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1. Introduction and preliminaries

Let H be a real Hilbert space with norm ‖·‖ and inner product 〈·, ·〉, C a nonempty closed
convex subset of H, and A a monotone operator of C into H. The classical variational
inequality problem is formulated as finding a point x ∈ C such that

〈y − x,Ax〉 ≥ 0 (1.1)

for all y ∈ C. Such a point x ∈ C is called a solution of the variational inequality (1.1). Next,
the set of solutions of the variational inequality (1.1) is denoted by VI(C,A). In the case when
C = H, VI(H,A) = A−10 holds, where

A−10 = {x ∈ H : Ax = 0}. (1.2)

Recall that an operator A of C into H is said to be inverse strongly monotone if there
exists a positive real number α such that

〈x − y,Ax −Ay〉 ≥ α‖Ax −Ay‖2 (1.3)

for all x, y ∈ C (see [1–4]). For such a case, A is said to be α-inverse strongly monotone.
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Recall that T : C → C is nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, (1.4)

for all x, y ∈ C. It is known that if T is a nonexpansivemapping ofC into itself, thenA = (I−T)
is 1/2-inverse strongly monotone and F(T) = VI(C,A), where F(T) denotes the set of fixed
points of T .

Let PC be the projection of H onto the convex subset C. It is known that projection
operator PC is nonexpansive. It is also known that PC satisfies

〈
x − y, PCx − PCy

〉 ≥ ∥
∥PCx − PCy

∥
∥2

, (1.5)

for x, y ∈ H.Moreover, PCx is characterized by the properties PCx ∈ C and 〈x−PCx, PCx−y〉 ≥
0 for all y ∈ C.

One can see that the variational inequality problem (1.1) is equivalent to some fixed-
point problem. The element x ∈ C is a solution of the variational inequality (1.1) if and only
if x ∈ C satisfies the relation x = PC(x − λAx),where λ > 0 is a constant.

To find a solution of the variational inequality for an inverse strongly monotone
operator, Iiduka et al. [2] proved the following weak convergence theorem.

Theorem ITT. Let C be a nonempty closed convex subset of a real Hilbert space H and let A be an
α-inverse strongly monotone operator of C intoH with VI(C,A) /= ∅. Let {xn} be a sequence defined
as follows:

x1 = x ∈ C,

xn+1 = PC

[
αnxn +

(
1 − αn

)
PC

(
xn − λnAxn

)] (1.6)

for all n = 1, 2, . . . , where PC is the metric projection from H onto C, {αn} is a sequence in [−1, 1],
and {λn} is a sequence in [0, 2α]. If {αn} and {λn} are chosen so that αn ∈ [a, b] for some a, b with
−1 < a < b < 1 and λn ∈ [c, d] for some c, d with 0 < c < d < 2(1 + a)α, then the sequence {xn}
defined by (1.6) converges weakly to some element of V I(C,A).

Next, we assume that C is a nonempty closed and convex subset of a Banach space E.
Let E∗ be the dual space of E and let 〈·, ·〉 denote the pairing between E and E∗. For q > 1, the
generalized duality mapping Jq : E → 2E

∗
is defined by

Jq(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1} (1.7)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. It is known that
Jq(x) = ‖q‖q−2J(x) for all x ∈ E. If E is a Hilbert space, then J = I. Further, we have the
following properties of the generalized duality mapping Jq:

(1) Jq(x) = ‖x‖q−2J2(x) for all x ∈ E with x /= 0;
(2) Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞);
(3) Jq(−x) = −Jq(x) for all x ∈ E.
Let U = {x ∈ X : ‖x‖ = 1}. A Banach space E is said to be uniformly convex if, for any

ε ∈ (0, 2], there exists δ > 0 such that, for any x, y ∈ U,

‖x − y‖ ≥ ε implies
∥∥∥∥
x + y

2

∥∥∥∥ ≤ 1 − δ. (1.8)
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It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach
space E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(1.9)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (1.9) is attained
uniformly for x, y ∈ U. The norm of E is said to be Fréchet differentiable if, for any x ∈ U, the
limit (1.9) is attained uniformly for all y ∈ U. The modulus of smoothness of E is defined by

ρ(τ) = sup
{
1
2
(‖x + y‖ + ‖x − y‖) − 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ

}
, (1.10)

where ρ : [0,∞) → [0,∞) is a function. It is known that E is uniformly smooth if and only if
limτ→0(ρ(τ)/τ) = 0. Let q be a fixed real number with 1 < q ≤ 2. A Banach space E is said to
be q-uniformly smooth if there exists a constant c > 0 such that ρ(τ) ≤ cτq for all τ > 0.

Note that
(1) E is a uniformly smooth Banach space if and only if Jq is single-valued and

uniformly continuous on any bounded subset of E;
(2) all Hilbert spaces, Lp (or lp) spaces (p ≥ 2), and the Sobolev spaces,Wp

m (p ≥ 2), are
2-uniformly smooth, while Lp (or lp) andW

p
m spaces (1 < p ≤ 2) are p-uniformly smooth.

Recall that an operator A of C into E is said to be accretive if there exists j(x − y) ∈
J(x − y) such that

〈
Ax −Ay, j(x − y)

〉 ≥ 0 (1.11)

for all x, y ∈ C.
For α > 0, recall that an operatorA of C into E is said to be α-inverse strongly accretive

if
〈
Ax −Ay, J(x − y)

〉 ≥ α‖Ax −Ay‖2 (1.12)

for all x, y ∈ C. Evidently, the definition of the inverse strongly accretive operator is based on
that of the inverse strongly monotone operator.

Let D be a subset of C and let Q be a mapping of C into D. Then Q is said to be sunny
if

Q
(
Qx + t(x −Qx)

)
= Qx, (1.13)

whenever Qx + t(x − Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself is called a
retraction ifQ2 = Q. If a mappingQ ofC into itself is a retraction, thenQz = z for all z ∈ R(Q),
where R(Q) is the range of Q. A subset D of C is called a sunny nonexpansive retract of C if
there exists a sunny nonexpansive retraction from C onto D. We know the following lemma
concerning sunny nonexpansive retraction.

Lemma 1.1 (see [5]). Let C be a closed convex subset of a smooth Banach space E, let D be a
nonempty subset of C, and letQ be a retraction from C ontoD. ThenQ is sunny and nonexpansive if
and only if

〈
u − Pu, J(y − Pu)

〉 ≤ 0 (1.14)

for all u ∈ C and y ∈ D.
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Recently, Aoyama et al. [6] first considered the following generalized variational
inequality problem in a smooth Banach space. Let A be an accretive operator of C into E.
Find a point x ∈ C such that

〈
Ax, J(y − x)

〉 ≥ 0 (1.15)

for all y ∈ C. In order to find a solution of the variational inequality (1.15), the authors proved
the following theorem in the framework of Banach spaces.

TheoremAIT. Let E be a uniformly convex and 2-uniformly smooth Banach space andC a nonempty
closed convex subset of E. Let QC be a sunny nonexpansive retraction from E onto C, α > 0, and A
an α-inverse strongly accretive operator of C into E with S(C,A) /= ∅, where

S(C,A) =
{
x∗ ∈ C :

〈
Ax∗, J

(
x − x∗)〉 ≥ 0, x ∈ C

}
. (1.16)

If {λn} and {αn} are chosen such that λn ∈ [a, α/K2] for some a > 0 and αn ∈ [b, c] for some b, c
with 0 < b < c < 1, then the sequence {xn} defined by the following manners:

x1 = x ∈ C,

xn+1 = αnxn +
(
1 − αn

)
QC

(
xn − λnAxn

)
,

(1.17)

converges weakly to some element z of S(C,A), whereK is the 2-uniformly smoothness constant of E.

In this paper, motivated by Aoyama et al. [6], Iiduka et al. [2], Takahahsi and
Toyoda [4], we introduce an iterative method to approximate a solution of variational
inequality (1.15) for an α-inverse strongly accretive operators. Strong convergence theorems
are obtained in the framework of Banach spaces under appropriate conditions on parameters.

We also need the following lemmas for proof of our main results.

Lemma 1.2 (see [7]). Let q be a given real number with 1 < q ≤ 2 and let E be a q-uniformly smooth
Banach space. Then

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ 2‖Ky‖q (1.18)

for all x, y ∈ X, where K is the q-uniformly smoothness constant of E.

The following lemma is characterized by the set of solutions of variational inequality
(1.15) by using sunny nonexpansive retractions.

Lemma 1.3 (see [6]). Let C be a nonempty closed convex subset of a smooth Banach space E. Let
QC be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C into E.
Then, for all λ > 0,

S(C,A) = F
(
Q(I − λA)

)
. (1.19)

Lemma 1.4 (see [8]). Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space E and let T be nonexpansive mapping of C into itself. If {xn} is a sequence of C such
that xn → x weakly and xn − Txn → 0, then x is a fixed point of T .
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Lemma 1.5 (see [9]). Let {xn}, {ln} be bounded sequences in a Banach space E and let {αn} be a
sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1. (1.20)

Suppose that

xn+1 = αnxn +
(
1 − αn

)
ln (1.21)

for all n = 0, 1, 3, . . . and

lim sup
n→∞

(∥∥ln+1 − ln
∥
∥ − ∥

∥xn+1 − xn

∥
∥) ≤ 0. (1.22)

Then limn→∞‖ln − xn‖ = 0.

Lemma 1.6 (see[10]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + δn (1.23)

for all n = 0, 1, 3, . . ., where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 γn = ∞;

(ii) lim supn→∞(δn/γn) ≤ 0 or
∑∞

n=0|δn| < ∞.

Then limn→∞an = 0.

2. Main results

Theorem 2.1. Let E be a uniformly convex and 2-uniformly smooth Banach space and C a nonempty
closed convex subset of E. Let QC be a sunny nonexpansive retraction from E onto C, u ∈ C
an arbitrarily fixed point, and A an α-inverse strongly accretive operator of C into E such that
S(C,A) /= ∅. Let {αn} and {βn} be two sequences in (0, 1) and let {λn} a real number sequence
in [a, α/K2] for some a > 0 satisfying the following conditions:

(i) limn→∞αn = 0 and
∑∞

n=0 αn = ∞;

(ii) 0 < lim infn→∞βn ≤ lim supn→∞ βn < 1;

(iii) limn→∞|λn+1 − λn| = 0.

Then the sequence {xn} defined by

x0 ∈ C,

yn = βnxn +
(
1 − βn

)
QC

(
I − λnA

)
xn,

xn+1 = αnu +
(
1 − αn

)
yn, n ≥ 0,

(2.1)

converges strongly to Q′u, where Q′ is a sunny nonexpansive retraction of C onto S(C,A).
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Proof. First, we show that I − λnA is nonexpansive for all n ≥ 0. Indeed, for all x, y ∈ C and
λn ∈ [a, α/K2], from Lemma 1.2, one has

∥
∥(I − λnA

)
x − (

I − λnA
)
y
∥
∥2 =

∥
∥(x − y) − λn(Ax −Ay)

∥
∥2

≤ ‖x − y‖2 − 2λn
〈
Ax −Ay, J(x − y)

〉

+ 2K2λ2n‖Ax −Ay‖2

≤ ‖x − y‖2 − 2λnα‖Ax −Ay‖2

+ 2K2λ2n‖Ax −Ay‖2

= ‖x − y‖2 + 2λn
(
K2λn − α

)‖Ax −Ay‖2

≤ ‖x − y‖2.

(2.2)

Therefore, one obtains that I−λnA is a nonexpansivemapping for all n ≥ 0. For all p ∈ S(C,A),
it follows from Lemma 1.3 that p = QC(I − λnA)p. Put ρn = QC(I − λnA)xn. Noticing that

∥∥ρn − p
∥∥ =

∥∥QC

(
I − λnA

)
xn −QC

(
I − λnA

)
p
∥∥

≤ ∥∥(I − λnA
)
xn −

(
I − λnA

)
p
∥∥

≤ ∥∥xn − p
∥∥,

(2.3)

one has
∥∥yn − p

∥∥ =
∥∥βn

(
xn − p

)
+
(
1 − βn

)(
ρn − p

)∥∥

≤ βn
∥∥xn − p

∥∥ +
(
1 − βn

)∥∥ρn − p
∥∥

≤ βn‖x − p‖ + (
1 − βn

)∥∥xn − p
∥∥

=
∥∥xn − p

∥∥,

(2.4)

from which it follows that
∥∥xn+1 − p

∥∥ =
∥∥αn(u − p) +

(
1 − αn

)(
yn − p

)∥∥

≤ αn‖u − p‖ + (
1 − αn

)∥∥yn − p
∥∥

≤ αn‖u − p
∥∥ +

(
1 − αn

)∥∥xn − p
∥∥

≤ max
{‖u − p‖,∥∥xn − p

∥∥}.

(2.5)

Now, an induction yields
∥∥xn − p

∥∥ ≤ max
{‖u − p‖,∥∥x0 − p

∥∥}, n ≥ 0. (2.6)

Hence, {xn} is bounded, and so is {yn}. On the other hand, one has
∥∥ρn+1 − ρn

∥∥ =
∥∥QC

(
xn+1 − λn+1Axn+1

) −QC

(
xn − λnAxn

)∥∥

≤ ∥∥(xn+1 − λn+1Axn+1
) − (

xn − λnAxn

)∥∥

=
∥∥(xn+1 − λn+1Axn+1

) − (
xn − λn+1Axn

)
+
(
λn − λn+1

)
Axn

∥∥

≤ ∥∥xn+1 − xn

∥∥ +
∣∣λn+1 − λn

∣∣∥∥Axn

∥∥.

(2.7)
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Put ln = (xn+1 − βnxn)/(1 − βn), that is,

xn+1 =
(
1 − βn

)
ln + βnxn, n ≥ 0. (2.8)

Next, we compute ln+1 − ln. Observing that

ln+1 − ln =
αn+1u +

(
1 − αn+1

)
yn+1 − βn+1xn+1

1 − βn+1
− αnu +

(
1 − αn

)
yn − βnxn

1 − βn

=
αn+1

(
u − yn+1

)

1 − βn+1
− αn

(
u − yn

)

1 − βn
+ ρn+1 − ρn,

(2.9)

we have

∥
∥ln+1 − ln

∥
∥ ≤ αn+1

1 − βn+1

∥
∥u − yn+1

∥
∥ +

αn

1 − βn

∥
∥yn − u

∥
∥ +

∥
∥ρn+1 − ρn

∥
∥. (2.10)

Combining (2.7) with (2.10), one obtains

∥∥ln+1 − ln
∥∥ − ∥∥xn+1 − xn

∥∥ ≤ αn+1

1 − βn+1

∥∥u − yn+1
∥∥ +

αn

1 − βn

∥∥yn − u
∥∥ +

∣∣λn+1 − λn
∣∣∥∥Axn

∥∥.

(2.11)

It follows that

lim sup
n→∞

(∥∥ln+1 − ln
∥∥ − ∥∥xn+1 − xn

∥∥) ≤ 0. (2.12)

Hence, from Lemma 1.5, we obtain limn→∞‖ln−xn‖ = 0. From (2.7) and the condition (ii), one
arrives at

lim
n→∞

∥∥xn+1 − xn

∥∥ = 0. (2.13)

On the other hand, from (2.1), one has

xn+1 − xn = αn

(
u − xn

)
+
(
1 − αn

)(
1 − βn

)(
ρn − xn

)
, (2.14)

which combines with (2.13), and from the conditions (i), (ii), one sees that

lim
n→∞

∥∥ρn − xn

∥∥ = 0. (2.15)

Next, we show that

lim sup
n→∞

〈
u −Q′u, J

(
xn −Q′u

)〉 ≤ 0. (2.16)

To show (2.16), we choose a sequence {xni} of {xn} that converges weakly to x such that

lim sup
n→∞

〈
u −Q′u, J

(
xn −Q′u

)〉
= lim

i→∞
〈
u −Q′u, J

(
xn,i −Q′u

)〉
. (2.17)
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Next, we prove that x ∈ S(C,A). Since λn ∈ [a, α/K2] for some a > 0, it follows that {λni} is
bounded and so there exists a subsequence {λnij

} of {λni}which converges to λ0 ∈ [a, α/K2].
We may assume, without loss of generality, that λni → λ0. Since QC is nonexpansive, it
follows from yni = QC(xni − λniAxni) that

∥
∥QC

(
xni − λ0Axni

) − xni

∥
∥ ≤ ∥

∥QC

(
xni − λ0Axni

) − ρni

∥
∥ +

∥
∥ρni − xni

∥
∥

≤ ∥
∥(xni − λ0Axni

) − (
xni − λniAxni

)∥∥ +
∥
∥ρni − xni

∥
∥

≤ ∣
∣λni − λ0

∣
∣
∥
∥Axni

∥
∥ + ‖ρni − xni

∥
∥.

(2.18)

It follows from (2.15) that

lim
i→∞

∥
∥QC

(
I − λ0A

)
xni − xni

∥
∥ = 0. (2.19)

From Lemma 1.4, we have x ∈ F(QC(I − λ0A)). It follows from Lemma 1.3 that x ∈ S(C,A).
Now, from (2.17) and Lemma 1.1, we have

lim sup
n→∞

〈
u −Q′u, J

(
xn −Q′u

)〉
= lim

i→∞
〈
u −Q′u, J

(
xni −Q′u

)〉
=
〈
u −Q′u, J

(
x −Q′u

)〉 ≤ 0.

(2.20)

From (2.1), we have

∥∥xn+1 −Q′u
∥∥2 = αn

〈
u −Q′u, J

(
xn+1 −Q′u

)〉
+
(
1 − αn

)〈
yn −Q′u, J

(
xn+1 −Q′u

)〉

≤ αn

〈
u −Q′u, J

(
xn+1 −Q′u

)〉
+
1 − αn

2
(∥∥yn −Q′u

∥∥2 +
∥∥xn+1 −Q′u

∥∥2)

≤ αn

〈
u −Q′u, J

(
xn+1 −Q′u

)〉
+
1 − αn

2
(∥∥xn −Q′u

∥∥2 +
∥∥xn+1 −Q′u

∥∥2)
.

(2.21)

It follows that

∥∥xn+1 −Q′u
∥∥2 ≤ (

1 − αn

)∥∥xn −Q′u
∥∥2 + 2αn

〈
u −Q′u, J

(
xn+1 −Q′u

)〉
. (2.22)

Applying Lemma 1.6 to (2.22), we can conclude the desired conclusion. This completes the
proof.

As an application of Theorem 2.1, we have the following results in the framework of
Hilbert spaces.

Corollary 2.2. Let H be a Hilbert space and C a nonempty closed convex subset of H. Let PC be
a metric projection from H onto C, u ∈ C an arbitrarily fixed point, and A an α-inverse strongly
monotone operator of C intoH such that V I(C,A) /= ∅. Let {αn} and {βn}be two sequences in (0, 1)
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and let {λn} be a real number sequence in [a, 2α] for some a > 0 satisfying the following conditions:

(i) limn→∞αn = 0 and
∑∞

n=0 αn = ∞;

(ii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iii) limn→∞|λn+1 − λn| = 0.

Then the sequence {xn} defined by

x0 ∈ C,

yn = βnxn +
(
1 − βn

)
PC

(
I − λnA

)
xn,

xn+1 = αnu +
(
1 − αn

)
yn, n ≥ 0,

(2.23)

converges strongly to Pu.
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