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1. Introduction and notations

Throughout this paper we use the following notations. By Zp we denote the ring of p-adic ra-
tional integers, Q denotes the field of rational numbers, Qp denotes the field of p-adic rational
numbers, C denotes the complex number field, and Cp denotes the completion of algebraic clo-
sure ofQp. Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1.When
one talks of q-extension, q is considered in many ways such as an indeterminate, a complex
number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, one normally assumes that |q| < 1. If q ∈ Cp,
we normally assume that |q − 1|p < p−1/(p−1) so that qx = exp (x log q) for |x|p ≤ 1. In this paper,
we use the following notation:
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[x]q = [x : q] =
1 − qx

1 − q
(1.1)

(cf. [1–5, 22]).
Hence, lim q→1[x] = x for any x with |x|p ≤ 1 in the present p-adic case. Let d be a fixed

integer and let p be a fixed prime number. For any positive integer N, we set

X = lim
←
N

(
Z

dpNZ

)
,

X∗ =
⋃

0<a<dp

(a,p)=1

(
a + dpZp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpN . For any positive integer N ,

μq

(
a + dpNZp

)
=

qa[
dpN

]
q

(1.3)

is known to be a distribution on X (cf. [1–20]). From this distribution, we derive the p-adic,
q-integral on Zp as follows:

∫
Zp

f(x)dμq(x) = lim
N→∞

1[
pN

]
q

pN−1∑
x=0

qxf(x), f ∈ UD
(
Zp

)
, (1.4)

see [1–23].
Higher-order twisted Bernoulli and Euler numbers and polynomials are studied by

many authors (see for detail [1–21]). In [14] Ozden et al. constructed generating functions
of higher-order twisted (h, q)-extension of Euler polynomials and numbers, by using p-adic,
q-deformed fermionic integral on Zp. By applying their generating functions, they derived the
complete sums of products of the twisted (h, q)-extension of Euler polynomials and numbers,
see [14, 15]. In this paper, we consider the new q-extension of Euler numbers and polynomials
to be different which is treated by Ozden et al. From our q-Euler numbers and polynomials,
we derive some interesting identities and we construct q-Euler zeta functions which interpo-
late the new q-Euler numbers and polynomials at a negative integer. Furthermore, we study
Barnes-type q-Euler zeta functions. Finally, we will derive the new formula for “sums of prod-
ucts of q-Euler numbers and polynomials” by using fermionic p-adic, q-integral on Zp .

2. q-extension of Euler numbers

In this section we assume that q ∈ C with |q| < 1. Now we consider the q-extension of Euler
polynomials as follows:

Fq(x, t) =
[2]q

qet + 1
ext =

∞∑
n=0

En,q(x)
n!

tn, |t + log q| < π. (2.1)
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Note that

lim
q→1

Fq(x, t) = F(x, t) =
2

et + 1
ext =

∞∑
n=0

En(x)
n!

tn. (2.2)

In the special case x = 0, the q-Euler polynomial En,q(0) = En,q will be called q-Euler numbers.
It is easy to see that Fq(x, t) is analytic function in C. Hence we have

∞∑
n=0

En,q(x)
n!

tn =
[2]q

qet + 1
ext= [2]q

∞∑
n=0

(−1)nqne(n+x)t. (2.3)

If we take the kth derivative at t = 0 on both sides in (2.3), then we have

Ek,q(x) = [2]q
∞∑
n=0

(−1)nqn(n + x)k. (2.4)

From (2.4) we can define q-zeta function which interpolating q-Euler numbers at negative in-
teger as follows.

For s ∈ C, we define

ζq(s, x) = [2]q
∞∑
n=0

(−1)nqn
(n + x)s

, s ∈ C. (2.5)

Note that ζq(s, x) is analytic in complex s-plane. If we take s = −k (k ∈ Z+), then we have
ζq(−k, x) = Ek,q(x).

By (2.4) and (2.5), we obtain the following.

Theorem 2.1. For k ∈ Z+,

Ek,q(x) = [2]q
∞∑
n=0

(−1)nqn(n + x)k. (2.6)

Let Fq(0, t) = Fq(t). Then

[2]q
n−1∑
k=0

(−1)kqkekt =
[2]q

1 + qet
− [2]q

(−1)nqnent
1 + qet

= Fq(t) − (−1)nqnFq(n, t).

(2.7)

From (2.7), derive

∞∑
k=0

(
[2]q

n−1∑
l=0

(−1)lqllk
)

tk

k!
=

∞∑
k=0

(
Ek,q − (−1)nqnEk,q(n)

) tk
k!
. (2.8)

By comparing the coefficients on both sides in (2.8), we obtain the following.
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Theorem 2.2. Let n ∈ N, k ∈ Z+. If n ≡ 0 (mod 2), then

Ek,q − qnEk,q(n) = [2]q
n−1∑
l=0

(−1)lqllk. (2.9)

If n ≡ 1 (mod 2), then

Ek,q + qnEk,q(n) = [2]q
n−1∑
l=0

(−1)lqllk. (2.10)

For w1, w2, . . . , wr ∈ C, consider the multiple q-Euler polynomials of Barnes-type as follows:

Fr
q

(
w1, w2, . . . , wr | x, t

)
=

[2]rqe
xt

(
qew1t + 1

)(
qew2t + 1

) · · · (qewrt + 1
)

=
∞∑
n=0

En,q

(
w1, . . . , wr | x

) tn
n!
, where max

1≤i≤r
|wit + log q| < π.

(2.11)

For x = 0, En,q(w1, . . . , wr | 0) = En,q(w1, . . . , wr) will be called the multiple q-Euler
numbers of Barnes type. It is easy to see that Fr

q(w1, w2, . . . , wr | x, t) is analytic function in the
given region. From (2.11), we derive

[2]rq
∞∑

n1,...,nr=0

(−q)
∑ r

i=1nie(
∑ r

i=1niwi+x)t =
∞∑
n=0

En,q

(
w1, . . . , wr | x

) tn
n!
. (2.12)

By the kth differentiation on both sides in (2.12), we see that

[2]rq
∞∑

n1,...,nr=0

(−q)
∑ r

i=1ni

(
r∑
i=1

niwi + x

)k

= Ek,q

(
w1, . . . , wr | x

)
. (2.13)

From (2.12), we can derive the following Barnes-type multiple q-Euler zeta function as follows.
For s ∈ C, define

ζr,q
(
w1, w2, . . . , wr | s, x

)
= [2]rq

∞∑
n1,...,nr=0

(−1)n1+···+nrqn1+···+nr(
n1w1 + n2w2 + · · · + nrwr + x

)s . (2.14)

By (2.13) and (2.14), we obtain the following.

Theorem 2.3. For k ∈ Z+, w1, w2, . . . , wr ∈ C,

ζr,q
(
w1, w2, . . . , wr | −k, x

)
= Ek,q

(
w1, w2, . . . , wr | x

)
. (2.15)

Let χ be the primitive Drichlet character with conductor f (=odd) ∈ N. Then we consider
generalized Euler numbers attached to χ as follows:

Fχ,q(t) =
[2]q

∑ f−1
a=0(−1)aqaχ(a)eat
qfeft + 1

=
∞∑
n=0

En,χ,q
tn

n!
, (2.16)
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where | log q + t| < π/f . The numbers En,χ,q will be called the generalized q-Euler numbers
attached to χ. From (2.16), note that

Fχ,q(t) =
[2]q

∑ f−1
a=0(−1)aqaχ(a)eat
qfeft + 1

= [2]q
f−1∑
a=0

(−1)aqaχ(a)
∞∑
n=0

qnf(−1)ne(a+nf)t

= [2]q
∞∑
n=0

f−1∑
a=0

(−1)a+nfqa+nfχ(a + nf)e(a+nf)t

= [2]q
∞∑
n=0

(−1)nqnχ(n)ent =
∞∑
n=0

En,χ,q
tn

n!
.

(2.17)

Thus,

Ek,χ,q =
dk

dtk
Fχ,q(t)

∣∣∣∣
t=0

= [2]q
∞∑
n=1

(−1)nqnχ(n)nk, (k ∈ N). (2.18)

Therefore, we can define the Dirichlet-type l-function which interpolates at negative integer as
follows.

For s ∈ C, we define lq(s, χ) as

lq(s, χ) = [2]q
∞∑
n=1

(−1)nqnχ(n)
ns

. (2.19)

By (2.18) and (2.19), we obtain the following.

Theorem 2.4. For k ∈ Z+,

lq(−k, χ) = Ek,χ,q. (2.20)

From (2.1) and the definition of q-Euler numbers, derive

Fq(t, x) =
[2]q

qet + 1
ext =

∞∑
n=0

En,q
tn

n!

∞∑
l=0

xl

l!
tl

=
∞∑

m=0

(
m∑
n=0

En,q

(
m
n

)
xm−n

)
tm

m!
.

(2.21)

By (2.21) it is shown that

En,q(x) =
n∑

m=0

Em,q

(
n
m

)
xn−m, n ∈ Z+. (2.22)
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For f (=odd) ∈ N, note that

∞∑
n=0

En,q(x)
tn

n!
=

[2]q
qet + 1

ext

= [2]q
1

qfeft + 1

f−1∑
a=0

(−1)aqae((a+x)/f)ft

=
[2]q
[2]qf

f−1∑
a=0

(−1)aqa
(

[2]qf e
((a+x)/f)ft

qfeft + 1

)

=
[2]q
[2]qf

f−1∑
a=0

(−1)aqa
∞∑
n=0

En,qf

(
a + x

f

)
fntn

n!
.

(2.23)

Thus, we have the distribution relation for q-Euler polynomials as follows.

Theorem 2.5. For f (=odd) ∈ N,

En,q(x) =
fn[2]q
[2]qf

f−1∑
a=0

(−1)aqaEn,qf

(
a + x

f

)
. (2.24)

For k, n ∈ N with n ≡ 0 (mod 2), it is easy to see that

[2]q
n−1∑
l=0

(−1)l−1qllk = qnEk,q(n) − Ek,q

= qn
k∑

m=0

(
k
m

)
nk−mEm,q − Ek,q

= qn
k−1∑
m=0

(
k
m

)
Em,qn

k−m +
(
qn − 1

)
Ek,q.

(2.25)

Therefore, we obtain the following.

Theorem 2.6. For k, n ∈ N with n ≡ 0 (mod 2),

[2]q
n−1∑
l=0

(−1)l−1qllk = qn
k−1∑
m=0

(
k
m

)
Em,qn

k−m +
(
qn − 1

)
Ek,q. (2.26)

3. Witt-type formulae on Zp in p-adic number field

In this section, we assume that q ∈ Cp with |1 − q|p < 1. g is a uniformly differentiable function
at a point a ∈ Zp, and write g ∈ UD(Zp) if the difference quotient

Fg(x, y) =
g(x) − g(y)

x − y
(3.1)

has a limit f ′(a) as (x, y)→(a, a). For g ∈ UD(Zp), an invariant p-adic, q-integral is defined as

Iq(g) =
∫
Zp

g(x)dμq(x) = lim
N→∞

1[
pN

]
q

pN−1∑
x=0

g(x)qx. (3.2)
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The fermionic p-adic, q-integral is also defined as

I−q(g) =
∫
Zp

g(x)dμ−q(x) = lim
N→∞

[2]q
1 + qp

N

pN−1∑
x=0

g(x)(−1)xqx (3.3)

(see [4]).
From (3.3), we have the integral equation as follows:

qI−q(g1) + I−q(g) = [2]qg(0), g1(x) = g(x + 1). (3.4)

If we take g(x) = etx, then we have

Iq
(
etx

)
=
∫
Zp

extdμ−q(x) =
[2]q

qet + 1
. (3.5)

From (3.5), we note that
∞∑
n=0

∫
Zp

xndμ−q(x)
tn

n!
=

[2]q
qet + 1

=
∞∑
n=0

En,q
tn

n!
. (3.6)

By comparing the coefficient on both sides, we see that∫
Zp

xndμ−q(x) = En,q, n ∈ Z+. (3.7)

By the same method, we see that∫
Zp

e(x+y)tdμ−q(y) =
[2]q

qet + 1
ext =

∞∑
n=0

En,q(x)
tn

n!
. (3.8)

Hence, we have the formula of Witt’s type for q-Euler polynomial as follows:∫
Zp

(x + y)ndμ−q(y) = En,q(x), n ∈ Z+. (3.9)

For n ∈ Z+, let gn(x) = g(x + n). Then we have

qnI−q
(
gn

)
+ (−1)n−1I−q(g) = [2]q

n−1∑
l=0

(−1)n−1−lqlg(l). (3.10)

If n is odd positive integer, then we have

qnI−q
(
gn

)
+ I−q(g) = [2]q

n−1∑
l=0

(−1)lqlg(l). (3.11)

Let χ be the primitive Drichlet character with conduct f (=odd) ∈ N and let g(x) =
χ(x)ext. From (3.5)we derive

I−q
(
χ(x)ext

)
=
∫
X

χ(x)etxdμ−q(x)

=
[2]q

∑ f−1
a=0(−1)aqaχ(a)eat
qfeft + 1

=
∞∑
n=0

En,χ,q
tn

n!
.

(3.12)

Thus, we have the Witt formula for generalized q-Euler numbers attached to χ as follows:∫
X

χ(x)xndμ−q(x) = En,χ,q, n ≥ 0. (3.13)
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4. Higher-order q-Euler numbers and polynomials

In this section we also assume that q ∈ Cp with |1 − q|p < 1. Now we study on higher-order
q-Euler numbers and polynomials and sums of products of q-Euler numbers. First, we try to
consider the multivariate fermionic p-adic, q-integral on Zp as follows:

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r times

e(a1x1+a2x2+···+arxr)textdμ−q
(
x1
) · · ·dμ−q

(
xr

)

=
[2]rq(

qea1t + 1
)(
qea2t + 1

) · · · (qeart + 1
)ext,

(4.1)

where a1, a2, . . . , ar ∈ Zp .
From (4.1)we consider the multiple q-Euler polynomials as follows:

[2]rq(
qea1t + 1

)(
qea2t + 1

) · · · (qeart + 1
)ext = ∞∑

n=0

En,q

(
a1, a2, . . . , ar | x

) tn
n!
. (4.2)

In the special case (a1, a2, . . . , ar) = (1, 1, . . . , 1), we write

En,q

(
a1, . . . , ar︸ ︷︷ ︸

r times

| x) = E
(r)
n,q(x). (4.3)

For x = 0, the multiple q-Euler polynomials will be called as q-Euler numbers of order r .
From (4.2)we note that

En,q

(
a1, a2, . . . , ar | x

)
=
∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r times

(
a1x1 + · · · + arxr + x

)n r∏
j=1

dμ−q
(
xj

)
. (4.4)

It is easy to check that

En,q

(
a1, a2, . . . , ar | x

)
=

n∑
l=0

(
n
l

)
xn−lEl,q

(
a1, a2, . . . , ar

)
, (4.5)

where En,q(a1, a2, . . . , ar) = En,q(a1, a2, . . . , ar | 0). Multinomial theorem is well known as fol-
lows: (

r∑
j=1

xj

)n

=
∑

l1,...,lr≥0
l1+···+lr=n

(
n

l1, . . . , lr

)
r∏

a=1

xla
a , (4.6)

where (
n

l1, . . . , lr

)
=

n!
l1!l2! · · · lr ! . (4.7)

By (4.2) and (4.6) we easily see that

E
(r)
n,q(x) =

n∑
m=0

∑
l1,...,lr≥0

l1+···+lr=m

(
n
m

)(
m

l1, . . . , lr

)
xn−m

r∏
j=1

Elj ,q. (4.8)
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