give the basic definitions and
theorems of time scales as introduced in Hilger’s thesis [7] (see also [8, 9]). In Section 3, we
present our main results which are generalizations of Jensen’s inequality on time scales. Some
examples and applications are given in Section 4.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of real numbers. The calculus of time
scales was initiated by Hilger in his Ph.D. thesis [7] in order to unify discrete and continuous
analysis. Let T be a time scale. T has the topology that inherits from the real numbers with the
standard topology. For t ∈ T, we define the forward jump operator σ : T→T by σ(t) = inf{s ∈
T : s > t}, and the backward jump operator ρ : T→T by ρ(t) = sup{s ∈ T : s < t}.

If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-
scattered. Points that are simultaneously right-scattered and left-scattered are called isolated.
If σ(t) = t, then t is called right-dense, and if ρ(t) = t, then t is called left-dense. Points that
are simultaneously right-dense and left-dense are called dense. Let t ∈ T, then two mappings
μ, ν : T→ [0,+∞) are defined as follows: μ(t) := σ(t) − t, ν(t) := t − ρ(t).

We introduce the sets Tk, Tk, and T
k
k
, which are derived from the time scale T, as follows.

If T has a left-scattered maximum t1, then T
k = T − {t1}, otherwise T

k = T. If T has a right-
scattered minimum t2, then Tk = T − {t2}, otherwise Tk = T. Finally, we define Tk

k
= T

k ∩ Tk.
Throughout the text, we will denote a time scales interval by

[a, b]
T
= {t ∈ T : a ≤ t ≤ b}, with a, b ∈ T. (2.1)

Let f : T→R be a real function on a time scale T. Then, for t ∈ T
k, we define fΔ(t) to be

the number, if one exists, such that for all ε > 0 there is a neighborhood U of t such that for all
s ∈ U: ∣∣f(σ(t)) − f(s) − fΔ(t)

(
σ(t) − s

)∣∣ ≤ ε
∣∣σ(t) − s

∣∣. (2.2)

We say that f is delta differentiable on T
k, provided fΔ(t) exists for all t ∈ T

k. Similarly, for
t ∈ Tk, we define f∇(t) to be the number value, if one exists, such that for all ε > 0, there is a
neighborhood V of t such that for all s ∈ V :∣∣f(ρ(t)) − f(s) − f∇(t)

(
ρ(t) − s

)∣∣ ≤ ε
∣∣ρ(t) − s

∣∣. (2.3)

We say that f is nabla differentiable on Tk, provided that f∇(t) exists for all t ∈ Tk.
Given a function f : T→R, then we define fσ : T→R by fσ(t) = f(σ(t)) for all t ∈ T,

that is, fσ = f ◦ σ. We define fρ : T→R by fρ(t) = f(ρ(t)) for all t ∈ T, that is, fρ = f ◦ ρ. The
following properties hold for all t ∈ T

k.
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(i) If f is delta differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is delta differentiable at t with
fΔ(t) = (fσ(t) − f(t))/μ(t).

(iii) If f is right-dense, then f is delta differentiable at t if and only if the limit lims→ t(f(t)−
f(s))/(t − s) exists as a finite number. In this case, fΔ(t) = lims→ t(f(t) − f(s))/(t − s).

(iv) If f is delta differentiable at t, then fσ(t) = f(t) + μ(t)fΔ(t).

Similarly, given a function f : T→R, the following is true for all t ∈ Tk.

(a) If f is nabla differentiable at t, then f is continuous at t.

(b) If f is continuous at t and t is left-scattered, then f is nabla differentiable at twith
f∇(t) = (f(t) − fρ(t))/ν(t).

(c) If f is left-dense, then f is nabla differentiable at t if and only if the limit
lims→ t(f(t) − f(s))/(t − s) exists as a finite number. In this case, f∇(t) =
lims→ t(f(t) − f(s))/(t − s).

(d) If f is nabla differentiable at t, then fρ(t) = f(t) − ν(t)f∇(t).

A function f : T→R is called rd-continuous, provided it is continuous at all right-dense
points in T and its left-sided limits exist at all left-dense points in T.

A function f : T→R is called ld-continuous, provided it is continuous at all left-dense
points in T and its right-sided limits exist finite at all right-dense points in T.

A function F : T→R is called a delta antiderivative of f : T→R, provided FΔ(t) = f(t)
holds for all t ∈ T

k. Then the delta integral of f is defined by
∫b
a f(t)Δt = F(b) − F(a).

A function G : T→R is called a nabla antiderivative of g : T→R, provided G∇(t) = g(t)
holds for all t ∈ Tk. Then the nabla integral of g is defined by

∫b
a g(t)∇t = G(b) −G(a).

For more details on time scales, we refer the reader to [10–16]. Now, we briefly introduce
the diamond-α dynamic derivative and the diamond-α integral [4, 17].

Let T be a time scale, and t, s ∈ T. Following [17], we define μts = σ(t) − s, ηts = ρ(t) − s,
and f♦α(t) to be the value, if one exists, such that for all ε > 0 there is a neighborhood U of t
such that for all s ∈ U,

∣∣α[fσ(t) − f(s)
]
ηts + (1 − α)

[
fρ(t) − f(s)

]
μts − f♦α(t)μtsηts

∣∣ < ε
∣∣μtsηts

∣∣. (2.4)

A function f is said diamond-α differentiable on T
k
k
, provided f♦α(t) exists for all t ∈ T

k
k
. Let

0 ≤ α ≤ 1. If f(t) is differentiable on t ∈ T
k
k
both in the delta and nabla senses, then f is

diamond-α differentiable at t and the dynamic derivative f♦α(t) is given by

f♦α(t) = αfΔ(t) + (1 − α)f∇(t) (2.5)

(see [17, Theorem 3.2]). Equality (2.5) is the definition of f♦α(t) found in [4]. The diamond-α
derivative reduces to the standardΔ derivative for α = 1, or the standard∇ derivative for α = 0.
On the other hand, it represents a “weighted dynamic derivative” for α ∈ (0, 1). Furthermore,
the combined dynamic derivative offers a centralized derivative formula on any uniformly
discrete time scale T when α = 1/2.



4 Journal of Inequalities and Applications

Let f, g : T→R be diamond-α differentiable at t ∈ T
k
k
. Then, (cf. [4, Theorem 2.3])

(i) f + g : T→R is diamond-α differentiable at t ∈ T
k
k
with

(f + g)♦α(t) = (f)♦α(t) + (g)♦α(t). (2.6)

(ii) For any constant c, cf : T→R is diamond-α differentiable at t ∈ T
k
k
with

(cf)♦α(t) = c(f)♦α(t). (2.7)

(iii) fg : T→R is diamond-α differentiable at t ∈ T
k
k
with

(fg)♦α(t) = (f)♦α(t)g(t) + αfσ(t)(g)Δ(t) + (1 − α)fρ(t)(g)∇(t). (2.8)

Let a, t ∈ T, and h : T→R. Then the diamond-α integral of h from a to t is defined by

∫ t

a

h(τ)♦ατ = α

∫ t

a

h(τ)Δτ + (1 − α)
∫ t

a

h(τ)∇τ, 0 ≤ α ≤ 1, (2.9)

provided that there exist delta and nabla integrals of h on T. It is clear that the diamond-
α integral of h exists when h is a continuous function. We may notice that the ♦α-combined
derivative is not a dynamic derivative for the absence of its antiderivative [17, Section 4].
Moreover, in general, we do not have

(∫ t

a

h(τ)♦ατ

)♦α

= h(t), t ∈ T. (2.10)

Example 2.1. Let T = {0, 1, 2}, a = 0, and h(τ) = τ2, τ ∈ T. It is a simple exercise to see that

(∫ t

0
h(τ)♦ατ

)♦α
∣∣∣∣
t=1

= h(1) + 2α(1 − α), (2.11)

so that (2.10) holds only when ♦α = ∇ or ♦α = Δ.

Let a, b, t ∈ T, c ∈ R. Then, (cf. [4, Theorem 3.7])

(a)
∫ t
a(f(τ) + g(τ))♦ατ =

∫ t
af(τ)♦ατ +

∫ t
ag(τ)♦ατ ;

(b)
∫ t
acf(τ)♦ατ = c

∫ t
af(τ)♦ατ ;

(c)
∫ t
af(τ)♦ατ =

∫b
a f(τ)♦ατ +

∫ t
b f(τ)♦ατ .

Next lemma provides some straightforward, but useful results for what follows.

Lemma 2.2. Assume that f and g are continuous functions on [a, b]
T
.

(1) If f(t) ≥ 0 for all t ∈ [a, b]
T
, then

∫b
a f(t)♦αt ≥ 0.

(2) If f(t) ≤ g(t) for all t ∈ [a, b]
T
, then

∫b
a f(t)♦αt ≤

∫b
a g(t)♦αt.

(3) If f(t) ≥ 0 for all t ∈ [a, b]
T
, then f(t) = 0 if and only if

∫b
a f(t)♦αt = 0.
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Proof. Let f(t) and g(t) be continuous functions on [a, b]
T
.

(1) Since f(t) ≥ 0 for all t ∈ [a, b]
T
, we know (see [15, 16]) that

∫b
a f(t)Δt ≥ 0 and∫b

a f(t)∇t ≥ 0. Since α ∈ [0, 1], the result follows.

(2) Let h(t) = g(t) − f(t). Then
∫b
a h(t)♦αt ≥ 0 and the result follows from properties (a)

and (b) above.

(3) If f(t) = 0 for all t ∈ [a, b]
T
, the result is immediate. Suppose now that there exists

t0 ∈ [a, b]
T
such that f(t0) > 0. It is easy to see that at least one of the integrals∫b

a f(t)Δt or
∫b
a f(t)∇t is strictly positive. Then we have the contradiction

∫b
a f(t)♦αt > 0.

3. Main results

We now prove Jensen’s diamond-α integral inequalities.

Theorem 3.1 (Jensen’s inequality). Let T be a time scale, a,b ∈ T with a < b, and c,d ∈ R. If
g ∈ C([a, b]

T
, (c, d)) and f ∈ C((c, d),R) is convex, then

f

(∫b
a g(s)♦αs

b − a

)
≤
∫b
a f

(
g(s)

)
♦αs

b − a
. (3.1)

Remark 3.2. In the particular case α = 1, (3.1) reduces to that of Theorem 1.2. If T = R, then
Theorem 3.1 gives the classical Jensen’s inequality, that is, Theorem 1.1. However, if T = Z

and f(x) = − ln(x), then one gets the well-known arithmetic-mean geometric-mean inequality
(3.18).

Proof. Since f is convex, we have

f

(∫b
a g(s)♦αs

b − a

)
= f

(
α

b − a

∫b

a

g(s)Δs +
1 − α

b − a

∫b

a

g(s)∇s

)

≤ αf

(
1

b − a

∫b

a

g(s)Δs

)
+ (1 − α)f

(
1

b − a

∫b

a

g(s)∇s

)
.

(3.2)

Using now Jensen’s inequality on time scales (see Theorem 1.2), we get

f

(∫b
a g(s)♦αs

b − a

)
≤ α

b − a

∫b

a

f
(
g(s)

)
Δs +

1 − α

b − a

∫b

a

f
(
g(s)

)∇s

=
1

b − a

(
α

∫b

a

f
(
g(s)

)
Δs + (1 − α)

∫b

a

f
(
g(s)

)∇s

)

=
1

b − a

∫b

a

f
(
g(s)

)
♦αs.

(3.3)

Now, we give an extended Jensen’s inequality on time scales via the diamond-α integral.

Theorem 3.3 (Generalized Jensen’s inequality). Let T be a time scale, a,b ∈ T with a < b,c, d ∈ R,
g ∈ C([a, b]

T
, (c, d)), and h ∈ C([a, b]

T
,R) with∫b

a

∣∣h(s)∣∣♦αs > 0. (3.4)



6 Journal of Inequalities and Applications

If f ∈ C((c, d),R) is convex, then

f

(∫b
a

∣∣h(s)∣∣g(s)♦αs∫b
a

∣∣h(s)∣∣♦αs

)
≤
∫b
a

∣∣h(s)∣∣f(g(s))♦αs∫b
a

∣∣h(s)∣∣♦αs
. (3.5)

Remark 3.4. Theorem 3.3 is the same as [3, Theorem 3.17]. However, we prove Theorem 3.3
using a different approach than that proposed in [3]: in [3], it is stated that such result follows
from the analog nabla inequality. As we have seen, diamond-alpha integrals have different
properties than those of delta or nabla integrals (cf. Example 2.1). On the other hand, there is
an inconsistency in [3]: a very simple example showing this fact is given below in Remark 3.10.

Remark 3.5. In the particular case h = 1, Theorem 3.3 reduces to Theorem 3.1.

Remark 3.6. If f is strictly convex, the inequality sign “≤” in (3.5) can be replaced by “<”. Similar
result to Theorem 3.3 holds if one changes the condition “f is convex” to “f is concave,” by
replacing the inequality sign “≤” in (3.5) by “≥”.

Proof. Since f is convex, it follows, for example, from [18, Exercise 3.42C], that for t ∈ (c, d)
there exists at ∈ R such that

at(x − t) ≤ f(x) − f(t) ∀x ∈ (c, d). (3.6)

Setting

t =

∫b
a

∣∣h(s)∣∣g(s)♦αs∫b
a

∣∣h(s)∣∣♦αs
, (3.7)

then using (3.6) and item (2) of Lemma 2.2, we get

∫b

a

∣∣h(s)∣∣f(g(s))♦αs −
(∫b

a

∣∣h(s)∣∣♦αs

)
f

(∫b
a

∣∣h(s)∣∣g(s)♦αs∫b
a

∣∣h(s)∣∣♦αs

)

=
∫b

a

∣∣h(s)∣∣f(g(s))♦αs −
(∫b

a

∣∣h(s)∣∣♦αs

)
f(t)

=
∫b

a

∣∣h(s)∣∣(f(g(s)) − f(t)
)
♦αs

≥ at

(∫b

a

∣∣h(s)∣∣(g(s) − t
))

♦αs

= at

(∫b

a

∣∣h(s)∣∣g(s)♦αs − t

∫b

a

∣∣h(s)∣∣♦αs

)

= at

(∫b

a

∣∣h(s)∣∣g(s)♦αs −
∫b

a

∣∣h(s)∣∣g(s)♦αs

)
= 0.

(3.8)

This leads to the desired inequality.
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Remark 3.7. The proof of Theorem 3.3 follows closely the proof of the classical Jensen’s
inequality (see, e.g., [18, Problem 3.42]) and the proof of Jensen’s inequality on time scales
[2].

We have the following corollaries.

Corollary 3.8 (T = R). Let g, h : [a, b]→R be continuous functions with g([a, b]) ⊆ (c, d) and∫b
a |h(x)|dx > 0. If f ∈ C((c, d),R) is convex, then

f

(∫b
a

∣∣h(x)∣∣g(x)dx∫b
a

∣∣h(x)∣∣dx
)

≤
∫b
a

∣∣h(x)∣∣f(g(x))dx∫b
a

∣∣h(x)∣∣dx . (3.9)

Corollary 3.9 (T = Z). Given a convex function f , we have for any x1, . . . , xn ∈ R and c1, . . . , cn ∈ R

with
∑n

k=1|ck| > 0:

f

(∑n
k=1

∣∣ck∣∣xk∑n
k=1

∣∣ck∣∣
)

≤
∑n

k=1

∣∣ck∣∣f(xk

)
∑n

k=1

∣∣ck∣∣ . (3.10)

Remark 3.10. Corollary 3.9 coincides with [19, Corollary 2.4] and [3, Corollary 3.12] if one
substitutes all the |ck|’s in Corollary 3.9 by ck and we restrict ourselves to integer values of
xi and ci, i = 1, . . . , n. Let T = Z, a = 1, and b = 3, so that [a, b]

T
denotes the set {1, 2, 3} and

n = 3. For the data f(x) = x2, c1 = 1, c2 = 5, c3 = −3, x1 = 1, x2 = 1, and x3 = 2 one has
A =

∑3
k=1ck = 3 > 0, and B =

∑3
k=1ckxk = 0. Thus D = f(B/A) = f(0) = 0. On the other hand,

f(x1) = 1, f(x2) = 1, and f(x3) = 4. Therefore, C =
∑3

k=1ckf(xk) = −6. We have E = C/A = −2
and D > E, that is, f(

∑n
k=1ckxk/

∑n
k=1ck) >

∑n
k=1ckf(xk)/

∑n
k=1ck. Inequality (3.10) gives the

truism 16/9 ≤ 2.

Particular cases

(i) Let g(t) > 0 on [a, b]
T
and f(t) = tβ on (0,+∞). One can see that f is convex on (0,+∞) for

β < 0 or β > 1, and f is concave on (0,+∞) for β ∈ (0, 1). Then

(∫b
a

∣∣h(s)∣∣g(s)♦αs∫b
a

∣∣h(s)∣∣♦αs

)β

≤
∫b
a

∣∣h(s)∣∣gβ(s)♦αs∫b
a

∣∣h(s)∣∣♦αs
, if β < 0 or β > 1;

(∫b
a

∣∣h(s)∣∣g(s)♦αs∫b
a

∣∣h(s)∣∣♦αs

)β

≥
∫b
a

∣∣h(s)∣∣gβ(s)♦αs∫b
a

∣∣h(s)∣∣♦αs
, if β ∈ (0, 1).

(3.11)

(ii) Let g(t) > 0 on [a, b]
T
and f(t) = ln(t) on (0,+∞). One can also see that f is concave

on (0,+∞). It follows that

ln

(∫b
a

∣∣h(s)|g(s)♦αs∫b
a

∣∣h(s)∣∣♦αs

)
≥
∫b
a

∣∣h(s)∣∣ ln (g(s))♦αs∫b
a

∣∣h(s)∣∣♦αs
. (3.12)
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(iii) Let h = 1, then

ln

(∫b
a g(s)♦αs

b − a

)
≥
∫b
a ln

(
g(s)

)
♦αs

b − a
. (3.13)

(iv) Let T = R, g : [0, 1]→(0,∞) and h(t) = 1. Applying Theorem 3.3 with the convex
and continuous function f = − ln on (0,∞), a = 0, and b = 1, we get

ln
∫1

0
g(s)ds ≥

∫1

0
ln

(
g(s)

)
ds. (3.14)

Then

∫1

0
g(s)ds ≥ exp

(∫1

0
ln

(
g(s)

)
ds

)
. (3.15)

(v) Let T = Z and n ∈ N. Fix a = 1, b = n + 1 and consider a function g : {1, . . . , n +
1}→ (0,∞). Obviously, f = − ln is convex and continuous on (0,∞), so we may apply Jensen’s
inequality to obtain

ln

[
1
n

(
α

n∑
t=1

g(t) + (1 − α)
n+1∑
t=2

g(t)

)]
= ln

[
1
n

∫n+1

1
g(t)♦αt

]

≥ 1
n

∫n+1

1
ln

(
g(t)

)
♦αt

=
1
n

[
α

n∑
t=1

ln
(
g(t)

)
+ (1 − α)

n+1∑
t=2

ln
(
g(t)

)]

= ln
{ n∏

t=1

g(t)
}α/n

+ ln
{ n+1∏

t=2

g(t)
}(1−α)/n

,

(3.16)

and hence

1
n

(
α

n∑
t=1

g(t) + (1 − α)
n+1∑
t=2

g(t)

)
≥
{ n∏

t=1

g(t)
}α/n{ n+1∏

t=2

g(t)
}(1−α)/n

. (3.17)

When α = 1, we obtain the well-known arithmetic-mean geometric-mean inequality:

1
n

n∑
t=1

g(t) ≥
{ n∏

t=1

g(t)
}1/n

. (3.18)

When α = 0, we also have

1
n

n+1∑
t=2

g(t) ≥
{ n+1∏

t=2

g(t)
}1/n

. (3.19)
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(vi) Let T= 2N0 and N ∈ N. We can apply Theorem 3.3 with a = 1, b= 2N, and g : {2k :
0 ≤ k ≤ N}→(0,∞). Then we get

ln

{∫2N
1 g(t)♦αt

2N − 1

}
= ln

{
α

∫2N
1 g(t)Δt

2N − 1
+ (1 − α)

∫2N
1 g(t)∇t

2N − 1

}

= ln

{
α
∑N−1

k=0 2
kg

(
2k
)

2N − 1
+
(1 − α)

∑N
k=12

kg
(
2k
)

2N − 1

}

≥
∫2N
1 ln

(
g(t)

)
♦αt

2N − 1

= α

∫2N
1 ln

(
g(t)

)
Δt

2N − 1
+ (1 − α)

∫2N
1 ln

(
g(t)

)∇t

2N − 1

=
α
∑N−1

k=0 2
k ln

(
g
(
2k
))

2N − 1
+
(1 − α)

∑N
k=12

k ln
(
g
(
2k
))

2N − 1

=
∑N−1

k=0 ln
(
g
(
2k
))α2k

2N − 1
+
∑N

k=1 ln
(
g
(
2k
))(1−α)2k

2N − 1

=
ln

∏N−1
k=0

(
g
(
2k
))α2k

2N − 1
+
ln

(∏N
k=1g

(
2k
))(1−α)2k

2N − 1

= ln

{
N−1∏
k=0

(
g
(
2k
))α2k}1/(2N−1)

+ ln

{
N∏
k=1

(
g
(
2k
))(1−α)2k}1/(2N−1)

= ln

⎛
⎝

{
N−1∏
k=0

(
g
(
2k
))α2k}1/(2N−1){ N∏

k=1

(
g(2k

))(1−α)2k}1/(2N−1)⎞
⎠ .

(3.20)

We conclude that

ln

{
α
∑N−1

k=0 2
kg

(
2k
)
+ (1 − α)

∑N
k=12

kg
(
2k
)

2N − 1

}

≥ ln

⎛
⎝

{
N−1∏
k=0

(
g
(
2k
))α2k}1/(2N−1){ N∏

k=1

(
g
(
2k
))(1−α)2k}1/(2N−1)⎞

⎠ .

(3.21)

On the other hand,

α
N−1∑
k=0

2kg
(
2k
)
+ (1 − α)

N∑
k=1

2kg
(
2k
)
=

N−1∑
k=1

2kg
(
2k
)
+ αg(1) + (1 − α)2Ng

(
2N

)
. (3.22)

It follows that
∑N−1

k=1 2
kg

(
2k
)
+αg(1)+(1 − α)2Ng

(
2N

)
2N − 1

≥
{

N−1∏
k=0

(
g
(
2k
))α2k}1/(2N−1){ N∏

k=1

(
g
(
2k
))(1−α)2k}1/(2N−1)

.

(3.23)
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In the particular case when α = 1, we have

∑N−1
k=0 2

kg
(
2k
)

2N − 1
≥
{

N−1∏
k=0

(
g
(
2k
))2k}1/(2N−1)

, (3.24)

and when α = 0 we get the inequality

∑N
k=12

kg
(
2k
)

2N − 1
≥
{

N∏
k=1

(
g
(
2k
))2k}1/(2N−1)

. (3.25)

4. Related diamond-α integral inequalities

The usual proof of Hölder’s inequality use the basic Young inequality x1/py1/q ≤ x/p+y/q for
nonnegative x and y. Here, we present a proof based on the application of Jensen’s inequality
(Theorem 3.3).

Theorem 4.1 (Hölder’s inequality). Let T be a time scale, a,b ∈ T with a < b, and f ,g,h ∈
C([a, b]

T
, [0,∞)) with

∫b
a h(x)g

q(x)♦αx > 0, where q is the Hölder conjugate number of p, that is,
1/p + 1/q = 1 with 1 < p. Then we have

∫b

a

h(x)f(x)g(x)♦αx ≤
(∫b

a

h(x)fp(x)♦αx

)1/p(∫b

a

h(x)gq(x)♦αx

)1/q

. (4.1)

Proof. Choosing f(x) = xp in Theorem 3.3, which for p > 1 is obviously a convex function on
[0,∞), we have

(∫b
a

∣∣h(s)∣∣g(s)♦αs∫b
a

∣∣h(s)∣∣♦αs

)p

≤
∫b
a

∣∣h(s)∣∣(g(s))p♦αs∫b
a

∣∣h(s)∣∣♦αs
. (4.2)

Inequality (4.1) is trivially true in the case when g is identically zero. We consider two cases:
(i) g(x) > 0 for all x ∈ [a, b]

T
; (ii) there exists at least one x ∈ [a, b]

T
such that g(x) = 0. We

begin with situation (i). Replacing g by fg−q/p and |h(x)| by hgq in inequality (4.2), we get

(∫b
a h(x)g

q(x)f(x)g−q/p(x)♦αx∫b
a h(x)g

q(x)♦αx

)p

≤
∫b
a h(x)g

q(x)
(
f(x)g−q/p(x)

)p♦αx∫b
a h(x)g

q(x)♦αx
. (4.3)

Using the fact that 1/p + 1/q = 1, we obtain that

∫b

a

h(x)f(x)g(x)♦αx ≤
(∫b

a

h(x)fp(x)♦αx

)1/p(∫b

a

h(x)gq(x)♦αx

)1/q

. (4.4)

We now consider situation (ii). Let G = {x ∈ [a, b]
T
| g(x) = 0}. Then

∫b

a

h(x)f(x)g(x)♦αx =
∫
[a,b]

T
−G

h(x)f(x)g(x)♦αx +
∫
G

h(x)f(x)g(x)♦αx

=
∫
[a,b]

T
−G

h(x)f(x)g(x)♦αx

(4.5)
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because
∫
Gh(x)f(x)g(x)♦αx = 0. For the set [a, b]

T
−G,we are in case (i), that is, g(x) > 0, and

it follows from (4.4) that

∫b

a

h(x)f(x)g(x)♦αx =
∫
[a,b]

T
−G

h(x)f(x)g(x)♦αx

≤
(∫

[a,b]
T
−G

h(x)fp(x)♦αx

)1/p(∫
[a,b]

T
−G

h(x)gq(x)♦αx

)1/q

≤
(∫b

a

h(x)fp(x)♦αx

)1/p(∫b

a

h(x)gq(x)♦αx

)1/q

.

(4.6)

Remark 4.2. In the particular case h = 1, Theorem 4.1 gives the diamond-α version of classical
Hölder’s inequality:

∫b

a

∣∣f(x)g(x)∣∣♦αx ≤
(∫b

a

|f |p(x)♦αx

)1/p(∫b

a

|g|q(x)♦αx

)1/q

, (4.7)

where p > 1 and q = p/(p − 1).

Remark 4.3. In the special case p = q = 2, (4.1) reduces to the following diamond-α Cauchy-
Schwarz integral inequality on time scales:

∫b

a

∣∣f(x)g(x)∣∣♦αx ≤
√(∫b

a

f2(x)♦αx

)(∫b

a

g2(x)♦αx

)
. (4.8)

We are now in position to prove a Minkowski inequality using our Hölder’s inequality
(4.1).

Theorem 4.4 (Minkowski’s inequality). Let T be a time scale, a,b ∈ T with a < b, and p > 1. For
continuous functions f, g : [a, b]

T
→R, we have

(∫b

a

∣∣(f + g)(x)
∣∣p♦αx

)1/p

≤
(∫b

a

∣∣f(x)∣∣p♦αx

)1/p

+
(∫b

a

∣∣g(x)∣∣p♦αx

)1/p

. (4.9)

Proof. We have, by the triangle inequality, that

∫b

a

∣∣f(x) + g(x)
∣∣p♦αx =

∫b

a

∣∣f(x) + g(x)
∣∣p−1∣∣f(x) + g(x)

∣∣♦αx

≤
∫b

a

∣∣f(x)∣∣∣∣f(x) + g(x)
∣∣p−1♦αx +

∫b

a

∣∣g(x)∣∣∣∣f(x) + g(x)
∣∣p−1♦αx.

(4.10)
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Applying now Hölder’s inequality with q = p/(p − 1) to (4.10), we obtain

∫b

a

∣∣f(x) + g(x)
∣∣p♦αx ≤

[∫b

a

∣∣f(x)∣∣p♦αx

]1/p[∫b

a

∣∣f(x) + g(x)
∣∣(p−1)q♦αx

]1/q

+
[∫b

a

∣∣g(x)∣∣p♦αx

]1/p[∫b

a

∣∣f(x) + g(x)
∣∣(p−1)q♦αx

]1/q

=
{[∫b

a

∣∣f(x)∣∣p♦αx

]1/p
+
[∫b

a

∣∣g(x)∣∣p♦αx

]1/p}[∫b

a

∣∣f(x) + g(x)
∣∣p♦αx

]1/q
.

(4.11)

Dividing both sides of the last inequality by

[∫b

a

∣∣f(x) + g(x)
∣∣p♦αx

]1/q
, (4.12)

we get the desired conclusion.

As another application of Theorem 3.3, we have Theorem 4.5, as follows.

Theorem 4.5. Let T be a time scale, a,b ∈ T with a < b, and f ,g,h ∈ C([a, b]
T
, [0,∞)).

(i) If p > 1, then

{(∫b

a

hf♦αx

)p

+
(∫b

a

hg♦αx

)p}1/p

≤
∫b

a

h
(
fp + gp)1/p♦αx. (4.13)

(ii) If 0 < p < 1, then

{(∫b

a

hf♦αx

)p

+
(∫b

a

hg♦αx

)p}1/p

≥
∫b

a

h
(
fp + gp)1/p♦αx. (4.14)

Proof. We prove only (i). The proof of (ii) is similar. Inequality (i) is trivially true when f is
zero: both the left and right hand sides reduce to

∫b
a hg♦αx. Otherwise, applying Theorem 3.3

with f(x) = (1 + xp)1/p, which is clearly convex on (0,∞), we obtain

⎛
⎝1 +

(∫b
a hf♦αx

)p
(∫b

a h♦αx
)p

⎞
⎠

1/p

≤
∫b
a h

(
1 + fp

)1/p♦αx∫b
ah♦αx

. (4.15)

In other words,

[(∫b

a

h♦αx

)p

+
(∫b

a

hf♦αx

)p]1/p
≤
∫b

a

h
(
1 + fp)1/p♦αx. (4.16)

Changing h and f by hf/
∫b
a hf♦αx and g/f in the last inequality, respectively, we obtain

directly the inequality (i) of Theorem 4.5.
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