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1. Introduction

The following Carleman’s inequality and Hardy’s inequality are well known.

Theorem 1.1 (see [1, Theorem 334]). Let an ≥ 0(n∈N) and 0 <
∑∞

n=1an < +∞ , then

∞∑

n=1

(
a1 a2 ···an

)1/n
< e

∞∑

n=1
an. (1.1)

Theorem 1.2 (see [1, Theorem 349]). Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1λm, an ≥ 0(n ∈ N)
and 0 <

∑∞
n=1λnan < +∞, then

∞∑

n=1
λn+1

(
aλ11 a

λ2
2 ···aλnn

)1/Λn < e
∞∑

n=1
λnan. (1.2)

In [2–16], some refined work on Carleman’s inequality and Hardy’s inequality had
been gained. It is observing that in [3] the authors obtained the following inequalities

(

1+
1
n

)n(

1+
1

n+1/5

)1/2
< e <

(

1+
1
n

)n(

1+
1

n+1/6

)1/2
. (1.3)
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From the inequality above, [3, 4] extended Theorems A and B to the following new re-
sults.

Theorem 1.3 (see [3, Theorem 1]). Let an ≥ 0(n∈N) and 0 <
∑∞

n=1an < +∞, then

∞∑

n=1

(
a1a2 ··· an

)1/n
< e

∞∑

n=1

(

1+
1

n+1/5

)−1/2
an. (1.4)

Theorem 1.4 (see [4, Theorem]). Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1λn, an ≥ 0 (n ∈ N) and
0 <

∑∞
n=1λnan < +∞, then

∞∑

n=1
λn+1

(
aλ11 a

λ2
2 ···aλnn

)1/Λn < e
∞∑

n=1
λn

(

1+
1

Λn/λn +1/5

)−1/2
an. (1.5)

In this note, Carleman’s inequality and Hardy’s inequality are strengthened as follows.

Theorem 1.5. Let an ≥ 0 (n∈N), 0 <
∑∞

n=1an < +∞, and c ≥√6/4. Then
∞∑

n=1

(
a1a2 ··· an

)1/n
< e

∞∑

n=1

(

1− λn
2cn+4c/3+1/2

)c
an. (1.6)

Theorem 1.6. Let c ≥ √6/4, 0 < λn+1 ≤ λn, Λn =
∑n

m=1λm, an ≥ 0 (n ∈ N), and
0 <

∑∞
n=1λnan < +∞. Then

∞∑

n=1
λn+1

(
aλ11 aλ22 ··· aλnn

)1/Λn < e
∞∑

n=1

(

1− λn
2cΛn + (4c/3+1/2)λn

)c
λn an. (1.7)

In order to prove two theorems mentioned above, we need introduce several lemmas
first.

2. Lemmas

Lemma 2.1. Let x > 0 and c ≥√6/4. Then inequality

(

1+
1
x

)x(

1+
1

2cx+4c/3− 1/2

)c
< e (2.1)

or
(

1+
1
x

)x
< e
(

1− 1
2cx+4c/3+1/2

)c
(2.2)

holds. Furthermore, 4c/3− 1/2 is the best constant in inequality (2.1) or 4c/3 + 1/2 is the
best constant in inequality (2.2).

Proof. (i) We construct a function as

f (x)= x ln
(

1+
1
x

)

+ c ln
(

1+
1

2cx+ b

)

− 1, (2.3)
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where x ∈ (0,+∞) and b = 4c/3− 1/2. It is obvious that the existence of Lemma 2.1 can
be ensured when proving f (x) < 0. We simply compute

f ′(x)= ln
(

1+
1
x

)

− 1
x+1

+2c2
(

1
2cx+ b+1

− 1
2cx+ b

)

,

f ′′(x)=− 1
x(x+1)

+
1

(x+1)2
+ 4c3

(
1

(2cx+ b)2
− 1

(2cx+ b+1)2

)

=− 1

x(x+1)2
+

4c3(4cx+2b+1)

(2cx+ b)2(2cx+ b+1)2

=− p(x)

x(x+1)2(2cx+ b)2(2cx+ b+1)2
,

(2.4)

where p(x)= (24b2c2 + 24bc2 + 4c2− 16c4− 16bc3− 8c3)x2 + (8b3c+4b2c+4bc− 8bc3−
4c3)x+ b2(b+1)2. Since x ∈ (0,+∞), b = 4c/3− 1/2, and c ≥√6/4, we have

24b2c2 + 24bc2 + 4c2− 16c4− 16bc3− 8c3 ≥ 0,

8b3c+4b2c+4bc− 8bc3− 4c3 > 0,

b2(b+1)2 > 0.

(2.5)

From the above analysis, we easily get that f ′′(x) < 0 and f ′(x) is decreasing on (0,+∞).
Meanwhile f ′(x) > limx→+∞ f ′(x)= 0 for x ∈ (0,+∞). Thus, f (x) is increasing on (0,+∞),
and f (x) < lim x→+∞ f (x)= 0 for x ∈ (0,+∞).

(ii) The inequality (2.2) is equivalent to

e1/c

e1/c− (1+1/x)x/c
− 2cx <

4
3
c+

1
2
, x > 0. (2.6)

Let g(t)= (1+ t)1/(ct) and t > 0. Then

g′
(
0+
)= lim

t→0+

(1+ t)1/(ct)

c

[
1

t(1+ t)
− log(1+ t)

t2

]

=−e1/c

2c
,

g′′
(
0+
)= lim

t→0+

(1+ t)1/(ct)

c2

[
1

t(1+ t)
− log(1+ t)

t2

]2

+ lim
t→0+

(1+ t)1/(ct)
[− 3t2− 2t+2

(
1+ t2

)
log(1+ t)

]

ct3(1+ t)2

=
(

1
4c2

+
2
3c

)

e1/c.

(2.7)

Using Taylor’s formula, we have

g(t)= e1/c− e1/c

2c
t+

1
2

(
1
4c2

+
2
3c

)

e1/ct2 + o
(
t2
)
. (2.8)
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When letting x = 1/t and using (2.8) we find that

lim
x→+∞

[
e1/c

e1/c− (1+1/x)x/c
− 2cx

]

= lim
t→0+

te1/c− 2c
[
e1/c− (1+ t)1/(ct)

]

t
[
e1/c− (1+ t)1/(ct)

]

= lim
t→0+

(
1/(4c) + 2/3

)
e1/ct2 + o

(
t2
)

e1/ct2/(2c) + o
(
t2
)

= 4
3
c+

1
2
.

(2.9)

Therefore, 4c/3+1/2 is the best constant in (2.2). �

Lemma 2.2. The inequality

(

1+
1

n+1/5

)1/2
<
(

1+
2

3n+1

)3/4
(2.10)

holds for every positive integer n.

Proof. Let

h(x)= 1
2
ln
(

1+
1

x+1/5

)

− 3
4
ln
(

1+
2

3x+1

)

(2.11)

for x ∈ [1,+∞), then

h′(x)= x/5− 7/25
2(x+6/5)(x+1/5)(x+1)(3x+1)

. (2.12)

Thus, h(x) is decreasing on [1,7/5). Since for h(1) < 0, we have h(x) < 0 on [1,7/5). At
the same time, h(x) is increasing on [7/5,+∞), and we have h(x) < limx→+∞h(x)= 0 on
[7/5,+∞). Hence h(x) < 0 on [1,+∞). By the definition of h(x), it turns out that the
inequality (2.10) is accrate.

In the same way we can prove the following result. �

Lemma 2.3. The inequality

(

1+
2

3n+1

)3/4
<
(

1+
1

(5/4)n+1/3

)5/8
(2.13)

holds for every positive integer n.

Combining Lemmas 2.1, 2.2, and 2.3 gives

Lemma 2.4. The inequality

(

1+
1
n

)n(

1+
1

n+1/5

)1/2
<
(

1+
1
n

)n(

1+
2

3n+1

)3/4
<
(

1+
1
n

)n(

1+
1

(5/4)n+1/3

)5/8
< e

(2.14)

holds for every positive integer n.
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3. Proof of Theorem 1.5

By the virtue of the proof of article [3], we can testify Theorem 1.5. Assume that cn > 0
for n∈N . Then applying the arithmetic-geometric average inequality, we have

∞∑

n=1

(
a1a2 ··· an

)1/n =
∞∑

n=1

(
c1c2 ··· cn

)−1/n(
c1a1c2a2 ··· cnan

)1/n

≤
∞∑

n=1

(
c1c2 ··· cn

)−1/n 1
n

n∑

m=1
cmam

=
∞∑

m=1
cmam

∞∑

n=m

1
n

(
c1c2 ··· cn

)−1/n
.

(3.1)

Setting cm = (m+1)m/mm−1, we have c1c2 ··· cn = (n+1)n and

∞∑

n=1

(
a1a2 ··· an

)1/n ≤
∞∑

m=1
cmam

∞∑

n=m

1
n(n+1)

=
∞∑

m=1

1
m
cmam

=
∞∑

m=1

(

1+
1
m

)m
am.

(3.2)

By (3.2) and (2.2), we obtain

∞∑

n=1

(
a1a2 ··· an

)1/n
< e

∞∑

n=1

(

1− 1
2cn+4c/3+1/2

)c
an. (3.3)

Thus, Theorem 1.5 is proved.

4. Proof of Theorem 1.6

Now, processing the proof of Theorem 1.6. Assume that cn > 0 for n ∈ N . Using the
arithmetic-geometric average inequality we obtain

∞∑

n=1
λn+1

(
aλ11 a

λ2
2 ··· aλnn

)1/Λn =
∞∑

n=1

λn+1
(
cλ11 c

λ2
2 ··· cλnn

)1/Λn

[(
c1a1

)λ1(c2a2
)λ2 ··· (cnan

)λn
]1/Λn

≤
∞∑

n=1

λn+1
(
cλ11 c

λ2
2 ··· cλnn

)1/Λn

1
Λn

n∑

m=1
λmcmam

=
∞∑

m=1
λmcmam

∞∑

n=m

λn+1

Λn
(
cλ11 c

λ2
2 ··· cλnn

)1/Λn
.

(4.1)
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Choosing cn = (1+ λn+1/Λn)
Λn/λnΛn, we get that

∞∑

n=1
λn+1

(
aλ11 a

λ2
2 ··· aλnn

)1/Λn ≤
∞∑

m=1

(

1+
λm+1

Λm

)Λm/λm

λmam

≤
∞∑

m=1

(

1+
1

Λm/λm

)Λm/λm

λmam

< e
∞∑

m=1

(

1− 1
2c
(
Λm/λm

)
+4c/3+1/2

)c
λmam

= e
∞∑

m=1

(

1− λm
2cΛm + (4c/3+1/2)λm

)c
λmam,

(4.2)

from (4.1) and (2.2).
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