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The purpose of this paper is to study the solvability for a class of generalized strong
vector variational-like inequalities in reflexive Banach spaces. Firstly, utilizing Brouwer’s
fixed point theorem, we prove the solvability for this class of generalized strong vector
variational-like inequalities without monotonicity assumption under some quite mild
conditions. Secondly, we introduce the new concept of pseudomonotonicity for vec-
tor multifunctions, and prove the solvability for this class of generalized strong vector
variational-like inequalities for pseudomonotone vector multifunctions by using Fan’s
lemma and Nadler’s theorem. Our results give an affirmative answer to an open prob-
lem proposed by Chen and Hou in 2000, and also extend and improve the corresponding
results of Fang and Huang (2006).
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1. Introduction and preliminaries

In 1980, Giannessi [3] initially introduced and considered a vector variational inequality
in a finite-dimensional Euclidean space, which is the vector-valued version of the vari-
ational inequality of Hartman and Stampacchia. Ever since then, vector variational in-
equalities have been extensively studied and generalized in infinite-dimensional spaces
since they have played very important roles in many fields, such as mechanics, physics,
optimization, control, nonlinear programming, economics and transportation equilib-
rium, engineering sciences, and so forth. On account of their very valuable applicability,
the vector variational inequality theory has been widely developed throughout over last
20 years; see [1, 2, 4, 5, 7–14] and the references therein.
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Let X and Y be two real Banach spaces, let K ⊆ X be a nonempty, closed, and convex
set, and let C ⊆ Y be a closed, convex, and pointed cone with apex at the origin. Recall
that C is said to be a closed, convex, and pointed cone with apex at the origin if and only
if C is closed and the following conditions hold:

(i) λC ⊆ C, for all λ > 0;
(ii) C+C ⊆ C;
(iii) C∩ (−C)= {0}.
Given a closed, convex, and pointed cone C with apex at the origin in Y , we can define

relations “≤C” and “�≤C” as follows:

x ≤C y⇐⇒ y− x ∈ C, x �≤C y⇐⇒ y− x �∈ C. (1.1)

Clearly “≤C” is a partial order. In this case, (Y ,≤C) is called an ordered Banach space or-
dered by C. Let L(X ,Y) denote the space of all continuous linear maps from X into Y . Let
T : K → 2L(X ,Y) be a multifunction, where 2L(X ,Y) denotes the collection of all nonempty
subsets of L(X ,Y). Let A : L(X ,Y)→ L(X ,Y), h : K → Y , and η : K × K → X be three
mappings.

Definition 1.1. (i) The generalized (weak) vector variational-like inequality (GVVLI) con-
sists of finding a vector x∗ ∈ K such that

〈
As∗,η

(
y,x∗

)〉
+h(y)−h

(
x∗
) �≤intC 0, ∀y ∈ K , (1.2)

for some s∗ ∈ Tx∗, where intC denotes the interior of C and a �≤intC bmeans that b− a �∈
intC.

(ii) The generalized strong vector variational-like inequality (GSVVLI) consists of
finding a vector x∗ ∈ K such that

〈
As∗,η

(
y,x∗

)〉
+h(y)−h

(
x∗
) �≤C\{0} 0, ∀y ∈ K , (1.3)

for some s∗ ∈ Tx∗, where a �≤C\{0} bmeans that b− a �∈ C \ {0}.
If h(x)= 0, η(y,x)= y− x for all x, y ∈ K , A= I the identity mapping of L(X ,Y), and

T is a single-valued mapping, then Definition 1.1 reduces to the following definition.

Definition 1.2 [7]. (i) The (weak) vector variational inequality (VVI) consists of finding
a vector x∗ ∈ K such that

〈
Tx∗, y− x∗

〉 �≤intC 0, ∀y ∈ K. (1.4)

(ii) The strong vector variational inequality (SVVI) consists of finding a vector x∗ ∈ K
such that

〈
Tx∗, y− x∗

〉 �≤C\{0} 0, ∀y ∈ K. (1.5)

The concept of VVI was first introduced by Giannessi [3] in a finite-dimensional Eu-
clidean space. In 2000, Chen and Hou [1] reviewed and summarized representative ex-
istence results of solutions for VVI, and pointed out that “most of the research results in
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this area touch upon a weak version of VVI and its generalizations. The existence of solu-
tions for (strong) vector variational inequalities is still an open problem.” Subsequently,
Fang and Huang [14] obtained some existence results of solutions for a class of strong
vector variational inequalities and partly answered the open problem proposed by Chen
and Hou [1].

Definition 1.3. Let A : L(X ,Y) → L(X ,Y), h : K → Y , and η : K × K → X be three
mappings. A nonempty compact-valued multifunction T : K → 2L(X ,Y) is said to be η-
pseudomonotone with respect to A and h if for each x, y ∈ K , the existence of s ∈ Tx
such that

〈
As,η(y,x)

〉
+h(y)−h(x) �≤C\{0} 0 (1.6)

implies that
〈
At,η(y,x)

〉
+h(y)−h(x)≥C 0, ∀t ∈ Ty. (1.7)

If h(x)= 0, η(y,x)= y− x for all x, y ∈ K , A= I the identity mapping of L(X ,Y), and
T is a single-valued mapping, then Definition 1.3 reduces to the following definition.

Definition 1.4 [7]. A mapping T : K → L(X ,Y) is said to be pseudomonotone if for any
x, y ∈ K ,

〈Tx, y− x〉 �≤C\{0} 0=⇒ 〈Ty, y− x〉 ≥C 0. (1.8)

Definition 1.5. A map h : K → Y is said to be convex if

h
(
λx+ (1− λ)y

)≤C λh(x) + (1− λ)h(y), ∀x, y ∈ K , λ∈ [0,1]. (1.9)

Lemma 1.6 (Nadler’s theorem [15]). Let (X ,‖ · ‖) be a normed vector space and let H be
the Hausdorff metric on the collection CB(X) of all nonempty, closed, and bounded subsets
of X , induced by a metric d in terms of d(x, y)= ‖x− y‖, which is defined by

H(U ,V)=max
(
sup
x∈U

inf
y∈V

‖x− y‖, sup
y∈V

inf
x∈U

‖x− y‖
)
, (1.10)

for U and V in CB(X). If U and V are compact sets in X , then for each x ∈U , there exists
y ∈V such that

‖x− y‖ ≤H(U ,V). (1.11)

Definition 1.7. (i) A mapping T : K → L(X ,Y) is called hemicontinuous [7] if for any
given x, y ∈ K , the mapping λ �→ 〈T(x+ λ(y− x)), y− x〉 is continuous at 0+.

(ii) A nonempty compact-valued multifunction T : K → 2L(X ,Y) is called H-uniformly
continuous if for any given ε > 0, there exists δ > 0 such that for any x, y ∈ K with ‖x−
y‖ < δ, there holds

H(Tx,Ty) < ε, (1.12)

where H is the Hausdorff metric defined on CB(L(X ,Y)).
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Recently, Fang and Huang [7] gave some more results related to the work [2] in the
area of solvability for strong vector variational inequalities in Banach spaces. They estab-
lished two existence theorems for solutions of the SVVI without monotonicity in Banach
spaces by using Brouwer’s fixed point theorem [6] and Browder’s fixed point theorem
[17], respectively.

Theorem 1.8. Let K be a nonempty compact convex subset of a real Banach space X , let Y
be a real Banach space ordered by a nonempty convex cone C with apex at the origin and
intC �= ∅. Suppose that T : K → L(X ,Y) is a nonlinear mapping such that for every y ∈ K ,
the set {x ∈ K : 〈Tx, y− x〉 ≤C\{0} 0} is open in K . Then problem SVVI is solvable.

Theorem 1.9. Let K be a nonempty unbounded closed convex subset of a real reflexive
Banach space X , let Y be a real Banach space ordered by a nonempty convex cone C with its
apex at the origin, and intC �= ∅. Let T : K → L(X ,Y) be a continuous nonlinear mapping.
Suppose that there exist x0 ∈ K and ϕ∈ { f ∈ Y∗ : 〈 f ,c〉 > 0, for allc ∈ C \ {0}} such that

〈
ϕ◦T(x)−ϕ◦T(x0

)
,x− x0

〉

∥
∥x− x0

∥
∥ −→∞ (1.13)

whenever x ∈ K and ‖x‖→∞. Then problem SVVI is solvable.

Moreover, they also derived the solvability for the SVVI with monotonicity by using
Fan’s lemma.

Theorem 1.10. LetK be a nonempty bounded closed convex subset of a real reflexive Banach
space X and let Y be a real Banach space ordered by a pointed closed convex cone C with its
apex at the origin and intC �= ∅. LetT : K → L(X ,Y) be a hemicontinuous pseudomonotone
mapping. Then problem SVVI is solvable.

There is no doubt that Fang and Huang’s results gave a positive answer to the open
problem proposed by Chen and Hou [1].

In this paper, we study the solvability of the GSVVLI in reflexive Banach spaces. There
is no doubt that the class ofGSVVLI includes as a special case the one of SVVI considered
by Fang and Huang [7]. First, the solvability of the GSVVLI without monotonicity is
derived under some quite mild conditions by using Brouwer’s fixed point theorem [6].
Second, we introduce the new concept of pseudomonotonicity for vector multifunctions,
and prove the solvability of the GSVVLI for pseudomonotone vector multifunctions by
using Fan’s lemma [16] and Nadler’s theorem [15]. Our results also give an affirmative
answer to the open problem proposed by Chen and Hou [1], and extend and improve the
corresponding results in Fang and Huang [7].

2. Solvability of theGSVVLI without monotonicity

In this section, we will derive the solvability of the GSVVLI without monotonicity as-
sumption under some quite mild conditions by using Brouwer’s fixed point theorem [6].
First, recall the following result.
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Lemma 2.1 (Brouwer’s fixed point theorem [6]). Let B be a nonempty, compact, and convex
subset of a finite-dimensional space and let g : B→ B be a continuous mapping. Then there
exists x ∈ B such that g(x)= x.

Theorem 2.2. Let K be a nonempty, bounded, closed, and convex subset of a real reflexive
Banach space X and let Y be a real Banach space ordered by a nonempty convex cone C with
apex at the origin and intC �= ∅. Let h : K → Y andA : L(X ,Y)→ L(X ,Y) be two mappings
such that h is convex, and let η : K ×K → X be such that (a) η(x,z)= η(x, y) + η(y,z), for
all x, y,z ∈ K , and (b) η(·,·) is affine in the first variable. Suppose that for given multifunc-
tion T : K → 2L(X ,Y), the set {x ∈ K : 〈As,η(y,x)〉+ h(y)− h(x) ≤C\{0} 0, for alls ∈ Tx} is
weakly open in K for every y ∈ K . Then problem GSVVLI has a solution.

Proof. First, observe that condition (a) implies that for each x, y ∈ K ,

η(x,x)= 0, η(x, y) +η(y,x)= 0. (2.1)

If problem GSVVLI does not have a solution, then for every x0 ∈ K , there exists some
y ∈ K such that

〈
As0,η

(
y,x0

)〉
+h(y)−h

(
x0
)≤C\{0} 0, ∀s0 ∈ Tx0. (2.2)

For every y ∈ K , define the set Ny as follows:

Ny =
{
x ∈ K :

〈
As,η(y,x)

〉
+h(y)−h(x)≤C\{0} 0, ∀s∈ Tx

}
. (2.3)

By the assumption, the set Ny is weakly open in K for every y ∈ K . It is easy to see that
the family {Ny : y ∈ K} is an open cover of K in the weak topology of X .

The weak compactness of K implies that there exists a finite set {y1, y2, . . . , yn} ⊆ K
such that

K =
n⋃

i=1
Nyi . (2.4)

Hence there exists a continuous (in the weak topology of X) partition of unity {β1,β2, . . . ,
βn} subordinated to {Ny1 ,Ny2 , . . . ,Nyn} such that βj(x)≥ 0, for all x ∈ K , j = 1,2, . . . ,n,

n∑

j=1
βj(x)= 1, ∀x ∈ K , (2.5)

βj(x)

⎧
⎨

⎩
= 0 whenever x �∈Nyj ,

> 0 whenever x ∈Nyj .
(2.6)

Let p : K → X be defined as follows:

p(x)=
n∑

j=1
βj(x)yj , ∀x ∈ K. (2.7)

Since βj is continuous in the weak topology of X for each j, p is continuous in the weak
topology of X . Let S= co{y1, y2, . . . , yn} be the convex hull of {y1, y2, . . . , yn} in K . Then S
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is a simplex of a finite-dimensional space and p maps S into S. By Brouwer’s fixed point
theorem (Lemma 2.1), there exists some x0 ∈ S such that p(x0)= x0. Now for any given
x ∈ K , let

k(x)= { j : x ∈Nyj

}= { j : βj(x) > 0
}
. (2.8)

Obviously, k(x) �= ∅.
Since x0 ∈ S⊆ K is a fixed point of p, we have p(x0)=

∑n
j=1βj(x0)yj and hence from

the definition of Ny and the convexity of h we derive for each s0 ∈ Tx0,

0= 〈As0,η
(
x0,x0

)〉
+h
(
x0
)−h

(
x0
)= 〈As0,η

(
x0, p

(
x0
))〉

+h
(
x0
)−h

(
p
(
x0
))

=
〈

As0,η

(

x0,
n∑

j=1
βj
(
x0
)
yj

)〉

+h
(
x0
)−h

( n∑

j=1
βj
(
x0
)
yj

)

=−
〈

As0,η

( n∑

j=1
βj
(
x0
)
yj ,x0

)〉

+h
(
x0
)−h

( n∑

j=1
βj
(
x0
)
yj

)

≥C −
n∑

j=1
βj
(
x0
)〈
As0,η

(
yj ,x0

)〉
+h
(
x0
)−

n∑

j=1
βj
(
x0
)
h
(
yj
)

=
n∑

j=1
βj
(
x0
)[− 〈As0,η

(
yj ,x0

)〉
+h
(
x0
)−h

(
yj
)]

=−
n∑

j=1
βj
(
x0
)[〈

As0,η
(
yj ,x0

)〉
+h
(
yj
)−h

(
x0
)]≥C\{0} 0,

(2.9)

which leads to a contradiction. Therefore, there exist x∗ ∈ K and s∗ ∈ Tx∗ such that

〈
As∗,η

(
y,x∗

)〉
+h(y)−h

(
x∗
) �≤C\{0} 0, ∀y ∈ K. (2.10)

This completes the proof. �

Theorem 2.3. Let K be a nonempty, closed, and convex subset of a real reflexive Banach
space X with 0 ∈ K and let Y be a real Banach space ordered by a nonempty convex cone
C with apex at the origin and intC �= ∅. Let h : K → Y and A : L(X ,Y)→ L(X ,Y) be two
mappings such that h is convex, and let η : K ×K → X be such that (a) η(x,z) = η(x, y) +
η(y,z), for all x, y,z ∈ K , and (b) η(·, y) : K → X is affine for each y ∈ K . Suppose that
for a given multifunction T : K → 2L(X ,Y), there exists some r > 0 such that the following
conditions hold:

(i) for every y ∈ K ∩Br , the set {x ∈ K ∩Br : 〈As,η(y,x)〉+h(y)−h(x)≤C\{0} 0, for all
s∈ Tx} is weakly open in K , where Br = {x ∈ X : ‖x‖ ≤ r};

(ii) 〈At,η(y,0)〉+h(y)−h(0)≥C\{0} 0, for all t ∈ Ty, y ∈ K with ‖y‖ = r.
Then problem GSVVLI has a solution.

Proof. First, observe that condition (a) implies that for each x, y ∈ K ,

η(x,x)= 0, η(x, y) +η(y,x)= 0. (2.11)
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Moreover, according to Theorem 2.2 there exist xr ∈ K ∩Br and sr ∈ Txr such that
〈
Asr ,η

(
y,xr

)〉
+h(y)−h

(
xr
) �≤C\{0} 0, ∀y ∈ K ∩Br. (2.12)

Putting y = 0 in the above inequality, one has
〈
Asr ,η

(
0,xr

)〉
+h(0)−h

(
xr
) �≤C\{0} 0, (2.13)

which implies that
〈
Asr ,η

(
xr ,0

)〉
+h
(
xr
)−h(0) �≥C\{0} 0. (2.14)

Combining condition (ii) with (2.14), we know that ‖xr‖ < r. For any z ∈ K , choose
λ∈ (0,1) enough small such that (1− λ)xr + λz ∈ K ∩Br .

Putting y = (1− λ)xr + λz in (2.12), one has
〈
Asr ,η

(
(1− λ)xr + λz,xr

)〉
+h
(
(1− λ)xr + λz

)−h
(
xr
) �≤C\{0} 0. (2.15)

Since h is convex and η(·,·) is affine in the first variable, we have
〈
Asr ,η

(
(1− λ)xr + λz,xr

)〉
+h
(
(1− λ)xr + λz

)−h
(
xr
)

≤C (1− λ)
〈
Asr ,η

(
xr ,xr

)〉
+ λ
〈
Asr ,η

(
z,xr

)〉
+ (1− λ)h

(
xr
)
+ λh(z)−h

(
xr
)

= λ
[〈
Asr ,η

(
z,xr

)〉
+h(z)−h

(
xr
)]
.

(2.16)

Now we claim that
〈
Asr ,η

(
z,xr

)〉
+h(z)−h

(
xr
) �≤C\{0} 0, ∀z ∈ K. (2.17)

Indeed, suppose to the contrary that
〈
Asr ,η

(
z0,xr

)〉
+h
(
z0
)−h

(
xr
)≤C\{0} 0 (2.18)

for some z0 ∈ K . Since −(C \ {0}) is a convex cone, we have
λ
[〈
Asr ,η

(
z0,xr

)〉
+h
(
z0
)−h

(
xr
)]∈−(C \ {0}). (2.19)

Observe that
〈
Asr ,η

(
(1− λ)xr + λz0,xr

)〉
+h
(
(1− λ)xr + λz0

)−h
(
xr
)

= 〈Asr ,η
(
(1− λ)xr + λz0,xr

)〉
+h
(
(1− λ)xr + λz0

)−h
(
xr
)

− λ
[〈
Asr ,η

(
z0,xr

)〉
+h
(
z0
)−h

(
xr
)]
+ λ
[〈
Asr ,η

(
z0,xr

)〉
+h
(
z0
)−h

(
xr
)]

∈−C− (C \ {0})=−(C \ {0}),
(2.20)

which implies that
〈
Asr ,η

(
(1− λ)xr + λz0,xr

)〉
+h
(
(1− λ)xr + λz0

)−h
(
xr
)≤C\{0} 0. (2.21)

This contradicts (2.15). Therefore, (2.17) holds, that is, xr is a solution of problem
GSVVLI. This completes the proof. �
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3. Solvability of theGSVVLI with pseudomonotonicity

In this section, we will prove the solvability of the GSVVLI with pseudomonotonicity
assumption by using Fan’s lemma [16] and Nadler’s theorem [15]. First we give some
concepts and lemmas.

Let D be a nonempty subset of a topological vector space E. A multivalued map G :
D→ 2E is called a KKM-map if for each finite subset {x1,x2, . . . ,xn} ⊆D,

co
{
x1,x2, . . . ,xn

}⊆
n⋃

i=1
G
(
xi
)
, (3.1)

where co{x1,x2, . . . ,xn} denotes the convex hull of {x1,x2, . . . ,xn}.
Lemma 3.1 (Fan’s lemma [16]). Let D be an arbitrary nonempty subset of a Hausdorff
topological vector space E. Let the multivalued mapping G : D → 2E be a KKM-map such
that G(x) is closed for all x ∈D and is compact for at least one x ∈D. Then

⋂

x∈D
G(x) �= ∅. (3.2)

Lemma 3.2. Let K be a nonempty closed convex subset of a real Banach space X and let Y
be a real Banach space ordered by a pointed closed convex cone C with its apex at the origin
and intC �= ∅. Let h : K → Y be convex, and let A : L(X ,Y)→ L(X ,Y) be continuous. Let
η : K ×K → X be such that (a) η(x,x) = 0, for all x ∈ K , and (b) η(·, y) : K → X is affine
for each y ∈ K . Let T : K → 2L(X ,Y) be a nonempty compact-valued multifunction which is
H-uniformly continuous and η-pseudomonotone with respect toA and h. Then the following
are equivalent:

(i) there exist x∗ ∈ K and s∗ ∈ Tx∗ such that

〈
As∗,η

(
y,x∗

)〉
+h(y)−h

(
x∗
) �≤C\{0} 0, ∀y ∈ K ; (3.3)

(ii) there exists x∗ ∈ K such that

〈
At,η

(
y,x∗

)〉
+h(y)−h

(
x∗
)≥C 0, ∀y ∈ K , t ∈ Ty. (3.4)

Proof. Suppose that there exist x∗ ∈ K and s∗ ∈ Tx∗ such that

〈
As∗,η

(
y,x∗

)〉
+h(y)−h

(
x∗
) �≤C\{0} 0, ∀y ∈ K. (3.5)

Since T is η-pseudomonotone with respect to A and h,

〈
At,η

(
y,x∗

)〉
+h(y)−h

(
x∗
)≥C 0, ∀y ∈ K , t ∈ Ty. (3.6)

Conversely, suppose that there exists x∗ ∈ K such that

〈
At,η

(
y,x∗

)〉
+h(y)−h

(
x∗
)≥C 0, ∀y ∈ K , t ∈ Ty. (3.7)
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For any given y ∈ K , we know that yλ = λy + (1− λ)x∗ ∈ K , for all λ ∈ (0,1) since K is
convex. Replacing y by yλ in the above inequality, one derives for each tλ ∈ Tyλ,

0≤C
〈
Atλ,η

(
yλ,x∗

)〉
+h
(
yλ
)−h

(
x∗
)

= 〈Atλ,η
(
λy + (1− λ)x∗,x∗

)〉
+h
(
λy + (1− λ)x∗

)−h
(
x∗
)

≤C λ
〈
Atλ,η

(
y,x∗

)〉
+ (1− λ)

〈
Atλ,η

(
x∗,x∗

)〉

+ λh(y) + (1− λ)h
(
x∗
)−h

(
x∗
)

= λ
[〈
Atλ,η

(
y,x∗

)〉
+h(y)−h

(
x∗
)]
.

(3.8)

Hence, we have

〈
Atλ,η

(
y,x∗

)〉
+h(y)−h

(
x∗
)≥C 0, ∀tλ ∈ Tyλ, λ∈ (0,1). (3.9)

Since Tyλ and Tx∗ are compact, from Lemma 1.6 it follows that for each fixed tλ ∈ Tyλ
there exists an sλ ∈ Tx∗ such that

∥
∥tλ− sλ

∥
∥≤H

(
Tyλ,Tx∗

)
. (3.10)

Since Tx∗ is compact, without loss of generality, we may assume that sλ → s∗ ∈ Tx∗ as
λ→ 0+. Since T isH-uniformly continuous and ‖yλ− x∗‖ = λ‖y− x∗‖→ 0 as λ→ 0+, so
H(Tyλ,Tx∗)→ 0 as λ→ 0+. Thus one has

∥
∥tλ− s∗

∥
∥≤ ∥∥tλ− sλ

∥
∥+

∥
∥sλ− s∗

∥
∥≤H

(
Tyλ,Tx∗

)
+
∥
∥sλ− s∗

∥
∥−→ 0 as λ−→ 0+.

(3.11)

Note that A is continuous. Therefore, letting λ→ 0+, we obtain

∥
∥〈Atλ,η

(
y,x∗

)〉− 〈As∗,η(y,x∗)〉∥∥= ∥∥〈Atλ−As∗,η
(
y,x∗

)〉∥∥

≤ ∥∥Atλ−As∗
∥
∥
∥
∥η
(
y,x∗

)∥∥−→ 0.
(3.12)

Also from (3.9) we deduce that 〈Atλ,η(y,x∗)〉+ h(y)− h(x∗)∈ C. Since C is closed, we
have that 〈As∗,η(y,x∗)〉+h(y)−h(x∗)∈ C, and hence

〈
As∗,η

(
y,x∗

)〉
+h(y)−h

(
x∗
) �≤C\{0} 0. (3.13)

Next, we claim that there holds

〈
As∗,η

(
z,x∗

)〉
+h(z)−h

(
x∗
) �≤C\{0} 0, ∀z ∈ K. (3.14)

Indeed, let z be an arbitrary element in K and set zλ = λz+ (1− λ)x∗ for each λ∈ (0,1).
Then one has ‖yλ− zλ‖ = λ‖y− z‖→ 0 as λ→ 0+. Hence from theH-uniform continuity
of T it follows that H(Tyλ,Tzλ)→ 0 as λ→ 0+. Let {tλ}λ∈(0,1) be the net chosen as above
such that tλ → s∗ as λ→ 0+. Since Tyλ and Tzλ are compact, from Lemma 1.6 it follows
that for each fixed tλ ∈ Tyλ there exists an rλ ∈ Tzλ such that

∥
∥tλ− rλ

∥
∥≤H

(
Tyλ,Tzλ

)
. (3.15)
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Consequently, one has

∥
∥rλ− s∗

∥
∥≤ ∥∥tλ− rλ

∥
∥+

∥
∥tλ− s∗

∥
∥≤H

(
Tyλ,Tzλ

)
+
∥
∥tλ− s∗

∥
∥−→ 0 as λ−→ 0+.

(3.16)

Note that A is continuous. Thus letting λ→ 0+, we obtain
∥
∥〈Arλ,η

(
z,x∗

)〉− 〈As∗,η(z,x∗)〉∥∥= ∥∥〈Arλ−As∗,η
(
z,x∗

)〉∥∥

≤ ∥∥Arλ−As∗
∥
∥
∥
∥η
(
z,x∗

)∥∥−→ 0.
(3.17)

Replacing y, yλ, and tλ in (3.9) by z, zλ, and rλ, respectively, one deduces that

〈
Arλ,η

(
z,x∗

)〉
+h(z)−h

(
x∗
)≥C 0, ∀λ∈ (0,1), (3.18)

which hence implies that 〈Arλ,η(z,x∗)〉+ h(z)− h(x∗) ∈ C. Since C is closed, one has
that 〈As∗,η(z,x∗)〉+h(z)−h(x∗)∈ C, and hence

〈
As∗,η

(
z,x∗

)〉
+h(z)−h

(
x∗
) �≤C\{0} 0. (3.19)

Therefore, according to the arbitrariness of z the assertion is valid. This completes the
proof. �

Theorem 3.3. Let K be a nonempty, bounded, closed, and convex subset of a real reflexive
Banach space X and let Y be a real Banach space ordered by a pointed closed convex cone C
with its apex at the origin and intC �= ∅. Let h : K → Y be convex and continuous from the
weak topology of X to the strong topology of Y , and let A : L(X ,Y)→ L(X ,Y) be continuous.
Let η : K ×K → X be such that (a) η(x,z) = η(x, y) + η(y,z), for all x, y,z ∈ K , and (b)
for each y ∈ K , η(·, y) : K → X is affine and continuous from the weak topology of X to
the strong topology of X . Let T : K → 2L(X ,Y) be a nonempty compact-valued multifunction
which is H-uniformly continuous and η-pseudomonotone with respect to A and h. Then the
GSVVLI has a solution.

Proof. We define two multivalued maps F,G : K → 2K as follows:

F(y)= {x ∈ K :
〈
As,η(y,x)

〉
+h(y)−h(x) �≤C\{0} 0 for some s∈ Tx

}
, ∀y ∈ K ,

G(y)= {x ∈ K :
〈
At,η(y,x)

〉
+h(y)−h(x)≥C 0, ∀t ∈ Ty

}
, ∀y ∈ K.

(3.20)

Obviously, both F(y) and G(y) are nonempty since y ∈ F(y)∩G(y) for all y ∈ K . We
claim that F is a KKMmapping. If this is false, then there exist a finite set {y1, y2, . . . , yn} ⊆
K and αi ≥ 0, i= 1,2, . . . ,n, with

∑n
i=1αi = 1 such that

y =
n∑

i=1
αiyi �∈

n⋃

i=1
F
(
yi
)
. (3.21)

Hence for any t ∈ Ty one has

〈
At,η

(
yi, y

)〉
+h
(
yi
)−h(y)≤C\{0} 0, i= 1,2, . . . ,n. (3.22)
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Since η(·,·) is affine in the first variable and h is convex, it follows that

0= 〈At,η(y, y)〉+h(y)−h(y)=−
〈

At,η

( n∑

i=1
αi yi, y

)〉

+h(y)−h

( n∑

i=1
αiyi

)

≥C −
n∑

i=1
αi
〈
At,η

(
yi, y

)〉
+h(y)−

n∑

i=1
αih
(
yi
)

=−
n∑

i=1
αi
[〈
At,η

(
yi, y

)〉
+h
(
yi
)−h(y)

]≥C\{0} 0,

(3.23)

which leads to a contradiction. So F is a KKM mapping. Furthermore, it is clear that
F(y)⊆G(y) for every y ∈ K since T is η-pseudomonotone with respect toA and h. Thus,
G is also a KKM mapping. Now we claim that G(y)⊆ K is weakly closed for each y ∈ K .
Indeed, suppose {xn} ⊆G(y) is a sequence such that xn converges weakly to x ∈ K . Then
we derive for each t ∈ Ty,

−[〈At,η(xn, y
)〉

+h
(
xn
)−h(y)

]= 〈At,η(y,xn
)〉

+h(y)−h
(
xn
)≥C 0, ∀n. (3.24)

Since A : L(X ,Y)→ L(X ,Y) is continuous, let h : K → Y be convex and continuous from
the weak topology of X to the strong topology of Y , and for each y ∈ K , η(·, y) : K → X
is continuous from the weak topology of X to the strong topology of X , hence we have

−[〈At,η(xn, y
)〉

+h
(
xn
)−h(y)

]−→−[〈At,η(x, y)〉+h(x)−h(y)
]

as n−→∞.
(3.25)

Also, since C is closed,

−[〈At,η(x, y)〉+h(x)−h(y)
]∈ C. (3.26)

Thus we get

〈
At,η(y,x)

〉
+h(y)−h(x)≥C 0, ∀t ∈ Ty, (3.27)

and so x ∈G(y). This shows thatG(y) is weakly closed for each y ∈ K . SinceX is reflexive
and K ⊆ X is nonempty, bounded, closed, and convex, K is a weakly compact subset of
X and so G(y) is also weakly compact. According to Lemma 3.1,

⋂

y∈K
G(y) �= ∅. (3.28)

This implies that there exists x∗ ∈ K such that

〈
At,η

(
y,x∗

)〉
+h(y)−h

(
x∗
)≥C 0, ∀y ∈ K , t ∈ Ty. (3.29)

Therefore, by Lemma 3.2 we know that the GSVVLI has a solution. �

Theorem 3.4. LetK be a nonempty, unbounded, closed, and convex subset of a real reflexive
Banach spaceX with 0∈ K and let Y be a real Banach space ordered by a pointed closed con-
vex coneC with its apex at the origin and intC �= ∅. Let h : K → Y be convex and continuous
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from the weak topology of X to the strong topology of Y , and let A : L(X ,Y)→ L(X ,Y) be
continuous. Let η : K ×K → X be such that (a) η(x,z)= η(x, y) +η(y,z), for all x, y,z ∈ K ,
and (b) for each y ∈ K , η(·, y) : K → X is affine and continuous from the weak topology of
X to the strong topology of X . Let T : K → 2L(X ,Y) be a nonempty compact-valued multifunc-
tion which is H-uniformly continuous and η-pseudomonotone with respect to A and h. If
there exists some r > 0 such that

〈
At,η(y,0)

〉
+h(y)−h(0)≥C\{0} 0, ∀t ∈ Ty, y ∈ K with ‖y‖ = r, (3.30)

then the GSVVLI is solvable.

Proof. According to Theorem 3.3 there exist xr ∈ K ∩Br and sr ∈ Txr such that

〈
Asr ,η

(
y,xr

)〉
+h(y)−h

(
xr
) �≤C\{0} 0, ∀y ∈ K ∩Br. (3.31)

Since the remainder of the proof is similar to that of Theorem 2.3, we omit it. This com-
pletes the proof. �
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