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1. Introduction

Functional equations can be solved by reducing them to differential equations. In this
case, we need to assume differentiability up to a certain order of the unknown functions,
which is not required in direct methods. From this point of view, there have been several
works dealing with functional equations based on distribution theory. In the space of
distributions, one can differentiate freely the underlying unknown functions. This can avoid
the question of regularity. Actually using distributional operators, it was shown that some
functional equations in distributions reduce to the classical ones when the solutions are
locally integrable functions [1–4].

Another approach to distributional analogue for functional equations is via the use of
the regularization of distributions [5, 6]. More exactly, this method gives essentially the same
formulation as in [1–4], but it can be applied to the Hyers-Ulam stability [7–10] for functional
equations in distributions [11–14].

In accordance with the notions in [11–14], we reformulate the following quadratic
functional equation:

f(x + y + z) + f(x) + f(y) + f(z) = f(x + y) + f(y + z) + f(z + x) (1.1)
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in the spaces of generalized functions. Also, we obtain the general solution and prove
the Hyers-Ulam stability of (1.1) in the spaces of generalized functions such as S′(Rn) of
tempered distributions and F′(Rn) of Fourier hyperfunctions.

The functional equation (1.1) was first solved by Kannappan [15]. In fact, he proved
that a function on a real vector space is a solution of (1.1) if and only if there exist a symmetric
biadditive function B and an additive functionA such that f(x) = B(x, x)+A(x). In addition,
Jung [16] investigated Hyers-Ulam stability of (1.1) on restricted domains, and applied the
result to the study of an interesting asymptotic behavior of the quadratic functions.

As a matter of fact, we reformulate (1.1) and related inequality in the spaces of
generalized functions as follows. For u ∈ S′(Rn) or u ∈ F′(Rn),

u ◦A + u ◦ P1 + u ◦ P2 + u ◦ P3 = u ◦ B1 + u ◦ B2 + u ◦ B3, (1.2)
∥
∥u ◦A + u ◦ P1 + u ◦ P2 + u ◦ P3 − u ◦ B1 − u ◦ B2 − u ◦ B3

∥
∥ ≤ ε, (1.3)

where A, B1, B2, B3, P1, P2, and P3 are the functions defined by

A(x, y, z) = x + y + z,

P1(x, y, z) = x, P2(x, y, z) = y, P3(x, y, z) = z,

B1(x, y, z) = x + y, B2(x, y, z) = y + z, B3(x, y, z) = z + x.

(1.4)

Here, ◦ denotes the pullbacks of generalized functions, and ‖v‖ ≤ ε in (1.3) means that
|〈v, ϕ〉| ≤ ε‖ϕ‖L1 for all test functions ϕ.

As a consequence, we prove that every solution u of inequality (1.3) can be written
uniquely in the form

u(x) = u
(

x1, . . . , xn

)

=
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi + μ, (1.5)

where μ is a bounded measurable function such that ‖μ‖L∞ ≤ 13/3.

2. Preliminaries

We first introduce briefly spaces of some generalized functions such as tempered distribu-
tions and Fourier hyperfunctions. Here, we use the multi-index notations, |α| = α1 + · · · + αn,
α! = α1! · · ·αn!, xα = xα1

1 · · ·xαn
n , and ∂α = ∂α1

1 · · · ∂αn
n , for x = (x1, . . . , xn) ∈ R

n and
α = (α1, . . . , αn) ∈ N

n
0 , where N0 is the set of nonnegative integers and ∂j = ∂/∂xj .

Definition 2.1 (see [17, 18]). One denotes by S(Rn) the Schwartz space of all infinitely
differentiable functions ϕ in R

n satisfying

‖ϕ‖α,β = sup
x∈Rn

∣
∣xα∂βϕ(x)

∣
∣ < ∞ (2.1)
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for all α, β ∈ N
n
0 , equipped with the topology defined by the seminorms ‖·‖α,β. A linear

functional u on S(Rn) is said to be tempered distribution if there are a constant C ≥ 0 and a
nonnegative integer N such that

∣
∣〈u, ϕ〉∣∣ ≤ C

∑

|α|,|β|≤N
sup
x∈Rn

∣
∣xα∂βϕ

∣
∣ (2.2)

for all ϕ ∈ S(Rn). The set of all tempered distributions is denoted by S′(Rn).

Imposing the growth condition on ‖·‖α,β in (2.1), a new space of test functions has
emerged as follows.

Definition 2.2 (see [19]). One denotes by F(Rn) the Sato space of all infinitely differentiable
functions ϕ in R

n such that

‖ϕ‖A,B = sup
x,α,β

|xα∂βϕ(x)|
A|α|B|β|α!β!

< ∞ (2.3)

for some positive constants A,B depending only on ϕ. One says that ϕj → 0 as j→∞ if
‖ϕj‖A,B → 0 as j→∞ for some A,B > 0, and denotes by F′(Rn) the strong dual of F(Rn)
and calls its elements Fourier hyperfunctions .

It can be verified that the seminorms (2.3) are equivalent to

‖ϕ‖h,k = sup
x∈Rn,α∈Nn

0

|∂αϕ(x)| exp k|x|
h|α|α!

< ∞ (2.4)

for some constants h, k > 0. It is easy to see the following topological inclusions:

F(Rn) ↪→ S(Rn), S′(Rn) ↪→ F′(Rn). (2.5)

From the above inclusions, it suffices to say that one considers (1.2) and (1.3) in the space
F′(Rn).

In order to obtain the general solution and prove the Hyers-Ulam stability of (1.1)
in the space F′(Rn), one employs the n-dimensional heat kernel, that is, the fundamental
solution of the heat operator ∂t −Δx in R

n
x × R

+
t given by

Et(x) =

⎧

⎪⎨

⎪⎩

(4πt)−n/2 exp
(

− |x|2
4t

)

, t > 0,

0, t ≤ 0.
(2.6)
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In view of (2.1), one sees that Et(·) belongs to S(Rn) for each t > 0. Thus, its Gauss transform

ũ(x, t) =
(

u∗Et

)

(x) =
〈

uy, Et(x − y)
〉

, x ∈ R
n, t > 0, (2.7)

is well defined for each u ∈ F′(Rn). In relation to the Gauss transform, it is well known that
the semigroup property of the heat kernel

(

Et∗Es

)

(x) = Et+s(x) (2.8)

holds for convolution. Moreover, the following result holds [20].
Let u ∈ S′(Rn). Then, its Gauss transform ũ(x, t) is a C∞-solution of the heat equation

(
∂

∂t
−Δ

)

ũ(x, t) = 0 (2.9)

satisfying what follows.

(i) There exist positive constants C, M, and N such that

∣
∣ũ(x, t)

∣
∣ ≤ Ct−M

(

1 + |x|)N in R
n × (0, δ). (2.10)

(ii) ũ(x, t)→u as t→ 0+ in the sense that for every ϕ ∈ S(Rn),

〈u, ϕ〉 = lim
t→ 0+

∫

ũ(x, t)ϕ(x)dx. (2.11)

Conversely, every C∞-solution U(x, t) of the heat equation satisfying the growth condition
(2.10) can be uniquely expressed as U(x, t) = ũ(x, t) for some u ∈ S′(Rn).

Analogously, we can represent Fourier hyperfunctions as initial values of solutions
of the heat equation as a special case of the results [21]. In this case, the estimate (2.10) is
replaced by what follows.

For every ε > 0, there exists a positive constant Cε such that

∣
∣ũ(x, t)

∣
∣ ≤ Cε exp

(

ε

(

|x| + 1
t

))

in R
n × (0, δ). (2.12)
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3. General solution and stability in F′(Rn)

We will now consider the general solution and the Hyers-Ulam stability of (1.1) in the space
F′(Rn). Convolving the tensor product Et(ξ)Es(η)Er(ζ) of n-dimensional heat kernels in both
sides of (1.2), we have

[

(u ◦A)∗(Et(ξ)Es(η)Er(ζ)
)]

(x, y, z) =
〈

u ◦A,Et(x − ξ)Es(y − η)Er(z − ζ)
〉

=
〈

uξ,

∫∫

Et(x − ξ + η + ζ)Es(y − η)Er(z − ζ)dη dζ
〉

=
〈

uξ,

∫∫

Et(x + y + z − ξ − η − ζ)Es(η)Er(ζ)dη dζ
〉

=
〈

uξ,
(

Et∗Es∗Er

)

(x + y + z − ξ)
〉

=
〈

uξ,
(

Et+s+r
)

(x + y + z − ξ)
〉

= ũ(x + y + z, t + s + r),
(3.1)

and similarly we obtain

[(

u ◦ P1
)∗(Et(ξ)Es(η)Er(ζ)

)]

(x, y, z) = ũ(x, t),
[(

u ◦ P2
)∗(Et(ξ)Es(η)Er(ζ)

)]

(x, y, z) = ũ(y, s),
[(

u ◦ P3
)∗(Et(ξ)Es(η)Er(ζ)

)]

(x, y, z) = ũ(z, r),
[(

u ◦ B1
)∗(Et(ξ)Es(η)Er(ζ)

)]

(x, y, z) = ũ(x + y, t + s),
[(

u ◦ B2
)∗(Et(ξ)Es(η)Er(ζ)

)]

(x, y, z) = ũ(y + z, s + r),
[(

u ◦ B3
)∗(Et(ξ)Es(η)Er(ζ)

)]

(x, y, z) = ũ(z + x, r + t),

(3.2)

where ũ is the Gauss transform of u. Thus, (1.2) is converted into the classical functional
equation

ũ(x+y +z, t+s+r)+ũ(x, t)+ũ(y, s)+ũ(z, r) = ũ(x + y, t + s) + ũ(y + z, s + r) + ũ(z + x, r + t)
(3.3)

for all x, y, z ∈ R
n and t, s, r > 0. For that reason, we first prove the following lemma which is

essential to prove the main result.

Lemma 3.1. Suppose that a function f : Rn × (0,∞)→C satisfies

f(x+y+z, t+s+r) + f(x, t) + f(y, s) + f(z, r) = f(x + y, t + s) + f(y + z, s + r) + f(z + x, r + t)
(3.4)
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for all x, y, z ∈ R
n and t, s, r > 0. Also, assume that f(x, t) is continuous and 2-times differentiable

with respect to x and t, respectively. Then, there exist constants aij , bi, ci, d, e ∈ C such that

f(x, t) =
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi + t

∑

1≤i≤n
cixi + dt2 + et (3.5)

for all x = (x1, . . . , xn) ∈ R
n and t > 0.

Proof. In view of (3.4), f(x, 0+) := limt→ 0+f(x, t) exists for each x ∈ R
n. Letting t = s = r→ 0+

in (3.4), we see that f(x, 0+) satisfies (1.1). By the result as that in [15], there exist a symmetric
biadditive function B and an additive function A such that

f
(

x, 0+
)

= B(x, x) +A(x) (3.6)

for all x ∈ R
n. From the hypothesis that f(x, t) is continuous with respect to x, we have

f(x, 0+) =
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi (3.7)

for some aij , bi ∈ C. We now define a function h as h(x, t) := f(x, t) − f(x, 0+) − f(0, t) for all
x ∈ R

n and t > 0. Putting x = y = z = 0 and t = s = r→ 0+ in (3.4), we have f(0, 0+) = 0. From
the definition of h and f(0, 0+) = 0, we see that h satisfies h(0, t) = 0, h(x, 0+) = 0, and

h(x+y+z, t+s + r) + h(x, t) + h(y, s) + h(z, r) = h(x + y, t + s) + h(y + z, s + r) + h(z + x, r + t)
(3.8)

for all x, y, z ∈ R
n and t, s, r > 0. Putting y = z = 0 in (3.8), we get

h(x, t + s + r) + h(x, t) = h(x, t + s) + h(x, r + t). (3.9)

Now letting t→ 0+ in (3.9) yields

h(x, s + r) = h(x, s) + h(x, r). (3.10)

Given the continuity, h(x, t) can be written as

h(x, t) = h(x, 1)t (3.11)

for all x ∈ R
n and t > 0. Setting x = 0, t = 1, and s = r→ 0+ in (3.8), we obtain

h(y + z, 1) = h(y, 1) + h(z, 1) (3.12)

for all y, z ∈ R
n. This shows that h(x, 1) is additive. Thus, h(x, t) can be written in the form

h(x, t) = t
∑

1≤i≤n
cixi (3.13)
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for some ci ∈ C. Nowwe are going to find the general solution of f(0, t). Putting x = y = z = 0
in (3.4), we obtain

f(0, t + s + r) + f(0, t) + f(0, s) + f(0, r) = f(0, t + s) + f(0, s + r) + f(0, r + t). (3.14)

Differentiating (3.14) with respect to t, we have

f ′(0, t + s + r) + f ′(0, t) = f ′(0, t + s) + f ′(0, r + t) (3.15)

for all t, s, r > 0. Similarly, differentiation of (3.15) with respect to s yields

f ′′(0, t + s + r) = f ′′(0, t + s) (3.16)

which shows that f ′′(0, t) is a constant function. By virtue of f(0, 0+) = 0, f(0, t) can be written
as

f(0, t) = dt2 + et (3.17)

for some d, e ∈ C. Combining (3.7), (3.13), and (3.17), f(x, t) can be written in the form

f(x, t) = f(x, 0+) + h(x, t) + f(0, t) =
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi + t

∑

1≤i≤n
cixi + dt2 + et (3.18)

for some aij , bi, ci, d, e ∈ C. This completes the proof.

As an immediate consequence of Lemma 3.1, we establish the general solution of (1.1)
in the space F′(Rn).

Theorem 3.2. Every solution u in F′(Rn) of

u ◦A + u ◦ P1 + u ◦ P2 + u ◦ P3 = u ◦ B1 + u ◦ B2 + u ◦ B3 (3.19)

has the form

u(x) = u
(

x1, . . . , xn

)

=
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi (3.20)

for some aij , bi ∈ C.

Proof. As we see above, if we convolve the tensor product Et(ξ)Es(η)Er(ζ) of n-dimensional
heat kernels in both sides of (3.19), then (3.19) is converted into the classical functional
equation

ũ(x+y+z, t+s+r) + ũ(x, t) + ũ(y, s) + ũ(z, r) = ũ(x + y, t + s) + ũ(y + z, s + r) + ũ(z + x, r + t)
(3.21)
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for all x, y, z ∈ R
n and t, s, r > 0, where ũ is the Gauss transform of u. According to Lemma 3.1,

ũ(x, t) is of the form

ũ(x, t) =
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi + t

∑

1≤i≤n
cixi + dt2 + et (3.22)

for some constants aij , bi, ci, d, e ∈ C. Now letting t→ 0+, we have

u =
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi (3.23)

which completes the proof.

We now in a position to state and prove the main result of this paper.

Theorem 3.3. Suppose that u in F′(Rn) satisfies the inequality

∥
∥u ◦A + u ◦ P1 + u ◦ P2 + u ◦ P3 − u ◦ B1 − u ◦ B2 − u ◦ B3

∥
∥ ≤ ε. (3.24)

Then, there exists a function T defined by

T(x) =
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi, aij , bi ∈ C, (3.25)

such that

∥
∥u − T(x)

∥
∥ ≤ 13

3
ε. (3.26)

Proof. Convolving the tensor product Et(ξ)Es(η)Er(ζ) of n-dimensional heat kernels in both
sides of (3.24), we have the classical functional inequality

∣
∣ũ(x+y+z, t+s+r)+ũ(x, t)+ũ(y, s)+ũ(z, r)−ũ(x+y, t+s) − ũ(y + z, s + r) − ũ(z + x, r + t)

∣
∣ ≤ ε
(3.27)

for all x, y, z ∈ R
n and t, s, r > 0, where ũ is the Gauss transform of u. Define a function

fe : Rn × (0,∞)→C by fe(x, t) := (1/2)(ũ(x, t) + ũ(−x, t)) − ũ(0, t) for all x ∈ R
n and t > 0.

Then, fe(−x, t) = fe(x, t), fe(0, t) = 0, and

∣
∣fe(x+y+z, t+s+r)+fe(x, t)+fe(y, s)+fe(z, r)−fe(x+y, t+s)−fe(y+z, s+r)−fe(z+x, r+t)

∣
∣≤2ε
(3.28)

for all x, y, z ∈ R
n and t, s, r > 0. Replacing z by −y in (3.28), we have

∣
∣fe(x, t + s + r) + fe(x, t) + fe(y, s) + fe(y, r) − fe(x + y, t + s) − fe(x − y, r + t)

∣
∣ ≤ 2ε. (3.29)
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Putting y = z = 0 in (3.28) yields

∣
∣fe(x, t + s + r) + fe(x, t) − fe(x, t + s) − fe(x, r + t)

∣
∣ ≤ 2ε. (3.30)

Taking (3.29) into (3.30), we obtain

∣
∣fe(x + y, t + s) + fe(x − y, r + t)fe(x, t + s) − fe(x, r + t) − fe(y, s) − fe(y, r)

∣
∣ ≤ 4ε. (3.31)

Letting t→ 0+ and switching r by s, we have

∣
∣fe(x + y, s) + fe(x − y, s) − 2fe(x, s) − 2fe(y, s)

∣
∣ ≤ 4ε. (3.32)

Substituting y, s by x, t, respectively, and then dividing by 4, we lead to

∣
∣
∣
∣

fe(2x, t)
4

− fe(x, t)
∣
∣
∣
∣
≤ ε. (3.33)

Making use of an induction argument, we obtain

∣
∣4−kfe(2

kx, t) − fe(x, t)
∣
∣ ≤ 4

3
ε (3.34)

for all k ∈ N, x ∈ R
n, and t > 0. Exchanging x by 2lx in (3.34) and then dividing the result

by 4l, we can see that {4−kfe(2kx, t)} is a Cauchy sequence which converges uniformly. Let
g(x, t) = limk→∞4−kfe(2

kx, t) for all x ∈ R
n and t > 0. It follows from (3.28) and (3.34) that

g(x, t) is the unique function satisfying

g(x+y+z, t+s+r)+g(x, t)+g(y, s)+g(z, r)=g(x+y, t+s) + g(y + z, s + r) + g(z + x, r + t),

∣
∣fe(x, t) − g(x, t)

∣
∣ ≤ 4

3
ε

(3.35)

for all x, y, z ∈ R
n and t, s, r > 0. By virtue of Lemma 3.1, g is of the form

g(x, t) =
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi + t

∑

1≤i≤n
cixi + dt2 + et (3.36)

for some constants aij , bi, ci, d, e ∈ C. Since fe(−x, t) = fe(x, t) and fe(0, t) = 0 for all x ∈ R
n

and t > 0, we have

g(x, t) =
∑

1≤i≤j≤n
aijxixj . (3.37)
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On the other hand, let fo : Rn×(0,∞)→C be the function defined by fo(x, t) := (1/2)(ũ(x, t)−
ũ(−x, t)) for all x ∈ R

n and t > 0. Then, fo(−x, t) = −fo(x, t), fo(0, t) = 0, and

∣
∣fo(x+y+z, t+s+r)+fo(x, t)+fo(y, s)+fo(z, r)−fo(x+y, t+s)−fo(y+z, s+r)−fo(z+x, r+t)

∣
∣≤ε

(3.38)

for all x, y, z ∈ R
n and t, s, r > 0. Replacing z by −y in (3.38), we have

∣
∣fo(x, t + s + r) + fo(x, t) + fo(y, s)−fo(y, r) − fo(x + y, t + s) − fo(x − y, r + t)

∣
∣ ≤ ε. (3.39)

Setting y = z = 0 in (3.38) yields

∣
∣fo(x, t + s + r) + fo(x, t) − fo(x, t + s) − fo(x, r + t)

∣
∣ ≤ ε. (3.40)

Adding (3.39) to (3.40), we obtain

∣
∣fo(x + y, t + s) + fo(x − y, r + t) − fo(x, t + s) − fo(x, r + t) − fo(y, s) + fo(y, r)

∣
∣ ≤ 2ε. (3.41)

Letting t→ 0+ and replacing r by s, we have

∣
∣fo(x + y, s) + fo(x − y, s) − 2fo(x, s)

∣
∣ ≤ 2ε. (3.42)

Substituting y, s by x, t, respectively, and then dividing by 2, we lead to

∣
∣
∣
∣

fo(2x, t)
2

− fo(x, t)
∣
∣
∣
∣
≤ ε. (3.43)

Using the iterative method, we obtain

∣
∣2−kfo(2

kx, t) − fo(x, t)
∣
∣ ≤ 2ε (3.44)

for all k ∈ N, x ∈ R
n, and t > 0. From (3.38) and (3.44), we verify that h is the unique function

satisfying

h(x+y+z, t+s+r)+h(x, t)+h(y, s)+h(z, r)=h(x + y, t + s) + h(y + z, s + r) + h(z + x, r + t),
∣
∣fo(x, t) − h(x, t)

∣
∣ ≤ 2ε

(3.45)

for all x, y, z ∈ R
n and t, s, r > 0. According to Lemma 3.1, there exist aij , bi, ci, d, e ∈ C such

that

h(x, t) =
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi + t

∑

1≤i≤n
cixi + dt2 + et. (3.46)
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On account of fo(−x, t) = fo(x, t) and fo(0, t) = 0 for all x ∈ R
n and t > 0, we have

h(x, t) =
∑

1≤i≤n
bixi + t

∑

1≤i≤n
cixi. (3.47)

In turn, since ũ(x, t) = fe(x, t) + fo(x, t) + ũ(0, t), we figure out

∣
∣ũ(x, t) − g(x, t) − h(x, t)

∣
∣ ≤ ∣

∣fe(x, t) − g(x, t)
∣
∣ +

∣
∣fo(x, t) − h(x, t)

∣
∣ +

∣
∣ũ(0, t)

∣
∣

≤ 10
3
ε +

∣
∣ũ(0, t)

∣
∣

(3.48)

In view of (3.27), it is easy to see that c := lim supt→ 0+f(0, t) exists. Letting x = y = z = 0 and
t = s = r→ 0+ in (3.27), we have |c| ≤ ε. Finally, taking t→ 0+ in (3.48), we have

∥
∥
∥
∥
∥
u −

(
∑

1≤i≤j≤n
aijxixj +

∑

1≤i≤n
bixi

)∥
∥
∥
∥
∥
≤ 13

3
ε (3.49)

which completes the proof.

Remark 3.4. The above norm inequality (3.49) implies that u − T(x) belongs to (L1)′ = L∞.
Thus, all the solution u in F′(Rn) can be written uniquely in the form

u = T(x) + μ, (3.50)

where μ is a bounded measurable function such that ||μ||L∞ ≤ (13/3)ε.
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[5] J. Chung and S. Lee, “Some functional equations in the spaces of generalized functions,” Aequationes
Mathematicae, vol. 65, no. 3, pp. 267–279, 2003.

[6] S.-Y. Chung, “Reformulation of some functional equations in the space of Gevrey distributions and
regularity of solutions,” Aequationes Mathematicae, vol. 59, no. 1-2, pp. 108–123, 2000.

[7] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 27, no. 4, pp. 222–224, 1941.

[8] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Progress
in Nonlinear Differential Equations and Their Applications, 34, Birkhäuser, Boston, Mass, USA, 1998.
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