
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2008, Article ID 518646, 9 pages
doi:10.1155/2008/518646

Research Article
On a Generalized Retarded Integral
Inequality with Two Variables

Wu-Sheng Wang1,2 and Cai-Xia Shen1

1Department of Mathematics, Hechi College, Guangxi, Yizhou 546300, China
2Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Correspondence should be addressed to Wu-Sheng Wang, wang4896@126.com

Received 16 November 2007; Accepted 22 April 2008

Recommended by Wing-Sum Cheung

This paper improves Pachpatte’s results on linear integral inequalities with two variables, and gives
an estimation for a general form of nonlinear integral inequality with two variables. This paper does
not require monotonicity of known functions. The result of this paper can be applied to discuss on
boundedness and uniqueness for a integrodifferential equation.

Copyright q 2008 W.-S. Wang and C.-X. Shen. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Gronwall-Bellman inequality [1, 2] is an important tool in the study of existence, uniqueness,
boundedness, stability, and other qualitative properties of solutions of differential equations
and integral equations. There can be found a lot of its generalizations in various cases from
literature (see, e.g., [1–12]). In [11], Pachpatte obtained an estimation for the integral inequality

u(x, y) ≤ a(x, y) +
∫x

0

∫y

0
f(s, t)

[
u(s, t) +

∫ s

0

∫ t

0
g(s, t, σ, τ)u(σ, τ)dτdσ

]
dtds. (1.1)

His results were applied to a partial integrodifferential equation:

uxy(x, y) = F

(
x, y, u(x, y),

∫x

0

∫y

0
h
(
x, y, τ, σ, u(x, y)

)
dτdσ

)
,

u
(
x, y0

)
= α(x), u

(
x0, y

)
= β(y),

(1.2)

for boundedness and uniqueness of solutions.
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In this paper, we discuss a more general form of integral inequality:

ψ
(
u(x, y)

)

≤ a(x, y) +
∫b(x)

b(x0)

∫ c(y)

c(y0)
f(x, y, s, t)

[
ϕ1

(
u(s, t)

)
+
∫s

b(x0)

∫ t

c(y0)
g(s, t, σ, τ)ϕ2

(
u(σ, τ)

)
dτdσ

]
dtds

(1.3)

for all (x, y) ∈ [x0, x1) × [y0, y1). Obviously, u appears linearly in (1.1), but in our (1.3) it
is generalized to nonlinear terms: ϕ1(u(s, t)) and ϕ2(u(s, t)). Our strategy is to monotonize
functions ϕis with other two nondecreasing ones such that one has stronger monotonicity than
the other. We apply our estimation to an integrodifferential equation, which looks similar to
(1.2) but includes delays, and give boundedness and uniqueness of solutions.

2. Main result

Throughout this paper, x0, x1, y0, y1 ∈ R are given numbers. Let R+ := [0,∞), I := [x0, x1), J :=
[y0, y1), and Λ := I × J ⊂ R2. Consider inequality (1.3), where we suppose that ψ ∈ C0(R+,R+)
is strictly increasing such that ψ(∞) = ∞, b ∈ C1(I, I), and c ∈ C1(J, J) are nondecreasing, such
that b(x) ≤ x and c(y) ≤ y, a ∈ C1(Λ,R+), f ∈ C0(Λ2,R+), and g(x, y, s, t) ∈ C0(Λ2,R+) are
given, and ϕi ∈ C0(R+,R+) (i = 1, 2) are functions satisfying ϕi(0) = 0 and ϕi(u) > 0 for all
u > 0.

Define functions
w1(s) := max

τ∈[0,s]
{
ϕ1(τ)

}
,

w2(s) := max
τ∈[0,s]

{
ϕ2(τ)/w1(τ)

}
w1(s),

φ(s) := w2(s)/w1(s).

(2.1)

Obviously, w1, w2, and φ in (2.1) are all nondecreasing and nonnegative functions and satisfy
wi(s) ≥ ϕi(s), i = 1, 2. Let

W1(u) =
∫u

1

ds

w1
(
ψ−1(s)

) , (2.2)

W2(u) =
∫u

1

ds

w2
(
ψ−1(s)

) , (2.3)

Φ(u) =
∫u

W1(1)

ds

φ
(
ψ−1(W−1

1 (s)
)) . (2.4)

Obviously, W1,W2, and Φ are strictly increasing in u > 0, and therefore the inverses W−1
1 ,W−1

2 ,
and Φ−1 are well defined, continuous, and increasing. We note that

Φ(u) =
∫u

W1(1)

dx

φ
(
ψ−1(W−1

1 (x)
))

=
∫u

W1(1)

w1
(
ψ−1(W−1

1 (x)
))
dx

w2
(
ψ−1(W−1

1 (x)
))

=
∫W−1

1 (u)

1

dx

w2
(
ψ−1(x)

) = W2
(
W−1

1 (u)
)
.

(2.5)
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Furthermore, let f̃(x, y, s, t) := maxτ∈[x0,x]f(τ, y, s, t),which is also nondecreasing in x for each
fixed y, s, and t and satisfies f̃(x, y, s, t) ≥ f(x, y, s, t) ≥ 0.

Theorem 2.1. If inequality (1.3) holds for the nonnegative function u(x, y), then

u(x, y) ≤ ψ−1{W−1
2

[
Ξ(x, y)

]}
(2.6)

for all (x, y) ∈ [x0, X1) × [y0, Y1), where

Ξ(x, y) := W2
[
W−1

1

(
r2(x, y)

)]
+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃(x, y, s, t)

[∫ s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds,

r2(x, y) := W1
(
r1(x, y)

)
+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃(x, y, s, t)dtds,

r1(x, y) := a
(
x0, y

)
+
∫x

x0

∣∣ax(s, y)
∣∣ds,

(2.7)

and (X1, Y1) ∈ Λ is arbitrarily given on the boundary of the planar region

R :=
{
(x, y) ∈ Λ : Ξ(x, y) ∈ Dom

(
W−1

2

)
, r2(x, y) ∈ Dom

(
W−1

1

)}
. (2.8)

Here Dom denotes the domain of a function.

Proof. By the definition of functions wi and f̃i, from (1.3)we get

ψ
(
u(x, y)

)

≤ a(x, y)+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃(x, y, s, t)

[
w1

(
u(s, t)

)
+
∫s

b(x0)

∫ t

c(y0)
g
(
s, t, σ, τ

)
w2

(
u(σ, τ)

)
dτdσ

]
dtds

(2.9)

for all (x, y) ∈ Λ.
Firstly, we discuss the case that a(x, y) > 0 for all (x, y) ∈ Λ. It means that r1(x, y) > 0

for all (x, y) ∈ Λ. In such a circumstance, r1(x, y) is positive and nondecreasing on Λ and

r1(x, y) ≥ a
(
x0, y

)
+
∫x

x0

ax(t, y)dt. (2.10)

Regarding (1.3), we consider the auxiliary inequality

ψ
(
u(x, y)

)

≤ r1(x, y)+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃(X, y, s, t)

[
w1

(
u(s, t)

)
+
∫s

b(x0)

∫ t

c(y0)
g(s, t, σ, τ)w2

(
u(σ, τ)

)
dτdσ

]
dtds

(2.11)
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for all (x, y) ∈ [x0, X) × J , where x0 ≤ X ≤ X1 is chosen arbitrarily. We claim that

u(x, y) ≤ ψ−1
{
W−1

2

[
W2

(
W−1

1

(
W1

(
r1(x, y)

)
+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃(X, y, s, t)dtds

))

+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)

[∫ s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds

]} (2.12)

for all (x, y) ∈ [x0, X) × [y0, Y1), where Y1 is defined by (2.8).
Let η(x, y) denote the right-hand side of (2.11), which is a nonnegative and

nondecreasing function on [x0, X) × J . Then, (2.11) is equivalent to

u(x, y) ≤ ψ−1(η(x, y)) ∀(x, y) ∈ [x0, Y ) × J. (2.13)

By the fact that b(x) ≤ x for x ∈ [x0, X) and the monotonicity of wi, ψ, η, and b(x), we have

(∂/∂x)η(x, y)
w1

(
ψ−1(η(x, y)))

≤ (∂/∂x)r1(x, y)
w1

(
ψ−1(r1(x, y))) +

b′(x)
w1

(
ψ−1(η(x, y)))

×
∫ c(y)

c(y0)
f̃1
(
X, y, b(x), t

)[
w1

(
u
(
b(x), t

))
+
∫b(x)

b(x0)

∫ t

c(y0)
g
(
b(x), t, τ, σ

)
w2

(
u(τ, σ)

)
dτdσ

]
dt

≤ (∂/∂x)r1(x, y)
w1

(
ψ−1(r1(x, y))) + b′(x)

∫ c(y)

c(y0)
f̃1(X, y, b(x), t)dt

+ b′(x)
∫ c(y)

c(y0)
f̃1(X, y, b(x), t)

[∫b(x)

b(x0)

∫ t

c(y0)
g
(
b(x), t, τ, σ

)
φ
(
u(τ, σ)

)
dτdσ

]
dt

(2.14)

for all (x, y) ∈ [x0, X) × J . Integrating the above from x0 to x, we get

W1
(
η(x, y)

) ≤ W1
(
r1(x, y)

)
+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)dtds

+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)

[∫s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)φ

(
u(τ, σ)

)
dτdσ

]
dtds

(2.15)

for all (x, y) ∈ [x0, X) × J . Let

ψ
(
ξ(x, y)

)
:= W1

(
η(x, y)

)
,

r̃2(x, y) := W1
(
r1(x, y)

)
+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)dtds.

(2.16)
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From (2.15), (2.16), we obtain

ψ
(
ξ(x, y)

)

≤ r̃2(x, y) +
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)

[∫s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)φ

(
u(τ, σ)

)
dτdσ

]
dtds

(2.17)

for all x0 ≤ x < X, y0 ≤ y < y1. Let β(x, y) denote the right-hand side of (2.17), which is a
nonnegative and nondecreasing function on [x0, Y ) × J . Then, (2.17) is equivalent to

ψ
(
ξ(x, y)

) ≤ β(x, y) ∀(x, y) ∈ [x0, Y ) × J. (2.18)

From (2.13), (2.16), and (2.18), we have

u(x, y) ≤ ψ−1(η(x, y)) = ψ−1(W−1
1

(
ψ
(
ξ(x, y)

)) ≤ ψ−1(W−1
1

(
β(x, y)

))
(2.19)

for all x0 ≤ x < X, y0 ≤ y < Y1, where Y1 is defined by (2.8). By the definitions of φ, ψ, andW1,
φ(ψ−1(W−1

1 (s))) is continuous and nondecreasing on [0,∞) and satisfies φ(ψ−1(W−1
1 (s))) > 0

for s > 0. Let h(s) = ψ−1(W−1
1 (s)). Since b′(x) ≥ 0 and b(x) ≤ x for x ∈ [x0, X), from (2.19) we

have

(∂/∂x)β(x, y)
φ
(
h
(
β(x, y)

))

≤ (∂/∂x)r̃2(x, y)
φ
(
h
(
r̃2(x, y)

))

+
b′(x)

φ
(
h
(
β(x, y)

))
∫ c(y)

c(y0)
f̃1(X, y, b(x), t)

[∫b(x)

b(x0)

∫ t

c(y0)
g
(
b(x), t, τ, σ

)
φ
(
u(τ, σ)

)
dτdσ

]
dtds

≤ (∂/∂x)r̃2(x, y)
φ
(
h
(
r̃2(x, y)

)) + b′(x)
∫ c(y)

c(y0)
f̃1(X, y, b(x), t)

[∫b(x)

b(x0)

∫ t

c(y0)
g
(
b(x), t, τ, σ

)
dτdσ

]
dtds

(2.20)

for all (x, y) ∈ [x0, X) × [y0, Y1). Integrating the above from x0 to x, by (2.4)we get

Φ
(
β(x, y)

) ≤ Φ
(
r̃2(x, y)

)
+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)

[∫s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds (2.21)

for all (x, y) ∈ [x0, X) × [y0, y1). By (2.19) and the above inequality, we obtain

u(x, y)

≤ ψ−1
{
W−1

1

[
Φ−1

(
Φ
(
r̃2(x, y)

)
+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)

[∫ s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds

)]}

(2.22)
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for all (x, y) ∈ [x0, X) × [y0, Y1), where Y1 is defined by (2.8). It follows from (2.5) that

u(x, y) ≤ ψ−1
{
W−1

2

[
W2

(
W−1

1

(
W1

(
r1(x, y)

)
+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)dtds

))

+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)

[∫s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds

]}
,

(2.23)

which proves the claimed (2.12).
We start from the original inequality (1.3) and see that

ψ
(
u(X, y)

)

≤ r1(X, y)+
∫b(X)

b(x0)

∫ c(y)

c(y0)
f̃(X, y, s, t)

[
ϕ1

(
u(s, t)

)
+
∫s

b(x0)

∫ t

c(y0)
g(s, t, σ, τ)ϕ2

(
u(σ, τ)

)
dτdσ

]
dtds

(2.24)

for all y ∈ [y0, Y1); namely, the auxiliary inequality (2.11) holds for x = X, y ∈ [y0, Y1). By
(2.12), we get

u(X, y) ≤ ψ−1
{
W−1

2

[
W2

(
W−1

1

(
W1

(
r1(X, y)

)
+
∫b(X)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)dtds

))

+
∫b(X)

b(x0)

∫ c(y)

c(y0)
f̃1(X, y, s, t)

[∫s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds

]} (2.25)

for all x0 ≤ X ≤ X1, y0 ≤ y ≤ Y1. This proves (2.6).
The remainder case is that a(x, y) = 0 for some (x, y) ∈ Λ. Let

r1,ε(x, y) := r1(x, y) + ε, (2.26)

where ε > 0 is an arbitrary small number. Obviously, r1,ε(x, y) > 0 for all (x, y) ∈ Λ. Using the
same arguments as above, where r1(x, y) is replaced with r1,ε(x, y), we get

u(x, y) ≤ ψ−1
{
W−1

2

[
W2

(
W−1

1

(
W1

(
r1,ε(x, y)

)
+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(x, y, s, t)dtds

))

+
∫b(x)

b(x0)

∫ c(y)

c(y0)
f̃1(x, y, s, t)

[∫s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds

]} (2.27)

for all x0 ≤ X ≤ X1, y0 ≤ y ≤ Y1. Letting ε→ 0+, we obtain (2.6) because of continuity of r1,ε in

ε and continuity of ψ−1,W−1
1 ,W,W−1

2 , andW2. This completes the proof.
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3. Applications

In [11], the partial integrodifferential equation (1.2) was discussed for boundedness and
uniqueness of the solutions under the assumptions that

∣∣F(x, y, u, v)∣∣ ≤ f(x, y)
[|u| + |v|],∣∣h(x, y, s, t, u(s, t))∣∣ ≤ g(x, y, s, t)

∣∣u(s, t)∣∣,∣∣F(x, y, u1, v1
) − F

(
x, y, u2, v2

)∣∣ ≤ f(x, y)
[∣∣u1 − u2

∣∣ + ∣∣v1 − v2
∣∣],∣∣h(x, y, s, t, u1

) − h
(
x, y, s, t, u2

)∣∣ ≤ g(x, y, s, t)
∣∣u1 − u2

∣∣,
(3.1)

respectively. In this section, we further consider the nonlinear delay partial integrodifferential
equation

uxy(x, y) = F

(
x, y, u

(
b(x), c(y)

)
,

∫b(x)

b(b(x0))

∫ c(y)

c(c(y0))
h
(
b(x), c(y), τ, σ, u(τ, σ)

)
dτdσ

)
,

u
(
x, y0

)
= α(x), u

(
x0, y

)
= β(y)

(3.2)

for all (x, y) ∈ Λ, where b, c, and u are supposed to be as in Theorem 2.1; h : Λ2 × R→R,
F : Λ × R2→R, α : I→R, and β : J→R are all continuous functions such that α(0) = β(0) = 0.
Obviously, the estimation obtained in [11] cannot be applied to (3.2).

We first give an estimation for solutions of (3.2) under the condition

∣∣F(x, y, u, v)∣∣ ≤ f(x, y)
[
ϕ1

(|u|) + |v|],∣∣h(x, y, s, t, u(s, t))∣∣ ≤ g(x, y, s, t)
∣∣ϕ2

(
u(s, t)

)∣∣. (3.3)

Corollary 3.1. If |α(x)+β(y)| is nondecreasing in x and y and (3.3) holds, then every solution u(m,n)
of (3.2) satisfies

u(x, y) ≤ W−1
2

[
Ξ(x, y)

] ∀(x, y) ∈ [
x0, X1

) × [
y0, Y1

)
, (3.4)

where

Ξ(x, y) := W2

{
W−1

1

[
W1

(∣∣α(x) + β(y)
∣∣) +

∫b(x)

b(x0)

∫ c(y)

c(y0)

f
(
b−1(s), c−1(t)

)
b′
(
b−1(s)

)
c′
(
c−1(t)

)dtds
]}

+
∫b(x)

b(x0)

∫ c(y)

c(y0)

f
(
b−1(s), c−1(t)

)
b′
(
b−1(s)

)
c′
(
c−1(t)

)
[∫ s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds,

(3.5)

andW1,W
−1
1 ,W2,W

−1
2 , and X1, Y1 are defined as in Theorem 2.1 .
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Corollary 3.1 actually gives a condition of boundedness for solutions. Concretely, if there
is a positive constantM such that

∣∣α(x) + β(y)
∣∣ < M,

∫b(x)

b(x0)

∫ c(y)

c(y0)

f
(
b−1(s), c−1(t)

)
b′
(
b−1(s)

)
c′
(
c−1(t)

)dtds < M,

∫b(x)

b(x0)

∫ c(y)

c(y0)

f
(
b−1(s), c−1(t)

)
b′
(
b−1(s)

)
c′
(
c−1(t)

)
[∫ s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds < M

(3.6)

on [x0, X1) × [y0, Y1), then every solution u(x, y) of (3.2) is bounded on [x0, X1) × [y0, Y1).
Next, we give the condition of the uniqueness of solutions for (3.2).

Corollary 3.2. Suppose

∣∣F(x, y, u1, v1
) − F

(
x, y, u2, v2

)∣∣ ≤ f(x, y)
[
ϕ1

(∣∣u1 − u2
∣∣) + ∣∣v1 − v2

∣∣],∣∣h(x, y, s, t, u1
) − h

(
x, y, s, t, u2

)∣∣ ≤ g(x, y, s, t)ϕ2
(∣∣u1 − u2

∣∣), (3.7)

where f, g, ϕ1, ϕ2 are defined as in Theorem 2.1. There is a positive number M such that

∫b(x)

b(x0)

∫ c(y)

c(y0)

f
(
b−1(s), c−1(t)

)
b′
(
b−1(s)

)
c′
(
c−1(t)

)dtds < M,

∫b(x)

b(x0)

∫ c(y)

c(y0)

f
(
b−1(s), c−1(t)

)
b′
(
b−1(s)

)
c′
(
c−1(t)

)
[∫ s

b(x0)

∫ t

c(y0)
g(s, t, τ, σ)dτdσ

]
dtds < M

(3.8)

on [x0, X1) × [y0, Y1). Then, (3.2) has at most one solution on [x0, X1) × [y0, Y1), where X1, Y1 are
defined as in Theorem 2.1.
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