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Given a function f ∈ L1
loc(R

n) and a cube Q on R
n, let fQ denote the average of f on Q, fQ =

(1/|Q|) ∫Q f(x)dx. We say that f has boundedmean oscillation if there is a constantC such that
for any cube Q,

1
|Q|

∫

Q

∣∣f(x) − fQ
∣∣dx ≤ C. (1)

The space of functions with this property is denoted by BMO. For f ∈ BMO, define the norm
on BMO by

‖f‖BMO = sup
Q

1
|Q|

∫

Q

∣∣f(x) − fQ
∣∣dx. (2)

John and Nirenberg [1] obtained the following well-known John-Nirenberg inequality
for BMO.

Theorem 1. Let f ∈ BMO and ‖f‖BMO /= 0. Then there exist positive constants C1 and C2, depending
only on the dimension, such that for all cube Q and any λ > 0,

∣∣{x ∈ Q :
∣∣f(x) − fQ

∣∣ > λ
}∣∣ ≤ C1e

−C2λ/‖f‖BMO |Q|. (3)
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Suppose f is a locally integrable function on R
n, Q is a cube, and s is a nonnegative

integer; let PQf(x) be the unique polynomial of degree at most s such that
∫

Q

(
f(x) − PQ(f)(x)

)
xαdx = 0 (4)

for all 0 ≤ |α| ≤ s. Moreover, for any x ∈ Q,

∣∣PQ(f)(x)
∣∣ ≤ A

|Q|
∫

Q

∣∣f(x)
∣∣dx, (5)

where the constant A is independent of f and Q. Clearly, A ≥ 1.
For β ≥ 0, s ≥ 0, 1 ≤ q < ∞, we will say that a locally integrable function f(x) belongs to

the Morrey-Campanato spaces L(β, q, s) if

‖f‖L(β,q,s) = sup
Q

|Q|−β
{

1
|Q|

∫

Q

∣
∣f(x) − PQ(f)(x)

∣
∣qdx

}1/q

< ∞, (6)

where Q is a cube. Then if f − g is a polynomial of degree at most s, g also satisfies (6) and
‖f‖L(β,q,s) = ‖g‖L(β,q,s). If this is the case we say that f and g are equivalent, the quotient space
divided by such equivalence classes will be denoted by L(β, q, s), and (6) defines its norm.

These spaces played an important role in the study of partial differential equations and
theywere studied extensively. Reader is referred, in particular, to [2–4]. Recently, Deng et al. [5]
and Duong and Yan [6] gave several new characterizations for the Morrey-Campanato spaces.

As noted in [2], for β = 0 and 1 ≤ q ≤ ∞, these spaces are variants of the BMO space.
For β > 0 and s ≥ [nβ], the spaces L(β, q, s) are variants of the homogeneous Lipschitz spaces
Λ̇nβ(Rn)which are duals of certain Hardy spaces. See also [1].

In [7], we proved a John-Nirenberg-type inequality for homogeneous Lipschitz spaces
Λ̇α(Rn), 0 < α < 1. In this note, we will show that a similar inequality is also true for the
Morrey-Campanato spaces L(β, q, s) on R

n, where β is nonnegative, 1 ≤ q ≤ ∞, and the integer
s ≥ 0. Our main result can be stated as follows.

Theorem 2 (John-Nirenberg-type inequality). Given β ≥ 0 and s ≥ 0, let f ∈ L(β, 1, s) and
‖f‖L(β,1,s) /= 0. Then there exist positive constants C1 and C2, depending only on the dimension, such
that for all cube Q and any λ > 0,

∣∣{x ∈ Q : |Q|−β∣∣f(x) − PQ(f)(x)
∣∣ > λ

}∣∣ ≤ C1e
−C2λ/‖f‖L(β,1,s) |Q|. (7)

Proof. Let Q be a fixed cube and let λ0 be some positive real number which will
be determined later. Applying the Calderon-Zygmund decomposition to the function
|Q|−β|f(x) − PQ(f)(x)| at height λ0 to obtain a family of subcubes {Qj} of Q with disjoint inte-
riors such that

|Q|−β∣∣f(x) − PQ(f)(x)
∣∣ ≤ λ0 a.e. Q \

∞⋃

j=1

Qj, (8)

λ0 <
1

∣∣Qj

∣∣

∫

Qj

|Q|−β∣∣f(x) − PQ(f)(x)
∣∣dx ≤ 2nλ0 for any j, (9)

∞∑

j=1

∣∣Qj

∣∣ ≤ 1
λ0

∫

Q

|Q|−β∣∣f(x) − PQ(f)(x)
∣∣dx. (10)
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By (5), for any x ∈ Qj , we get

∣∣PQ(f)(x) − PQj
(f)(x)

∣∣ =
∣∣PQj

(
PQ(f) − PQj

(f)
)
(x)

∣∣

≤ A
∣∣Qj

∣∣

∫

Qj

∣
∣PQ(f)(y) − PQj

(f)(y)|dy. (11)

Thus for any x ∈ Qj , by (9) we have

|Q|−β∣∣PQ(f)(x) − PQj
(f)(x)

∣
∣ ≤ A

∣∣Qj

∣∣

∫

Qj

|Q|−β∣∣PQ(f)(y) − PQj
(f)(y)

∣
∣dy

≤ A

|Qj |
∫

Qj

|Q|−β∣∣f(y) − PQ(f)(y)
∣∣dy +

A
∣∣Qj

∣∣

∫

Qj

|Qj |−β
∣∣f(y) − PQj

(f)(y)
∣∣dy

≤ A2nλ0 +A‖f‖L(β,1,s).

(12)

Denote b = A2nλ0 +A‖f‖L(β,1,s) > λ0. For any x ∈ Qj , we have

|Q|−β∣∣f(x) − PQ(f)(x)
∣∣ ≤ |Q|−β∣∣PQ(f)(x) − PQj

(f)(x)
∣∣ +

∣∣Qj

∣∣−β∣∣f(x) − PQj
(f)(x)

∣∣

≤ b +
∣∣Qj

∣∣−β∣∣f(x) − PQj
(f)(x)

∣∣.
(13)

Then for any λ > 0, we have

{
x ∈ Q : |Q|−β∣∣f(x) − PQ(f)(x)

∣∣ > λ + b
} ⊂ {

x ∈ Q : |Q|−β∣∣f(x) − PQ(f)(x)
∣∣ > λ0

} ⊂
∞⋃

j=1

Qj.

(14)

By (13) and (14),

{
x ∈ Q : |Q|−β∣∣f(x) − PQ(f)(x)

∣∣ > λ + b
} ⊂

∞⋃

j=1

{
x ∈ Qj : |Q|−β∣∣f(x) − PQ(f)(x)

∣∣ > λ + b
}

⊂
∞⋃

j=1

{
x ∈ Qj :

∣∣Qj

∣∣−β∣∣f(x) − PQj
(f)(x)

∣∣ > λ
}
.

(15)

For any λ > 0, we set

Ff(λ) = sup
Q

1
|Q|

∣
∣{x ∈ Q : |Q|−β∣∣f(x) − PQ(f)(x)

∣
∣ > λ

}∣∣. (16)

Clearly, Ff(λ) is a decreasing function on [0,∞) and Ff(0) ≤ 1. Using (10), we have

1
|Q|

∣∣{x ∈ Q : |Q|−β∣∣f(x) − PQ(f)(x)
∣∣ > λ + b

}∣∣ ≤ Ff(λ)
1
|Q|

∞∑

j=1

∣∣Qj

∣∣

≤ Ff(λ)
1

λ0|Q|
∫

Q

|Q|−β∣∣f(x) − PQ(f)(x)
∣∣dx.

(17)
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So for any λ ≥ 0, we get Ff(λ + b) ≤ λ−10 ‖f‖L(β,1,s) Ff(λ). Taking λ0 = e‖f‖L(β,1,s), then b =
A(2ne + 1)‖f‖L(β,1,s) is also a fixed positive number and for any λ ≥ 0,

Ff(λ + b) ≤ 1
e
Ff(λ). (18)

By induction argument for any k ≥ 1, we get

Ff

(
(k + 1)b

) ≤ e−kFf(b). (19)

Thus, for λ ∈ (kb, (k + 1)b], we have

Ff(λ) ≤ Ff(kb) ≤ e−kFf(0) ≤ ee−λ/b. (20)

Notice that this inequality is also true for λ ∈ [0, b], due to Ff(λ) ≤ Ff(0) = 1 ≤ ee−λ/b. Thus,
for any λ ≥ 0, we have

1
|Q|

∣∣{x ∈ Q : |Q|−β∣∣f(x) − PQ(f)(x)
∣∣ > λ

}∣∣ ≤ ee−λ/b. (21)

This concludes the proof of the theorem.

Corollary 1. Given β ≥ 0, s ≥ 0. For all q ∈ [1,∞), the spaces L(β, q, s) coincide, and the norms
‖·‖L(β,q,s) are equivalent, namely,

sup
Q

(
1
|Q|

∫

Q

[|Q|−β∣∣f(x)−PQ(f)(x)
∣∣]qdx

)1/q

≈ sup
Q

1
|Q|

∫

Q

|Q|−β∣∣f(x) − PQ(f)(x)
∣∣dx. (22)

Proof. It will suffice to prove that ‖f‖L(β,q,s) ≤ Cq‖f‖L(β,1,s) for any 1 < q < ∞. In fact, by (7),

∫

Q

(|Q|−β∣∣f(x) − PQ(f)(x)
∣∣)qdx ≤ q

∫∞

0
λq−1

∣∣{x ∈ Q : |Q|−β∣∣f(x) − PQ(f)(x)
∣∣ > λ

}∣∣dλ

≤ C1q|Q|
∫∞

0
λq−1e−C2λ/‖f‖L(β,1,s)dλ

(23)

make the change of variables μ = C2λ/‖f‖L(β,1,s), then we get

1
|Q|

∫

Q

(|Q|−β∣∣f(x) − PQ(f)(x)
∣∣)qdx ≤ C1q

(‖f‖L(β,1,s)
C2

)q ∫∞

0
μq−1e−μdμ

= C1qC
−q
2 Γ(q)

(‖f‖L(β,1,s)
)q

(24)

which yields the desired inequality.

As a consequence of the proof of Corollary 1, we get two additional results.

Corollary 2. Given β ≥ 0, s ≥ 0, 1 ≤ q < ∞, if f ∈ L(β, q, s), then there exists λ > 0 such that for
any cube Q,

1
|Q|

∫

Q

eλ|Q|−β|f(x)−PQ(f)(x)|dx < ∞. (25)
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Corollary 3. Given β ≥ 0, s ≥ 0, 1 ≤ q < ∞, f ∈ L1
loc(R

n), suppose there exist constants C1, C2, and
K such that for any cube Q and λ > 0,

|{x ∈ Q : |Q|−β|f(x) − PQ(f)(x)| > λ}| ≤ C1e
−C2λ/K|Q|. (26)

Then f ∈ L(β, q, s).
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