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1. Introduction

Nanda [1] studied sequence of fuzzy numbers and showed that the set of all convergent se-
quences of fuzzy numbers form a complete metric space. Nuray [2] proved the inclusion rela-
tions between the set of statistically convergent and lacunary statistically convergent sequences
of fuzzy numbers. Kwon and Shim [3] studied statistical convergence and lacunary statistical
convergence of sequences of fuzzy numbers, and they showed that Nuray’s conditions are suf-
ficient as well as necessary. Savaş [4] introduced and discussed double convergent sequence of
fuzzy numbers and showed that the set of all double convergent sequences of fuzzy numbers
is complete. In [5], Savaş generalized the statistical convergence by using de la Vallee-Poussin
mean. Quite recently, Savaş and Mursaleen [6] introduced of statistically convergent and sta-
tistically Cauchy for double sequence of fuzzy numbers.

In this paper, we continue to study the concepts of strongly double [V, λ]-summable and
double Sλ-convergent for double sequence of fuzzy numbers.

2. Preliminaries

Before continuing with the discussion, we pause to establish some notation. Let C(Rn) =
{
A ⊂

Rn : A compact and convex
}
. The spaces C(Rn) have a linear structure induced by the opera-

tions
A + B = {a + b, a ∈ A, b ∈ B},

λA = {λa, λ ∈ A}
(2.1)
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for A, B ∈ C(Rn), and λ ∈ R. The Hausdorff distance between A andB of C(Rn) is defined as

δ∞(A,B) = max

{

sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖
}

. (2.2)

It is well known that (C(Rn), δ∞) is a complete (not separable) metric space.
A fuzzy number is a function X from Rn to [0, 1] satisfying

(1) X is normal, that is, there exists an x0 ∈ Rn such that X(x0) = 1;

(2) X is fuzzy convex, that is, for any x, y ∈ Rn and 0 ≤ λ ≤ 1,

X(λx + (1 − λ)y) ≥ min{X(x), X(y)}; (2.3)

(3) X is upper semicontinuous;

(4) the closure of
{
x ∈ Rn : X(x) > 0

}
, denoted by X0, is compact.

These properties imply that for each 0 < α ≤ 1, the α-level set

Xα =
{
x ∈ Rn : X(x) ≥ α

}
(2.4)

is a nonempty compact convex, subset ofRn, as is the supportX0. Let L(Rn) denote the set of all
fuzzy numbers. The linear structure of L(Rn) induces addition X + Y and scalar multiplication
λX, λ ∈ R, in terms of α-level sets by

[
X + Y

]α =
[
X
]α +

[
Y
]α
,

[
λX

]α = λ
[
X
]α (2.5)

for each 0 ≤ α ≤ 1.
Define for each 1 ≤ q < ∞,

dq(X,Y ) =

{∫1

0
δ∞

(
Xα, Yα)qdα

}1/q

(2.6)

and d∞= sup0≤α≤1δ∞
(
Xα, Yα

)
. Clearly, d∞(X,Y ) = limq→∞dq(X,Y ) with dq ≤ dr if q ≤ r. More-

over, dq is a complete, separable, and locally compact metric space [7].
Throughout the paper, d will denote dq with 1 ≤ q ≤ ∞.
We will need the following definitions.

Definition 2.1. A double sequence X = (Xkl) of fuzzy numbers is said to be convergent in the
Pringsheim’s sense or P -convergent to a fuzzy numberX0 if for every ε > 0, there existsN ∈ N
such that

d
(
Xkl, X0

)
< ε for k, l > N, (2.7)

and we denote P − limX = X0. The number X0 is called the Pringsheim limit of Xkl.
More exactly, we say that a double sequence (Xkl) converges to a finite number X0 if Xkl

tend to X0 as both k and l tends to∞ independently of one another.
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Let c2(F) denote the set of all double convergent sequences of fuzzy numbers.

Definition 2.2. A double sequence X = (Xkl) of fuzzy numbers is bounded if there exists a
positive number M such that d(Xkl, X0) < M for all k and l,

‖x‖(∞,2) = sup
k,l

d
(
Xkl, X0

)
< ∞. (2.8)

We will denote the set of all bounded double sequences by l2∞(F).

LetK ⊆ N×N be a two-dimensional set of positive integers and letKm,n be the numbers
of (i, j) in K such that i ≤ n and j ≤ m. Then the lower asymptotic density of K is defined as

P − lim inf
m,n

Km,n

mn
= δ2(K). (2.9)

In the case when the sequence (Km,n/mn)∞,∞
m,n=1,1 has a limit, then we say that K has a natural

density and is defined as

P − lim
m,n

Km,n

mn
= δ2(K). (2.10)

For example, let K = {(i2, j2) : i, j ∈ N}, whereN is the set of natural numbers. Then

δ2(K) = P − lim
m,n

Km,n

mn
≤ P − lim

m,n

√
m
√
n

mn
= 0 (2.11)

(i.e., the set K has double natural density zero).

Definition 2.3. A double sequence X = (Xkl) of fuzzy numbers is said to be statistically conver-
gent to X0 provided that for each ε > 0,

P − lim
m,n

1
nm

∣∣{(j, k
)
; j ≤ m, k ≤ n : d

(
Xkl, X0

) ≥ ε
}∣∣ = 0. (2.12)

In this case, we write st2 − limk,lXk,l = X0 and we denote the set of all double statistically
convergent sequences of fuzzy numbers by st2(F).

Definition 2.4. λ = (λn) and μ = (μm) could be two nondecreasing sequences of positive real
numbers such that each tends to ∞ and

λn+1 ≤ λn + 1, λ1 = 1,

μm+1 ≤ μm + 1, μ1 = 1.
(2.13)

A double sequence X = (Xkl) of fuzzy numbers is said to be λ-summable if there is fuzzy
number X0 such that

P − lim
nm

1

λnm

∑

k∈In

∑

l∈Im
d
(
Xkl, X0

)
= 0, (2.14)

where In = [n − λn + 1, n], Im = [m − μm + 1, m], and λnm = λnμm.
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In this case, we say that X is strongly double λ-summable to X0 and we denote the set
of all strongly double λ-summable sequences by [V, λ](F). If λnm = nm, then strongly double
λ-summable reduces to [C, 1, 1](F), the space of strongly double Cesàro summable sequences
defined as follows:

P − lim
nm

1
nm

mn∑

k,l=1,1

d
(
Xkl, X0

)
= 0. (2.15)

Definition 2.5. Adouble sequenceX = (Xkl) of fuzzy numbers is said to be double λ-statistically
convergent or Sλ-convergent to X0 if for every ε > 0,

P − lim
n,m

1

λnm

∣∣{k ∈ In, l ∈ Im : d
(
Xkl, X0

) ≥ ε
}∣∣ = 0. (2.16)

In this case, we write Sλ− limX = X0 orXkl
P→ X0(Sλ) and we denote the set of all double

Sλ-statistically convergent sequences of fuzzy numbers by (Sλ)(F).
If λnm = nm, for all n,m, then the set Sλ(F) of Sλ-convergent sequences reduces to the

space st2(F).
We need the following proposition in future. Ametric d on L(R) is said to be a translation

invariant if d(X + Z, Y + Z) = d(X,Y ) for X,Y,Z ∈ L(R).

Proposition 2.6. If d is a translation invariant metric on L(R), then

d(X + Y, 0) ≤ d(X, 0) + d(Y, 0). (2.17)

Proof is clear so we omitted it.
In the next theorem, we give some connections between strongly double λ-summable

and double λ-statistical convergences.

3. Main results

Theorem 3.1. A double sequence X = (Xkl) of fuzzy numbers is strongly double λ-summable X0, then
it is double λ-statistically convergent to X0.

Proof. Let ε > 0 and since
∑

k∈In,l∈Im
d
(
Xkl, X0

) ≥
∑

k∈In,l∈Im,d
(
Xkl,X0

)
≥ε
d
(
Xkl, X0

) ≥ ε
∣∣{k ∈ In, l ∈ Im : d

(
Xkl, X0

) ≥ ε
}∣∣. (3.1)

This implies that if a sequence X = (Xkl) is strongly double λ-summable X0, then X is double
λ-statistically convergent to X0.

This completes the proof.

We have the following theorem.

Theorem 3.2. If a bounded (Xkl) is double λ-statistically convergent to X0, then it is strongly double
λ-summable X0.
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Proof. Suppose that (Xkl) is bounded and double λ-statistically convergent to X0. Since X is
bounded we write d

(
Xkl, X0

) ≤ M for all k, l. Also for given ε > 0 and n andm large we obtain

1

λnm

∑

k∈In,l∈Im
d
(
Xkl, X0

)
=

1

λnm

∑

k∈In,l∈Im,d
(
Xkl,X0

)
≥ε
d
(
Xkl, X0

)
+

1

λnm

∑

k∈In,l∈Im,d
(
Xkl,X0

)
<ε

d
(
Xkl, X0

)

≤ M

λnm

∣∣{k ∈ In, l ∈ Im : d
(
Xkl, X0

) ≥ ε
}∣∣ + ε,

(3.2)

which implies that X is strongly double λ-summable X0.
This completes the proof.

Theorem 3.3. If a sequence X = (Xkl) of fuzzy numbers is double statistically convergent to X0, then
it is double λ-statistically convergent to X0 if and only if

P − lim
nm

inf
λnm
nm

> 0. (3.3)

Proof. For given ε > 0, we have

{
k ≤ n, l ≤ m : d

(
Xkl, X0

) ≥ ε
} ⊃ {k ∈ In, l ∈ Im : d

(
Xkl, X0

) ≥ ε
}
. (3.4)

Therefore,

1
nm

∣∣{k ≤ n, l ≤ m : d
(
Xkl, X0

) ≥ ε
}∣∣ ≥ 1

nm

∣∣{k ∈ In, l ∈ Im : d
((
Xkl, X0

) ≥ ε
}|

≥ λnm
nm

1

λnm

∣∣{k ∈ In, l ∈ Im : d
((
Xkl, X0

) ≥ ε
}∣∣.

(3.5)

Taking the limit as n,m → ∞ and using hypothesis, we get X is double λ-statistically
convergent to X0.

Conversely, suppose that X ∈ st2(F) and since λnm = λnμm, either P − limn inf λn/n = 0
or P − limm inf (μm/m) = 0 or both are zero. Then we can choose subsequences (n(p))∞p=1 and
(m(q))∞q=1 such that λn(p)/n(p) < 1/p and μm(q)/m(q) < 1/q. Define a sequence X = (Xkl) by

Xkl =

⎧
⎨

⎩

1 if k ∈ In(p) , l ∈ Im(q) (p, q = 1, 2, . . .),

0 otherwise.
(3.6)

Then X ∈ [C, 1, 1](F) and hence, by [6, Theorem 6(a)], X ∈ st2(F). But on the other hand,
X/∈[V, λ](F) and from Theorem 3.1, X /∈ (Sλ)(F); a contradiction and hence (3.3) must hold.

Finally, we conclude this paper by stating a definition which generalizes Definition 2.4.
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Definition 3.4. Let X = (Xkl) be a double sequence of fuzzy numbers and let p be positive real
numbers. The sequence X is said to be strongly double λp-summable if there is fuzzy number
X0 such that

P − lim
nm

1

λnm

∑

k∈In

∑

l∈Im
d
(
Xkl, X0

)p = 0. (3.7)

In this case, we say that X is strongly double λp-summable to X0. If λnm = nm, then

strongly double λp-summable reduces to strongly double p-Cesàro summable to X0.

Theorem 3.5. (1) Let p ∈ (0,∞). If a double sequence X = (Xkl) of fuzzy numbers is strongly double
λp-summable X0, then it is double λ-statistically convergent to X0.

(2) Let p ∈ (0,∞). If a bounded (Xkl) is double λ-statistically convergent to X0, then it is
strongly double λp-summable X0.

Proof. The proof of theorem is similar to that of Theorems 3.1 and 3.2 so we omitted it.
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