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1. Introduction and preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖·‖,
respectively. LetC be a nonempty closed convex subset ofH and letA : C → H be a nonlinear
map. PC be the projection of H onto the convex subset C. The classical variational inequality
problem, denoted by VI(C,A), is to find u ∈ C such that

〈Au, v − u〉 ≥ 0 ∀v ∈ C. (1.1)

For a given z ∈ H, u ∈ C satisfies the inequality

〈u − z, v − u〉 ≥ 0 ∀v ∈ C, (1.2)

if and only if u = PCz. It is known that the projection operator PC is nonexpansive. It is also
known that PC satisfies

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2 (1.3)

for x, y ∈ H. Moreover, PCx is characterized by the properties PCx ∈ C and 〈x−PCx, PCx−y〉 ≥
0 ∀y ∈ C.
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One can see that the variational inequality problem (1.1) is equivalent to some fixed-
point problems.

The element u ∈ C is a solution of the variational inequality problem (1.1) if and only
if u ∈ C satisfies the relation u = PC(u − λAu), where λ > 0 is a constant. The alternative
equivalent formulation has played a significant role in the studies of the the variational
inequalities and related optimization problems.

Recall the following definitions.

(1) B is called v-strongly monotone if for each x, y ∈ C, we have

〈Bx − By, x − y〉 ≥ v‖x − y‖2 (1.4)

for a constant v > 0. This implies that

‖Bx − By‖ ≥ v‖x − y‖, (1.5)

that is, B is v-expansive and when v = 1, it is expansive.

(2) B is called v-cocoercive [1, 2] if for each x, y ∈ C, we have

〈Bx − By, x − y〉 ≥ v‖Bx − By‖2 (1.6)

for a constant v > 0. Clearly, every v-cocoercive map B is 1/v-Lipschitz continuous.

(3) B is called relaxed u-cocoercive if there exists a constant u > 0 such that

〈Bx − By, x − y〉 ≥ (−u)‖Bx − By‖2 ∀x, y ∈ C. (1.7)

(4) B is called relaxed (u, v)-cocoercive if there exist two constants u, v > 0 such that

〈Bx − By, x − y〉 ≥ (−u)‖Bx − By‖2 + v‖x − y‖2 ∀x, y ∈ C (1.8)

for u = 0, B is v-strongly monotone. This class of maps is more general than
the class of strongly monotone maps. It is easy to see that we have the following
implication: v-strongly monotonicity ⇒ relaxed (u, v)-cocoercivity.

(5) A mapping T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C.
Next, we denote by F(T) the set of fixed points of T .

(6) A mapping f : H → H is said to be a contraction if there exists a coefficient α(0 <
α < 1) such that

‖f(x) − f(y)‖ ≤ α‖x − y‖ ∀x, y ∈ H. (1.9)

(7) An operator A is strongly positive if there exists a constant γ > 0 with the property

〈Ax, x〉 ≥ γ‖x‖2 ∀x ∈ H. (1.10)
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(8) A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, one has
thatf ∈ Tx and g ∈ Ty imply 〈x−y, f −g〉 ≥ 0. Amonotone mapping T : H → 2H is
maximal if the graph G(T) of T is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping T is maximal if and only
if for (x, f) ∈ H ×H, 〈x − y, f − g〉 ≥ 0 implies thatf ∈ Tx for every (y, g) ∈ G(T).
Let B be a monotone map of C intoH and letNCv be the normal cone to C at v ∈ C,
that is,

NCv = {ω ∈ H : 〈v − u,ω〉 ≥ 0 ∀u ∈ C} (1.11)

and define

Tv =

{
Bv +NCv, v ∈ C,

∅, v /∈C.
(1.12)

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C,B) (see [3]).

Let F be an equilibrium bifunction of C × C into R, where R is the set of real numbers.
The equilibrium problem for F : C × C → R is to find x ∈ C such that

F(x, y) ≥ 0 ∀y ∈ C. (1.13)

The set of solutions of (1.13) is denoted by EP(F). Given a mapping T : C → H, let
F(x, y) = 〈Tx, y − x〉 for x, y ∈ C. Then, z ∈ EP(F) if and only if 〈Tz, y − z〉 ≥ 0 for y ∈ C.
A number of problems in physics, optimization, and economics can be reduced to finding
a solution of (1.13). Equilibrium problems have been studied extensively (see, e.g., [4, 5]).
Recently, Combettes and Hirstoaga [4] introduced an iterative scheme for finding the best
approximation to the initial data when EP(F) is nonempty and proved a strong convergence
theorem.

Very recently, S. Takahashi and W. Takahashi [6] introduced an new iterative:

F(yn, u) +
1
rn
〈u − yn, yn − xn〉 ≥ 0 ∀u ∈ C,

xn+1 = αnf(xn) + (1 − αn)Tyn ∀n ≥ 1
(1.14)

for approximating a common element of the set of fixed points of a non-self nonexpansive
mapping and the set of solutions of the equilibrium problem and obtained a strong
convergence theorem in a real Hilbert space.

Iterative methods for nonexpansive mapping have recently been applied to solve
convex minimization problems (see, e.g., [7–16] and the references therein). A typical
problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive
mapping on a real Hilbert space H:

min
x∈C

1
2
〈Ax, x〉 − 〈x, b〉, (1.15)

where A is a linear-bounded operator, C is the fixed-point set of a nonexpansive mapping S,
and b is a given point in H. In [10, 11], it is proved that the sequence {xn} defined by the
iterative method below, with the initial guess x0 ∈ H chosen arbitrarily,

xn+1 = (I − αnA)Sxn + αnb, n ≥ 0, (1.16)
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converges strongly to the unique solution of the minimization problem (1.15) provided that
the sequence αn satisfies certain conditions. Recently, Marino and Xu [8] introduced a new
iterative scheme by the viscosity approximation

xn+1 = (I − αnA)Sxn + αnγf(xn), n ≥ 0. (1.17)

They proved that the sequence {xn} generated by the above iterative scheme converges
strongly to the unique solution of the variational inequality

〈(A − γf)x∗, x − x∗〉 ≥ 0, x ∈ C, (1.18)

which is the optimality condition for the minimization problem

min
x∈C

1
2
〈Ax, x〉 − h(x), (1.19)

where C is the fixed-point set of a nonexpansive mapping S, h is a potential function for γf
(i.e., h′(x) = γf(x) for x ∈ H).

For finding a common element of the set of fixed points of nonexpansive mappings
and the set of solution of variational inequalities for α-cocoercive map, Takahashi and Toyoda
[17] introduced the following iterative process:

xn+1 = αnxn + (1 − αn)SPC(xn − λnAxn) (1.20)

for every n = 0, 1, 2, . . . ,where A is α-cocoercive, x0 = x ∈ C, αn is a sequence in (0, 1), andλn
is a sequence in (0, 2α). They show that if F(S) ∩ VI(C,A) is nonempty, then the sequence
{xn} generated by (1.20) converges weakly to some z ∈ F(S)∩VI(C,A). Recently, Iiduka and
Takahashi [18] studied similar scheme as follows:

xn+1 = αnx + (1 − αn)SPC(xn − λnAxn) (1.21)

for every n = 0, 1, 2, . . . , where x0 = x ∈ C, αn is a sequence in (0, 1), and λn is a sequence in
(0, 2α). They proved that the sequence {xn} converges strongly to z ∈ F(S) ∩ VI(C,A). Very
recently, Chen et al. [19] studied the following iterative process:

x1 ∈ C, xn+1 = αnf(x) + (1 − αn)SPC(xn − λnAxn), n ≥ 1, (1.22)

and also obtained a strong convergence theorem by the so-called viscosity approximation
method [20].

Let Ti : C → C, where i = 1, 2, . . . ,N be a a finite family of nonexpansive mappings,
let F(Ti) denote the fixed-point set of Ti, that is, F(Ti) := {x ∈ C : Tix = x}. Finding an
optimal point in the intersection ∩N

i=1F(Ti) of the fixed-point sets of a family of nonexpansive
mappings is a task that occurs frequently in various areas of mathematical sciences and
engineering. For example, the well-known convex feasibility problem reduces to finding
a point in the intersection of the fixed-point sets of a family of nonexpansive mappings
(see, e.g., [21, 22]). The problem of finding an optimal point that minimizes a given cost
function over ∩N

i=1F(Ti) is of wide interdisciplinary interest and practical importance (see,
e.g., [12, 16, 23–25]). A simple algorithmic solution to the problem of minimizing a quadratic
function over ∩N

i=1F(Ti) is of extreme value in many applications including set theoretic signal
estimation (see, e.g., [12, 26]).
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We study the mapping Wn defined by

Un0 = I,

Un1 = λn1T1Un0 + (1 − λn1)I,

Un2 = λn2T2Un1 + (1 − λn2)I,

...

Un,N−1 = λn,N−1TN−1Un,N−2 + (1 − λn,N−1)I,

Wn := UnN = λn,NTNUn,N−1 + (1 − λnN)I,

(1.23)

where {λn1}, {λn2}, . . . , {λnN} ∈ (0, 1]. Such amappingWn is called theW-mapping generated
by T1, T2, . . . , TN and {λn1}, {λn2}, . . ., {λnN}. Nonexpansivity of Ti yields the nonexpansivity
of Wn. Moreover, in [27, Lemma 3.1], it is shown that F(Wn) = ∩N

i=1F(Ti). In [28], Qin et al.
introduce a more general iterative process as follows: X1 ∈ H

F(yn, u) +
1
rn
〈u − yn, yn − xn〉 ≥ 0 ∀u ∈ C,

xn+1 = αnγf(Wnxn) + (1 − αnA)WnPC(I − snB)yn ∀n ≥ 1,
(1.24)

where Wn is defined by (1.23), A is a linear-bounded operator, and B is relaxed cocoercive.
They prove that the sequence {xn} generated by the above iterative scheme converges
strongly to a common element of the set of common fixed points of a finite family of
nonexpansive mappings, the set of solutions of the variational inequalities for relaxed
cocoercive maps, and the set of solutions of the equilibrium problems (1.13), which solves
another variational inequality:

〈γf(q) −Aq, p − q〉 ≤ 0 ∀p ∈ F, (1.25)

where F = ∩N
i=1Fix(Ti) ∩ VI(C,B) ∩ EP(F), and it is also the optimality condition for

the minimization problem minx∈F(1/2)〈Ax, x〉 − h(x), where h is a potential function for
γf(h′(x) = γf(x) for x ∈ H).

Recently, Ceng and Yao [14] introduce amixed-equilibrium problem (MEP) as follows.
LetH be a real Hilbert space and let C be a nonempty closed convex subset ofH. Let ϕ : C →
R be a real-valued function andΘ : C×C → R be an equilibrium bifunction, that is,Θ(u, u) = 0
for each u ∈ C, the MEP is given as follows, which is to find x∗ ∈ C such that

MEP : Θ(x∗, y) + ϕ(y) − ϕ(x∗) ≥ 0 ∀y ∈ C. (1.26)

In particular, if ϕ ≡ 0, this problem reduces to the equilibrium problem (EP), which is to find
x∗ ∈ C such that

EP : Θ(x∗, y) ≥ 0 ∀y ∈ C. (1.27)

Denote the set of solutions of MEP by Ω and the set of solutions of EP by S-EP. The
MEP includes fixed-point problems, optimization problems, variational inequality problems,
Nash, EPS, and the EP as special cases (see, e.g., [2, 5, 21, 22, 29]). Some methods have been
proposed to solve the EP (see, e.g., [1, 3, 5, 7, 19, 23, 24]).
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Recall that a mapping f : C → C is called contractive if there exists a constant α ∈ (0, 1)
such that

‖f(x) − f(y)‖ ≤ α‖x − y‖ ∀x, y ∈ C. (1.28)

Recall also that a mapping S : C → H is said to be nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖ ∀x, y ∈ C. (1.29)

Denote the set of fixed points of S by Fix(S). It is well known that if C is bounded closed
convex and S : C → C is nonexpansive, then Fix(S)/=∅.

Inspired and motivated by the ongoing research in this field, we investigate the
problem of finding a common element of the set of solution of (1.26) and the set of common
fixed points of finite many nonexpansive mappings in a Hilbert space. First, we introduce a
hybrid iterative scheme for finding a common element of the set of solutions of MEP and the
set of common fixed points of finite many nonexpansive mapping. Furthermore, we prove
that the sequences generated by the hybrid iterative scheme converge strongly to a common
element of the set of solutions of MEP and the set of common fixed points of finite many
nonexpansive mapping. Our results extend the recent ones announced by Chen et al. [19],
Combettes and Hirstoaga [4], Iiduka and Takahashi [18], Marino and Xu [8], Qin et al. [28],
S. Takahashi and W. Takahashi [6], Wittmann [30], and many others.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. Let C be a
nonempty closed convex subset of H. Then, for any x ∈ H, there exists a unique nearest
point u ∈ C such that

‖x − u‖ ≤ ‖x − y‖ ∀y ∈ C. (1.30)

We denote u by PC(x), where PC is called the metric projection of H onto C. It is well known
that PC is nonexpansive. Furthermore, for x ∈ H and u ∈ C,

u = PC(x) ⇐⇒ 〈x − u, u − y〉 ≥ 0 ∀y ∈ C. (1.31)

In this paper, for solving theMPE for an equilibrium bifunction,Θ : C×C → R satisfies
the following conditions:

(H1) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 ∀x, y ∈ C;

(H2) for each fixed y ∈ C, x �→ Θ(x, y) is concave and upper semicontinuous;

(H3) for each x ∈ C, y �→ Θ(x, y) is convex.

Let F : C → H and η : C × C → H be two mapping. Then, F is called

(i) η-monotone if

〈F(x) − F(y), η(x, y)〉 ≥ 0 ∀x, y ∈ C; (1.32)

(ii) η-strongly monotone if there exists a constant α > 0 such that

〈F(x) − F(y), η(x, y)〉 ≥ α‖x − y‖2 ∀x, y ∈ C; (1.33)
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(iii) Lipschitz continuous if there exists a constant β > 0 such that

〈F(x) − F(y), η(x, y)〉 ≤ β‖x − y‖ ∀x, y ∈ C (1.34)

when η(x, y) = x − y ∀x, y ∈ Cand if there exists a constant λ > 0 such that

‖η(x, y)‖ ≤ λ‖x − y‖ ∀x, y ∈ C. (1.35)

A differentiable function K : C → R on a convex set C is called

(i) η-convex [14] if

K(y) −K(x) ≥ 〈K′(x), η(y, x)〉 ∀x, y ∈ C, (1.36)

where K′(x) is the Frechet derivative of K at x;

(ii) η-strongly convex [15] if there exists a constant μ > 0 such that

K(y) −K(x) − 〈K′(x), η(y, x)〉 ≥ μ

2
‖x − y‖2 ∀x, y ∈ C. (1.37)

Let C be a nonempty closed convex subset of real Hilbert space H, ϕ : C → R be a
real-valued function, and Θ : C × C → R be an equilibrium bifunction. Let r be a positive
parameter. For a given point x ∈ C, consider the auxiliary problem for MEP (MEP(x, r))
which consists of finding y ∈ C such that

Θ(y, z) + ϕ(z) − ϕ(y) +
1
r
〈K′(y) −K′(x), η(z, y)〉 ≥ 0 ∀z ∈ C, (1.38)

where η : C × C → H and K′(x) is the Frechet derivative of a functional K : C → R at x. Let
Tr : C → C be the mapping such that for each x ∈ C, Tr(x) is the solution of MEP(x, r), that
is,

Tr(x) =
{
y ∈ C : Θ(y, z) + ϕ(z) − ϕ(y) +

1
r
〈K′(y) −K′(x), η(z, y)〉 ≥ 0, ∀z ∈ C

}
. (1.39)

Lemma 1.1 (see [14]). Let C be a nonempty closed convex subset of a real Hilbert space H and let
ϕ : C → R be a lower semicontinuous and convex functional. Let Θ : C × C → R be an equilibrium
bifunction satisfying conditions (H1)–(H3).

Assume that

(i) η : C × C → H is Lipschitz continuous with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0 ∀x, y ∈ C,
(b) η(·, ·) is affine in the first variable,
(c) for each fixed y ∈ C, x → η(y, x) is sequentially continuous from the weak topology

to the weak topology;

(ii) K : C → R is η-strongly convex with constant μ > 0 and its derivative K′ is sequentially
continuous from the weak topology to the strong topology;
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(iii) for each x ∈ C, there exist a bounded subset Dx ⊆ C and zx ∈ C such that for any
y ∈ C \Dx,

Θ(y, zx) + ϕ(zx) − ϕ(y) +
1
r
〈K′(y) −K′(x), η(zx, y)〉 < 0. (1.40)

Then, there exists y ∈ C such that

Θ(y, z) + ϕ(z) − ϕ(y) +
1
r
〈K′(y) −K′(x), η(z, y)〉 ≥ 0 ∀z ∈ C. (1.41)

Lemma 1.2 (see [14]). Assume that Θ satisfies the same assumptions as Lemma 2.1 for r > 0 and
x ∈ C, the mapping Tr : C → C can be defined as follows:

Tr(x) =
{
y ∈ C : Θ(y, z) + ϕ(z) − ϕ(y) +

1
r
〈K′(y) −K′(x), η(z, y)〉 ≥ 0 ∀z ∈ C

}
(1.42)

for all y ∈ C. Then, the following hold:

(i) Tr is single-valued;

(ii) (a) 〈K′(x1) − K′(x2), η(u1, u2)〉 ≥ 〈K′(u1) − K′(u2), η(u1, u2)〉 ∀(x1, x2) ∈ C × C;
where ui = Sr(xi), i = 1, 2;

(b) Tr is nonexpansive ifK′ is Lipschitz continuous with constant ν > 0 such that μ ≥ λν;

(iii) F(Tr) = Ω;

(iv) Ω is closed and convex.

Lemma 1.3 (see [24]). Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0, 1] with

0 ≤ lim inf
n→∞

βn ≤ lim sup
n→∞

βn ≤ 1. (1.43)

Suppose

xn+1 = (1 − βn)yn + βnxn (1.44)

for all integer n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. (1.45)

Then, limn→∞‖yn − xn‖ = 0.

Lemma 1.4 (see [23]). Assume an is sequence of nonexpansive real number such that

an+1 ≤ (1 − γn)an + δn, (1.46)

where {γn} is a sequence in (0,1) and {δn} is a sequence such that

(1)
∑∞

n=1γn = ∞;

(2) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1|δn| < ∞.

Then, limn→∞an = 0.
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2. Iterative scheme and strong convergence

Now, we introduced the following hybrid iterative scheme. Let f be a contraction of H into
itself with coefficient α ∈ (0, 1) and let A be a strongly positive bounded linear operator on
H with coefficient γ̃ > 0 such that 0 < γ̃ < γ/α, where γ > 0 is some constant. Given x0 ∈ H,
suppose the sequences {xn} and {yn} are generated iterative by

Θ(yn, x) + ϕ(x) − ϕ(yn) +
1
r
〈K′(yn) −K′(xn), η(x, yn)〉 ≥ 0 ∀x ∈ C,

xn+1 = αnγf(Wnxn) + βnxn + ((1 − βn)I − αnA)WnPC(I − snB)yn ∀n ≥ 1,
(2.1)

where Wn is defined by (1.23), A is a linear bounded operator, and B is relaxed cocoercive,
we prove that the sequence {xn} generated by the above iterative scheme converges strongly
to a common element of the set of common fixed points of a finite family of nonexpansive
mappings, the set of solutions of the variational inequalities for relaxed cocoercive maps,
and the set of solutions of the equilibrium problems (1.26), which solves another variational
inequality

〈γf(q) −Aq, p − q〉 ≤ 0 ∀p ∈ F, (2.2)

where F = ∩N
i=1Fix(Ti)∩VI(C,B)∩Ω and is also the optimality condition for the minimization

problem minx∈F(1/2)〈Ax, x〉 − h(x), where h is a potential function for γf(x) (i.e., h′ =
γf(x) for c ∈ H). The results obtained in this paper improve and extend the recent ones
announced by Chen et al. [19], Combettes and Hirstoaga [4], Iiduka and Takahashi [18],
Marino and Xu [8], Qin et al. [28], S. Takahashi and W. Takahashi [6], Wittmann [30], and
many others.

We will need the following result concerning the W-mappingWn.

Lemma 2.1 (see [4]). Let C be a nonempty closed convex subset of a Banach space X. Let
T1, T2, . . . , TN be a finite family of nonexpansive mappings of C into itself such that ∩N

i=1Fix(Ti) is
nonempty, and let λn1, λn2, . . . , λnN be real numbers such that 0 < λni ≤ a < 1 for i = 1, 2, . . . ,N.
For any n ≥ 1, let Wn be the W-mapping of C into itself generated by TN, TN−1, . . . , 1 and
λnN, λn,N−1, . . . , λn1. If X is strictly convex, then Fix(Wn) = ∩N

i=1Fix(Ti).

Now, we study the strong convergence of the hybrid iterative method (2.1).

Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H, and let ϕ : C → R
be a lower semicontinuous and convex functional. Let Θ : C × C → R be an equilibrium bifunction
satisfying conditions (H1)–(H3), let T1, T2, . . . , TN be a finite family of nonexpansive mappings on C
intoH, and let B be a μ-Lipschitzian, relaxed (u, v)-cocoercive map of C into H such that

N⋂
i=1

Fix(Ti) ∩Ω ∩ VI(C,B)/=∅. (2.3)

Let λn1, λn2, . . . , λnN be a real number such that limn→∞(λn+1,i − λn,i) = 0 ∀i = 1, 2, . . . ,N. Suppose
{αn}, {βn} are three sequences in (0,1), and r is a positive parameter. Let f be a contraction ofH into
itself with a coefficient α (0 < α < 1) and let A be a strongly positive linear bounded operator with
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coefficient γ > 0 such that ‖A‖ ≤ 1. Assume that 0 < γ̃ < γ/α. Let {xn} and {yn} be sequences
generated by x1 ∈ H and suppose that the following conditions are satisfied:

(i) η : C × C → H is Lipschitz with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0, ∀x, y ∈ C;
(b) η(·, ·) is affine in the first variable;
(c) for each fixed y ∈ C, x �→ η(y, x) is sequentially continuous from the weak topology

to the weak topology;

(ii) K : C → R is η-strongly convex with constant μ > 0 and its derivative K′ is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant ν > 0, μ ≥ λν;

(iii) for each x ∈ C, there exists a bounded subset Dx ⊆ C and zx ∈ C, such that, for any
y ∈ C \Dx,

Θ(y, zx) + ϕ(zx) − ϕ(y) +
1
r
〈K′(y) −K′(x), η(zx, y)〉 < 0; (2.4)

(iv) limn→∞ αn = 0 and
∑∞

n=1αn = ∞; 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;
∑∞

n=1|sn+1 −
sn| < ∞; {sn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(v − uμ2)/μ2.

Given x0 ∈ C arbitrarily, then the sequences {xn} and {yn} generated iteratively by (2.1)
converge strongly to q ∈ Fix(Ti) ∩ Ω ∩ VI(C,B) provided that Tr is firmly nonexpansive, where
q = PFix(Ti)∩Ω∩VI(C,B)(I −A + γf)(q) is a unique solution of variational inequalities:

〈(A − γf)q, q − x〉 ≤ 0, ∀p ∈
N⋂
i=1

Fix(Ti) ∩Ω ∩ VI(C,B), (2.5)

which is the optimality condition for the minimization problem

min
p∈F

1
2
〈Ap, p〉 − h(p), (2.6)

where h is a potential function for γf .

Proof. Note that for the control condition (iv), we may assume, without loss of generality, that
αn ≤ (1 − βn)‖A‖−1.

Since A is linear bounded self-adjoint operator on C, then

‖A‖ = sup{|〈Au, u〉| : u ∈ C, ‖u‖ = 1}. (2.7)

Observe that

〈((1 − βn)I − αnA)u, u〉 = 1 − βn − αn〈Au, u〉
≥ 1 − βn − αn‖A‖
≥ 0,

(2.8)
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that is, (1 − βn)I − αnA is positive. It follows that

‖(1 − βn)I − αnA‖ = sup{〈((1 − βn)I − αnA)u, u〉 : u ∈ C, ‖u‖ = 1}
= sup{1 − βn − αn〈Au, u〉 : u ∈ C, ‖u‖ = 1}
≤ 1 − βn − αnγ.

(2.9)

Let Q = P∩N
i=1Fix(Ti)∩Ω. Note that f is a contraction with coefficient α ∈ (0, 1). Then, we

have

‖Q(I −A + γf)(x) −Q(I −A + γf)(y)‖ ≤ ‖(I −A + γf)(x) − (I −A + γf)(y)‖
≤ ‖I −A‖‖x − y‖ + γ‖f(x) − f(y)‖
≤ (1 − γ)‖x − y‖ + γα‖x − y‖
= (1 − (γ − γα))‖x − y‖, ∀x, y ∈ C.

(2.10)

Therefore, Q(I − A + γf) is a contraction of C into itself, which implies that there exists a
unique element q ∈ C such that q = Q(I −A + γf)(q) = P∩N

i=1Fix(Ti)∩Ω(I −A + γf)(q).
First, we show that I − snB is nonexpansive. Indeed, from the relaxed (u, v)-cocoercive

and μ-Lipschitzian definition on B and condition (iv), we have

‖(I − snB)x − (I − snB)x‖2 = ‖(x − y) − sn(Bx − By)‖2

= ‖x − y‖2 − 2sn〈x − y, Bx − By〉 + s2n‖Bx − By‖2

≤ ‖x − y‖2 − 2sn[−u‖Bx − By‖2 + v‖(x − y)‖2] + s2n‖Bx − By‖2

≤ ‖x − y‖2 + 2snμ2u‖x − y‖2 − 2snv‖x − y‖2 + μ2s2n‖x − y‖2

= (1 + 2snμ2u − 2snv + μ2s2n)‖x − y‖2

≤ ‖x − y‖2,
(2.11)

which implies that the mapping I − snB is nonexpansive. Now, we observe that {xn} is
bounded. Indeed, pick p ∈ F. Since yn = Trxn, we have

‖yn − p‖ = ‖Trxn − Trp‖ ≤ ‖xn − p‖. (2.12)

Putting ρn = PC(I − snB)yn, we have

‖ρn − p‖ ≤ ‖(I − snB)yn − p‖ ≤ ‖yn − p‖ ≤ ‖xn − p‖. (2.13)

It follows that

‖xn+1 − p‖ = ‖αn(γf(Wnxn) −Ap) + βn(xn − p) + ((1 − βn)I − αnA)(Wnρn − p)‖
≤ ((1 − βn − αnγ)‖ρn − p‖ + βn‖xn − p‖ + αn‖γf(Wnxn) −Ap‖
≤ ((1 − αnγ)‖xn − p‖ + αn[γ‖f(Wnxn) − f(p)‖ + ‖γf(p) −Ap‖]
≤ [1 − (γ − γα)αn]‖xn − p‖ + ‖γf(p) −Ap‖,

(2.14)
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which gives that

‖xn − p‖ ≤ max
{
‖x0 − p‖, ‖γf(p) −Ap‖

γ − γα

}
, n ≥ 0. (2.15)

Therefore, we obtain that {xn} is bounded, so is {yn}{Wnxn}, {Wnρn} and {f(Wnxn)} are all
bounded. Now, we show that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.16)

Let p ∈ ⋂N
i=1Fix(Ti) ∩Ω ∩ VI(C,B). From the definition of Tr , we note that yn = Tr(xn)

and yn+1 = Tr(xn+1). It follows that

‖yn+1 − yn‖ = ‖Tr(xn+1) − Tr(xn)‖
≤ ‖xn+1 − xn‖.

(2.17)

Note that

‖ρn+1 − ρn‖ = ‖PC(I − sn+1B)yn+1 − PC(I − snB)yn‖
≤ ‖(I − sn+1B)yn+1 − (I − snB)yn‖
= ‖(I − sn+1B)yn+1 − (I − sn+1)Byn + (sn − sn+1)Byn‖
≤ ‖yn+1 − yn‖ + |sn − sn+1|‖Byn‖.

(2.18)

Substituting (2.17) into (2.18), we have

‖ρn+1 − ρn‖ ≤ ‖xn+1 − xn‖ + |sn − sn+1|‖Byn‖. (2.19)

Set xn+1 = βnxn + (1 − βn)zn ∀n ≥ 0. Observe that from the definition of zn, we obtain

zn+1 − zn =
xn+1 − βn+1xn+1

1 − βn+1
− xn+1 − βnxn

1 − βn

=
αn+1γf(Wn+1xn+1) + ((1 − βn+1)I − αn+1A)Wn+1ρn+1

1 − βn+1

− αnγf(Wnxn) + ((1 − βn)I − αnA)Wnρn
1 − βn

=
αn+1

1 − βn+1
γf(Wn+1xn+1) − αn

1 − βn
γf(Wnxn) +Wn+1ρn+1

−Wnρn +
αn

1 − βn
AWnρn − αn+1

1 − βn+1
AWn+1ρn+1

=
αn+1

1 − βn+1
[γf(xn+1) −AWn+1ρn+1] +

αn

1 − βn
[AWnρn − γf(Wnxn)]

+Wn+1ρn+1 −Wn+1ρn +Wn+1ρn −Wnρn.

(2.20)
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It follows that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ =
αn+1

1 − βn+1
(‖γf(Wn+1xn+1)‖ + ‖AWn+1ρn+1‖)

+
αn

1 − βn
(‖AWnρn‖ + ‖γf(Wnxn)‖)

+ ‖Wn+1ρn+1 −Wn+1ρn‖ + ‖Wn+1ρn −Wnρn‖ − ‖xn+1 − xn‖

≤ αn+1

1 − βn+1
(‖γf(Wn+1xn+1)‖ + ‖AWn+1ρn+1‖)

+
αn

1 − βn
(‖AWnρn‖ + ‖γf(Wnxn)‖)

+ ‖Wn+1ρn −Wnρn‖ + ‖ρn+1 − ρn‖ − ‖xn+1 − xn‖.

(2.21)

From (1.23), since Ti and Un,i ∀i = 1, 2, . . . ,N are nonexpansive,

‖Wn+1ρn −Wnρn‖
= ‖λn+1,NTNUn+1,N−1un + (1 − λn+1,N)ρn − λn,NTNUn,N−1ρn − (1 − λn,N)ρn‖
≤ |λn+1,N − λn,N |‖un‖ + ‖λn+1,NTNUn+1,N−1ρn − λn,NTNUn,N−1ρn‖
≤ |λn+1,N−λn,N |‖ρn‖+‖λn+1,N(TNUn+1,N−1ρn − TNUn,N−1ρn‖+|λn+1,N−λn,N |‖TNUn,N−1ρn‖
≤ 2M|λn+1,N − λn,N | + λn+1,N‖(Un+1,N−1ρn −Un,N−1ρn‖.

(2.22)

Again, from (1.23),

‖(Un+1,N−1ρn −Un,N−1ρn‖
= ‖λn+1,NTN−1Un+1,N−2ρn + (1 − λn+1,N−1)ρn − λn,N−1TN−1Un,N−2ρn − (1 − λn,N−1)ρn‖
≤ |λn+1,N−1 − λn,N−1|‖ρn‖‖λn+1,N−1TN−1Un+1,N−2ρn − λn,N−1TN−1Un,N−2ρn‖
≤ |λn+1,N−1−λn,N−1|‖ρn‖+λn+1,N−1‖(TN−1Un+1,N−2ρn − TN−1Un+1,N−2ρn‖+|λn+1,N−1 − λn,N−1|M
≤ 2M|λn+1,N−1 − λn,N−1| + λn+1,N−1‖(Un+1,N−2ρn −Un,N−2ρn‖
≤ 2M|λn+1,N−1 − λn,N−1| + ‖(Un+1,N−2ρn −Un,N−2ρn‖.

(2.23)

Therefore, we have

‖(Un+1,N−1ρn −Un,N−1ρn‖
≤ 2M|λn+1,N−1 − λn,N−1| + 2M|λn+1,N−2 − λn,N−2| + ‖(Un+1,N−3ρn −Un,N−3ρn‖

≤ 2M
N−1∑
i=2

|λn+1,i − λn,i| + ‖(Un+1,1un −Un,1ρn‖

= ‖λn+1,1T1un + (1 − λn+1,1)ρn − λn,1T1un − (1 − λn,1)ρn‖ + 2M
N−1∑
i=2

|λn+1,i − λn,i|,

(2.24)
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and then

‖(Un+1,N−1ρn −Un,N−1ρn‖ ≤ |λn+1,1 − λn,1|‖ρn‖ + ‖λn+1,1T1ρn − λn,1T1ρn‖

+ 2M
N−1∑
i=2

|λn+1,i − λn,i| ≤ 2M
N−1∑
i=1

|λn+1,i − λn,i|.
(2.25)

Substituting (2.25) into (2.22), we have

‖Wn+1ρn −Wnρn‖ ≤ 2M|λn+1,N − λn,N | + 2λn+1,NM
N−1∑
i=1

|λn+1,i − λn,i|

≤ 2M
N∑
i=1

|λn+1,i − λn,i|.
(2.26)

Using (2.19) and (2.26) in (2.21), we get

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ αn+1

1 − βn+1
(‖γf(Wn+1xn+1)‖ + ‖AWn+1xn+1‖)

+
αn

1 − βn
(‖AWnxn‖ + ‖γf(Wnxn)‖) + 2M

N∑
i=1

|λn+1,i − λn,i|,
(2.27)

which implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (2.28)

Hence, by Lemma 1.3, we have

lim
n→∞

‖zn − xn‖ = 0. (2.29)

Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1 − βn)‖zn − xn‖ = 0. (2.30)

From (2.18), (2.19), (2.30), and condition (iv), we have

lim
n→∞

‖ρn+1 − ρn‖ = lim
n→∞

‖yn+1 − yn‖ = 0. (2.31)

Since xn+1 = αnγf(xn) + βnxn + ((1 − βn)I − αnA)Wnρn, we have

‖xn −Wnρn‖ ≤ ‖xn+1 − xn‖ + ‖xn+1 −Wnρn‖
≤ ‖xn+1 − xn‖ + αn‖γf(Wnxn) −AWnρn‖ + βn‖xn −Wnρn‖,

(2.32)
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that is,

‖xn −Wnρn‖ ≤ 1
1 − βn

‖xn+1 − xn‖ + αn

1 − βn
‖γf(Wnxn) −AWnρn‖. (2.33)

It follows that

lim
n→∞

‖xn −Wnρn‖ = 0. (2.34)

For p ∈ ∩N
i=1Fix(Ti) ∩Ω ∩ VI(C,B), note that Sr is firmly nonexpansive, then we have

‖yn − p‖2 ≤ ‖Trxn − Trxn‖2

≤ 〈Trxn − Trp, xn − p〉
= 〈yn − p, xn − p〉

=
1
2
(‖yn − p‖2 + ‖xn − p‖2 − ‖xn − yn‖2),

(2.35)

and hence

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2. (2.36)

Therefore, we have

‖xn+1 − p‖2 = ‖αn(γf(Wnxn) −Ap) + βn(xn −Wnρn) + (I − αnA)(Wnρn − p)‖2

≤ ‖(I − αnA)(Wnρn − p) + βn(xn −Wnρn)‖2 + 2αn〈γf(Wnxn) −Ap, xn+1 − p〉
≤ [‖(I − αnA)(Wnρn − p)‖ + βn‖xn −Wnρn‖]2 + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖
≤ [(1 − αnγ)‖(ρn − p)‖ + βn‖xn −Wnρn‖]2 + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖
= (1 − αnγ)

2‖ρn − p‖2 + β2n‖xn −Wnρn‖2 + 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖
+ 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖

≤ (1 − αnγ)
2{‖xn − p‖2 − ‖xn − yn‖2} + βn‖xn −Wnρn‖]2

+ 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖
+ 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖

= (1 − 2αnγ + (αnγ)
2)‖xn − p‖2 − (1 − αnγ)

2‖xn − yn‖2

+ βn‖xn −Wnρn‖]2 + 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖
+ 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖

≤ ‖xn − p‖2 + (αnγ)
2‖xn − p‖2 − (1 − αnγ)

2‖xn − yn‖2

+ βn‖xn −Wnρn‖2 + 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖
+ 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖.

(2.37)
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Then, we have

(1 − αnγ)
2‖xn − yn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + β2n‖xn −Wnρn‖]2

+ (αnγ)
2‖xn − p‖2 + 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖

+ 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖
≤ (‖xn − p‖ + ‖xn+1 − p‖) × ‖xn+1 − xn‖
+ (αnγ)

2‖xn − p‖2 + β2n‖xn −Wnρn‖]2

+ 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖ + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖.
(2.38)

So, from (2.30), (2.34), and condition (iv), we have

lim
n→∞

‖xn − yn‖ = 0. (2.39)

For p ∈ F, we have

‖ρn − p‖ = ‖PC(I − snA)yn − PC(I − sA)p‖2

≤ ‖(yn − p) − sn(Ayn −Ap)‖2

= ‖yn − p‖2 − 2sn〈yn − p,Ayn −Ap〉 + s2n‖Ayn −Ap‖2

≤ ‖xn − p‖2 − 2sn[−u‖Ayn −Ap‖2 + v‖yn − p‖2] + s2n‖Ayn −Ap‖2

≤ ‖xn − p‖2 + 2snu‖Ayn −Ap‖2 − 2snv‖yn − p‖2 + s2n‖Ayn −Ap‖2

≤ ‖xn − p‖2 +
(
2sn + s2n −

2snv
μ2

)
‖Ayn −Ap‖2.

(2.40)

Observe that

‖xn+1 − p‖2 = ‖αn(γf(Wnxn) −Ap) + βn(xn −Wnρn) + (I − αnA)(Wnρn − p)‖2

≤ ‖(I − αnA)(Wnρn − p) + βn(xn −Wnρn)‖2 + 2αn〈γf(Wnxn) −Ap, xn+1 − p〉
≤ [‖(I − αnA)(Wnρn − p)‖ + βn‖xn −Wnρn‖]2 + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖
≤ [(1 − αnγ)‖(ρn − p)‖ + βn‖xn −Wnρn‖]2 + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖
= (1 − αnγ)

2‖ρn − p‖2 + β2n‖xn −Wnρn‖2 + 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖
+ 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖

= ‖ρn − p‖2 + (2αnγ + (αnγ)
2)‖ρn − p‖2 + β2n‖xn −Wnρn‖2

+ 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖ + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖.
(2.41)

Substituting (2.40) into (2.41), we have

‖xn+1 − p‖2 = ‖xn − p‖2 +
(
2sn + s2n −

2snv
μ2

)
‖Ayn −Ap‖2

+ (2αnγ + (αnγ)
2)‖ρn − p‖2 + β2n‖xn −Wnρn‖2

+ 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖ + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖.

(2.42)
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It follows from the condition (iv) that(
2av
μ2

− 2bu − b2
)
‖Ayn −Ap‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+ (2αnγ + (αnγ)
2)‖ρn − p‖2 + β2n‖xn −Wnρn‖2

+ 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖
+ 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖

≤ (‖xn − p‖ + ‖xn+1 − p‖)‖xn+1 − xn‖
+ (2αnγ + (αnγ)

2)‖ρn − p‖2 + β2n‖xn −Wnρn‖2

+ 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖
+ 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖.

(2.43)

From condition (iv), (2.30), and(2.34), we have

lim
n→∞

‖Ayn −Ap‖ = 0. (2.44)

On the other hand, we have

‖ρn − p‖2 = ‖PC(I − snA)yn − PC(I − snA)p‖2

≤ 〈(I − snA)yn − (I − snA)p, ρn − p〉

=
1
2
{‖(I−snA)yn−(I−snA)p‖2+‖ρn − p‖2−‖(I − snA)yn−(I−snA)p−(ρn − p)‖2}

≤ 1
2
{‖yn − p‖2 + ‖ρn − p‖2 − ‖(yn − ρn) − sn(Ayn −Ap)‖2}

=
1
2
{‖yn−p‖2+‖ρn−p‖2−‖yn − ρn‖2−s2n‖Ayn−Ap‖2+2sn〈yn−ρn,Ayn−Ap〉},

(2.45)

which yields that

‖ρn − p‖2 ≤ ‖xn − p‖2 − ‖yn − ρn‖2 + 2sn‖yn − ρn‖‖Ayn −Ap‖. (2.46)

Substituting (2.44) into (2.40) yields that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − ‖yn − ρn‖2 + 2sn‖yn − ρn‖‖Ayn −Ap‖
+ (2αnγ + (αnγ)

2)‖ρn − p‖2 + β2n‖xn −Wnρn‖2

+ 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖ + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖.
(2.47)

It follows that

‖yn − ρn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2sn‖yn − ρn‖‖Ayn −Ap‖
+ (2αnγ + (αnγ)

2)‖ρn − p‖2 + β2n‖xn −Wnρn‖2

+ 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖ + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖
≤ (‖xn − p‖ − ‖xn+1 − p‖)‖xn − xn+1‖ + 2sn‖yn − ρn‖‖Ayn −Ap‖
+ (2αnγ + (αnγ)

2)‖ρn − p‖2 + β2n‖xn −Wnρn‖2

+ 2(1 − αnγ)βn‖ρn − p‖‖xn −Wnρn‖ + 2αn‖γf(Wnxn) −Ap‖‖xn+1 − p‖.

(2.48)
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From condition (iv), (2.30), (2.34), and (2.41), we have

lim
n→∞

‖yn − ρn‖ = 0. (2.49)

Observe that

‖yn −Wnyn‖ ≤ ‖Wnyn −Wnρn‖ + ‖Wnρn − xn‖ + ‖xn − yn‖ + ‖yn − ρn‖
≤ 2‖yn − ρn‖ + ‖Wnρn − xn‖ + ‖xn − yn‖.

(2.50)

From (2.34), (2.39), and (2.49), we have

lim
n→∞

‖yn −Wnyn‖ = 0. (2.51)

Observe that PF(γf + (I −A)) is a contraction. Indeed, for all x, y ∈ H, we have

‖PF(γf + (I −A))(x) − PF(γf + (I −A))(y)‖ ≤ ‖(γf + (I −A))(x)) − (γf + (I −A)(y))‖
≤ γ‖f(x) − f(y)‖ + ‖I −A‖‖x − y‖
≤ γα‖x − y‖ + (1 − γ)‖x − y‖
= (γα + 1 − γ)‖x − y‖.

(2.52)

The Banach contraction mapping principle guarantees that PF(γf +(I−A)) has a unique fixed
point, say q ∈ H. That is, q = PF(γf + (I −A))(q). Next, we show that

lim sup
n→∞

〈γf(q)) −Aq, xn − q〉 ≤ 0. (2.53)

To see this, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈γf(q)) −Aq, xn − q〉 = lim sup
n→∞

〈γf(q)) −Aq, xni − q〉. (2.54)

Correspondingly, there exists a subsequence {yni} of {yn}. Since {yni} is bounded, there exists
a subsequence {yni} of {yn}which converges weakly to ω. Without loss of generality, we can
assume that yni ⇀ ω.

Next, we show ω ∈ ∩N
i=1Fix(Ti) ∩ Ω ∩ VI(C,B). First, we prove ω ∈ Ω. Since {yni} is

bounded, there exists a subsequence {yij} of {yni}which converges weakly toω. Without loss
of generality, we can assume that yni ⇀ ω. From ‖Wnyn − yn‖ → 0, we obtain Wnyni ⇀ ω.
Now, we show that ω ∈ Ω. Since yn = Trxn, we derive

Θ(yn, x) + ϕ(x) − ϕ(yn) +
1
r
〈K′(yn) −K′(xn), η(x, yn)〉 ≥ 0, ∀x ∈ C. (2.55)

From the monotonicity of Θ, we have

1
r
〈K′(yn) −K′(xn), η(x, yn)〉 + ϕ(x) − ϕ(yn) ≥ −Θ(yn, x) ≥ Θ(x, yn), (2.56)
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and hence 〈
K′(yni) −K′(xni)

r
, η(x, yni)

〉
+ ϕ(x) − ϕ(yni) ≥ Θ(x, yni). (2.57)

Since (K′(yni) − K′(xni))/r → 0), and yni → ω weakly, from the weak lower semicontinuity
of ϕ and Θ(x, y) in the second variable y, we have

Θ(x,ω) + ϕ(ω) − ϕ(x) ≤ 0, ∀x ∈ C (2.58)

for 0 < t ≤ 1 and x ∈ C, let xt = tx+(1− t)ω. Since x ∈ C andω ∈ C, we have xt ∈ C and hence
Θ(xt, ω) + ϕ(ω) − ϕ(xt) ≤ 0. From the convexity of equilibrium Θ(x, y) in the second variable
y, we have

0 = Θ(xt, xt) + ϕ(xt) − ϕ(xt)

≤ tΘ(xt, x) + (1 − t)Θ(xt, ω) + tϕ(x) + (1 − t)ϕ(ω) − ϕ(xt)

≤ t[Θ(xt, x) + ϕ(x) − ϕ(xt)],

(2.59)

and hence Θ(xt, x) + ϕ(x) − ϕ(xt) ≥ 0. Then, we have

Θ(ω, x) + ϕ(x) − ϕ(ω) ≥ 0, ∀x ∈ C, (2.60)

and hence ω ∈ Ω.
We will show ω ∈ Fix(Wn). Assume ω/∈ Fix(Wn). Since ynj → ωweakly and ω/=Wnω,

from Opial condition, we have

lim inf
j→∞

‖ynj −ω‖ < lim inf
j→∞

‖ynj −Wnω‖

≤ lim inf
j→∞

‖ynj −Wnynj‖ + ‖Wnynj −Wnω‖

≤ lim inf
j→∞

‖ynj −ω‖.
(2.61)

This is a contradiction, so, we get ω ∈ Fix(Wn) = ∩N
i=1Fix(Ti). Therefore, ω ∈ Fix(Wn) ∩Ω.

Next, let us first show that ω ∈ ∩VI(C,A), put

TW1 =

{
BW1 +NCW1, W1 ∈ C,

∅, W1/∈C.
(2.62)

Since B is relaxed (u, v)-cocoercive and condition (iv), we have

〈Bx − By, x − y〉 ≥ (−μ)‖Bx − By‖2 + v‖x − y‖2 ≥ (v − uμ2)‖x − y‖2 ≥ 0, (2.63)

which yields B is monotone. Thus, T is maximal monotone. Let (ω1, ω2) ∈ G(T). Since ω2 −
ω1 ∈ NCω1 and ρn ∈ C, we have

〈ω1 − ρn,ω2 − Bω1〉 ≥ 0. (2.64)

On the other hand, from ρn = PC(I − snB)yn,we have

〈ω1 − ρn, ρn − (I − snB)yn〉 ≥ 0, (2.65)
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and hence

〈
ω1 − ρn,

ρn − yn

sn
+ Byn

〉
≥ 0. (2.66)

It follows that

〈ω1 − ρn,ω2〉 ≥ 〈ω1 − ρni , Bω1〉

≥ 〈ω1 − ρni , Bω1〉 −
〈
ω1 − ρni ,

ρni − yni

sn
+ Byni

〉

=
〈
ω1 − ρni , Bω1 −

ρni − yni

sni

− Byni

〉

= 〈ω1 − ρni , Bω1 − Bρni〉 + 〈ω1 − ρni , Bρni − Byni〉 −
〈
ω1 − ρni ,

ρni − yni

sni

〉

≥ 〈ω1 − ρni , Bρni − Byni〉 −
〈
ω1 − ρni ,

ρni − yni

sni

〉
,

(2.67)

which implies that 〈ω1 − ω,ω2〉 ≥ 0. We have ω ∈ T−10 and hence ω ∈ VI(C,A). That is,
ω ∈ F. Since q = PF(γf + (I −A))(q), we have

lim sup
n→∞

〈γf(q) −Aq, xn − q〉 = lim sup
n→∞

〈(γf(q), xni − q〉

= 〈γf(q) −Aq,ω − q〉 ≤ 0.
(2.68)

Finally, we prove that {xn} and {yn} converge strongly to q. From (2.1), we have

‖xn+1 − q‖2 = ‖αn(γf(Wnxn) −Aq) + βn(xn − q)((1 − βn)I − αnA)(Wnρn − q)‖2

≤ ‖βn(xn − q) + ((1 − βn)I − αnA)(Wnρn − q)‖2 + 2αn〈γf(Wnxn) −Aq, xn+1 − q〉
≤ [‖((1 − βn)I − αnA)(Wnρn − q)‖ + ‖βn(xn − q)‖]2

+ 2αnγ〈f(Wnxn) − f(q), xn+1 − q〉 + 2αn〈γf(q) −Aq, xn+1 − q〉
≤ [(1 − βn − αnγ̃)‖ρn − q‖ + βn‖xn − q‖]2

+ 2αnγα‖xn − q‖‖xn+1 − q‖ + 2αn〈γf(q) −Aq, xn+1 − q〉
≤ [(1 − βn − αnγ̃)‖yn − q‖ + βn‖xn − q‖]2

+ 2αnγα‖xn − p‖‖xn+1 − q‖ + 2αn〈γf(p) −Aq, xn+1 − q〉
≤ (1 − αnγ̃)

2‖xn − q‖2 + αnγα{‖xn − q‖2 + ‖xn+1 − q‖2} + 2αn〈γf(q) −Aq, xn+1 − q〉.
(2.69)
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This implies that

‖xn+1 − q‖2 = 1 − 2αnγ̃ + (αnγ̃)
2 + αnγα

1 − αnγα
‖xn − q‖2 2αn

1 − αnγα
〈γf(q) −Aq, xn+1 − α〉

=
[
1 − 2(γ̃ − γα)αn

1 − αnγα

]
‖xn − q‖2 + (αnγ̃)

2

1 − αnγα
‖xn − p‖2

+
2αn

1 − αnγα
〈γf(p) −Aq, xn+1 − q〉

≤
[
1 − 2(γ̃ − γα)αn

1 − αnγα

]
‖xn − q‖2 + 2(γ̃ − γα)αn

1 − αnγα

×
{
(αnγ̃)

2M1

2(γ̃ − γα)
+

1
γ̃ − γα

〈γf(q) −Aq, xn+1 − q〉
}

= (1 − δn)‖xn − q‖2 + δnσn,

(2.70)

where M1 = sup{‖xn − q‖2 : n ≥ 1}, δn = 2(γ̃ − γα)αn/(1 − αnγα), and βn = (αnγ̃)
2M1/2(γ̃ −

γα) + (1/(γ̃ − γα))〈γf(q) − Aq, xn+1 − q〉. It is easy to see that δn → 0,
∑∞

n=1δn = ∞, and
lim supn→∞βn/δn ≤ 0. Hence, by Lemma 1.4, the sequence {xn} converges strongly to q.
Consequently, we can obtain that {yn} also converges strongly to q. This completes the
proof.

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert spaceH and let ϕ : C → R
be a lower semicontinuous and convex functional. Let Θ : C × C → R be an equilibrium bifunction
satisfying conditions (H1)–(H3) such that Ω/=∅. Suppose {αn} and {βn} are two sequences in (0,1)
and r is a positive parameter. Suppose that the following conditions are satisfied:

(i) η : C × C → H is Lipschitz with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0 ∀x·y ∈ C;
(b) η(·, ·) is affine in the first variable;
(c) for each fixed y ∈ C, x �→ η(y, x) is sequentially continuous from the weak topology

to the weak topology;

(ii) K : C → R is η-strongly convex with constant μ > 0 and its derivative K′ is not only
sequentially continuous from the weak topology to the strong topology but also Lipschitz
continuous with constant ν > 0, μ ≥ λν;

(iii) for each x ∈ C, there exist a bounded subset Dx ⊆ C and zx ∈ H, such that for any
y ∈ C \Dx,

Θ(y, zx) + ϕ(zx) − ϕ(y) +
1
r
〈K′(y) −K′(x), η(zx, y)〉 ≤ 0; (2.71)

(iv) limn→∞ αn = 0 and
∑∞

n=1αn = ∞; 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Given x0 ∈ C arbitrarily, then the sequences {xn} and {yn} generated iteratively by

Θ(yn, x) + ϕ(x) − ϕ(yn) +
1
r
〈K′(yn) −K′(xn), η(x, yn)〉 ≥ 0, ∀x ∈ C,

xn+1 = αnγf(Wnxn) + βnxn + ((1 − βn)I − αnA)Wnyn, ∀n ≥ 1.
(−11)
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Then, {xn} and {yn} converge strongly to q ∈ Fix(Ti) ∩ Ω provided that Tr is firmly nonexpansive,
where q = PFix(Ti)∩Ω(I −A + γf)(q) is a unique solution of variational inequalities

〈(A − γf)q, q − x〉 ≤ 0, ∀x ∈
N⋂
i=1

Fix(Ti) ∩Ω, (−11)

which is the optimality condition for the minimization problem

min
p∈Fix(Ti)

1
2
〈Ap, p〉 − h(p), (2.72)

where h is a potential function for γf .

Proof. Take Tix = x ∀i = 1, 2, . . . ,N and for all x ∈ C in (2.1). Then, Wnx = x ∀x ∈ C. The
conclusion follows immediately from Theorem 2.2. This completes the proof.

Corollary 2.4. Let C be a nonempty closed convex subset of a real Hilbert space. Let {Ti}Ni=1 be a finite
family of nonexpansive mappings of C into itself such that ∩N

i=1Fix(Ti)/=∅. Let λn1, λn2, . . . , λnN be
real number such that limn→∞(λn+1,i − λn,i) = 0 ∀i = 1, 2, . . . ,N. Suppose that {αn} and {βn} are
two sequences in (0, 1) and r is a positive parameter. Assume that the following hold:

(i) limn→∞αn = 0 and
∑∞

n=1αn = ∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Given x0 ∈ H arbitrarily, then the sequences {xn}are generated iteratively by

xn+1 = αnγf(Wnxn) + βnxn + ((1 − βn)I − αnA)Wnxn, ∀n ≥ 1. (2.73)

Proof. Set ϕ(x) = 0 andΘ(x, y) = 0 ∀x, y ∈ C and put r = 1. TakeK(x) = ‖x‖2/2 and η(y, x) =
y − x ∀x, y ∈ C, we get yn = xn in Theorem 2.2. Therefore, the conclusion follows.
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