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1. Introduction

Recently, in 1997, Phillips [1] used the q-integers in approximation theory where it is con-
sidered q-based generalization of classical Bernstein polynomials. It was obtained by re-
placing the binomial expansion with the general one, the q-binomial expansion. Phillips
has obtained the rate of convergence and Voronovskaja-type asymptotic formulae for
these new Bernstein operators based on q-integers. Later, some results are established in
due course by Phillips et al. (see [2, 3, 1]). In [4], Barbasu gave Stancu-type generaliza-
tion of these operators and II‘inskii and Ostrovska [5] studied their different convergence
properties. Also some results on the statistical and ordinary approximation of functions
by Meyer-König and Zeller operators based on q-integers can be found in [6, 7], respec-
tively.

In [8], Bleimann, Butzer, and Hahn introduced the following operators:

Bn( f )(x)= 1
(1+ x)n

n∑

k=0
f
(

k

n− k+1

) (
n
k

)
xk, x > 0, n∈N. (1.1)
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There are several studies related to approximation properties of Bleimann, Butzer, and
Hahn operators (or, briefly, BBH). There are many approximating operators that their
Korovkin-type approximation properties and rates of convergence are investigated. The
results involving Korovkin-type approximation properties can be found in [9] with de-
tails. In [10], Gadjiev and Çakar gave a Korovkin-type theorem using the test function
(t/(1+ t))ν for ν = 0,1,2. Some generalization of the operators (1.1) were given in [11–
13].

In this paper, we derive a q-integers-type modification of BBH operators that we call
q-BBH operators and investigate their Korovkin-type approximation properties by using
the test function (t/(1+ t))ν for ν= 0,1,2. Also, we define a space of generalized Lipschitz-
type maximal function and give a pointwise estimation. Then, a Stancu-type formula of
the remainder of q-BBH is given. We will also give a generalization of these new oper-
ators and study the approximation properties of this generalization. We emphasis that
while Bernstein and Meyer-König and Zeller operators based on q-integers depend on a
function defined on a bounded interval, these new operators are defined on unbounded
intervals. Also, these new operators are more flexible than classical BBH operators. That
is, depending on the selection of q, rate of convergence of the q-BBH operators is better
than the classical one.

2. Construction of the operators

We first start by recalling some definitions about q-integers denoted by [·].
For any fixed real number q > 0 and nonnegative integer r, the q-integer of the number

r is defined by

[r]=

⎧
⎪⎪⎨
⎪⎪⎩

1− qr

1− q
, q �=1,

r, q = 1.
(2.1)

Also we have [0]= 0.
The q-factorial is defined in the following:

[r]!=
⎧
⎪⎨
⎪⎩

[r][r− 1]···[1], r = 1,2, . . . ,

1, r = 0,
(2.2)

and q-binomial coefficient is defined as

[
n
r

]
= [n]!

[r]![n− r]!
(2.3)

for integers n≥ r ≥ 0.
Also, let us recall the following Euler identity (see [14, page 293]):

n−1∏

k=0

(
1+ qkx

)=
n∑

k=0
qk(k−1)/2

[
n
k

]
xk. (2.4)
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It is clear that when q = 1, these q-binomial coefficients reduce to ordinary binomial
coefficients.

According to these explanations, similarly in [6], we define a new Bleimann-, Butzer-,
and Hahn-type operators based on q-integers as follows:

Ln( f ;x)= 1
�n(x)

n∑

k=0
f
(

[k]
[n− k+1]qk

)
qk(k−1)/2

[
n
k

]
xk, (2.5)

where

�n(x)=
n−1∏
s=0

(
1+ qsx

)
(2.6)

and f is defined on semiaxis [0,∞).
Note that taking f ([k]/[n− k+1]) instead of f ([k]/[n− k +1]qk) in (2.5), we obtain

usual generalization of Bleimann, Butzer, and Hahn operators based on q-integers. But in
this case, it is impossible to obtain explicit expressions for the monomials tν and (t/(1 +
t))ν for ν= 1,2. If we define the Bleimann-, Butzer-, and Hahn-type operators as in (2.5),
then we can obtain explicit formulas for the monomials (t/(1+ t))ν for ν= 0,1,2.

By a simple calculation, we have

qk[n− k+1]= [n+1]− [k], q[k− 1]= [k]− 1. (2.7)

From (2.4), (2.5), and (2.7), we have

Ln(1;x)= 1, (2.8)

Ln

(
t

1+ t
;x
)
= 1

�n(x)

n∑

k=1

[k]
[n+1]

qk(k−1)/2
[
n
k

]
xk

= 1
�n(x)

n∑

k=1

[n]
[n+1]

qk(k−1)/2
[
n− 1
k− 1

]
xk

= [n]
[n+1]

x
1

�n(x)

n−1∑

k=0
qk(k−1)/2

[
n− 1
k

]
(qx)k

= x

x+1
[n]

[n+1]
.

(2.9)

We can also write

Ln

(
t2

(1+ t)2
;x
)
= 1

�n(x)

n∑

k=1

[k]2

[n+1]2
qk(k−1)/2

[
n
k

]
xk

= 1
�n(x)

n∑

k=2

q[k][k− 1]

[n+1]2
qk(k−1)/2

[
n
k

]
xk

+
1

�n(x)

n∑

k=1

[k]

[n+1]2
qk(k−1)/2

[
n
k

]
xk
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= 1
�n(x)

n−2∑

k=0

[n][n− 1]

[n+1]2
qk(k−1)/2

[
n− 2
k

]
(
q2x
)k
q2x2

+
1

�n(x)

n−1∑

k=0

[n]

[n+1]2
qk(k−1)/2

[
n− 1
k

]
(qx)kx

= [n][n− 1]

[n+1]2
q2

x2

(1+ x)(1+ qx)
+

[n]

[n+1]2
x

x+1
.

(2.10)

Remark 2.1. Note that if we choose q = 1, then Ln operators turn out into classical
Bleimann, Butzer, and Hahn operators given by (1.1). Also similarly as in [1, 6], to ensure
that the convergence properties of Ln, we will assume q = qn as a sequence such that qn→1
as n→∞ for 0 < qn < 1.

3. Properties of the operators

In this section, we will give the theorems on uniform convergence and rate of convergence
of the operators (2.5). As in [10], for this purpose we give a space of function ω of the
type of modulus of continuity which satisfies the following conditions:

(a) ω is a nonnegative increasing function on [0,∞),
(b) ω(δ1 + δ2)≤ ω(δ1) +ω(δ2),
(c) limδ→0ω(δ)= 0,

and Hω is the subspace of real-valued function and satisfies the following condition.
For any x, y ∈ [0,∞),

∣∣ f (x)− f (y)
∣∣≤ ω

(∣∣∣∣
x

1+ x
− y

1+ y

∣∣∣∣
)
. (3.1)

Also Hω ⊂ CB[0,∞), where CB[0,∞) is the space of functions f which is continuous and
bounded on [0,∞) endowed with norm ‖ f ‖CB

= supx≥0| f (x)|.
It is easy to show that from condition (b), the function ω satisfies the inequality

ω(nδ)≤ nω(δ), n∈N, (3.2)

and from condition (a) for λ > 0, we have

ω(λδ)≤ ω
((
1+ [|λ|])δ)≤ (1+ λ)ω(δ), (3.3)

where [|λ|] is the greatest integer of λ.
Remark 3.1. The operator Ln maps Hω into CB[0,∞) and it is continuous with respect to
supnorm.

The properties of linear positive operators acting from Hω to CB[0,∞) and Korovkin-
type theorems for them have been studied by Gadjiev and Çakar who have established
the following theorem (see [10]).
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Theorem 3.2. If An is the sequence of positive linear operators acting from Hω to CB[0,∞)
and satisfying the following condition for υ= 0,1,2:

∥∥∥∥
(
An

(
t

1+ t

)υ)
(x)−

(
x

1+ x

)υ∥∥∥∥
CB

−→ 0, for n−→∞, (3.4)

then, for any function f in Hω, one has

∥∥An f − f
∥∥
CB
−→ 0, for n−→∞. (3.5)

Theorem 3.3. Let q = qn satisfies 0 < qn < 1 and let qn→1 as n→∞. If Ln is defined by (2.5),
then for any f ∈Hω,

lim
n→∞

∥∥Ln f − f
∥∥
CB
= 0. (3.6)

Proof. Using Theorem 3.2, we see that it is sufficient to verify the following three condi-
tions:

lim
n→∞

∥∥∥∥Ln
((

t

1+ t

)υ
;x
)
−
(

x

1+ x

)υ∥∥∥∥
CB

= 0, υ = 0,1,2. (3.7)

From (2.8), the first condition of (3.7) is fulfilled for υ= 0.Now it is easy to see that from
(2.9),

∥∥∥∥Ln
((

t

1+ t

)
;x
)
− x

1+ x

∥∥∥∥
CB

≤
∣∣∣∣

[n]
[n+1]

− 1
∣∣∣∣≤

∣∣∣∣
1
qn
− 1
qn[n+1]

− 1
∣∣∣∣, (3.8)

and since [n+1]→∞, qn→1 as n→∞, condition (3.7) holds for υ= 1.
To verify this condition for υ = 2, consider (2.10). We see that

∥∥∥∥Ln
((

t

1+ t

)2
;x
)
−
(

x

1+ x

)2∥∥∥∥
CB

= sup
x≥0

(
x2

(1+ x)2

(
[n][n− 1]

[n+1]2
q2n

1+ x

1+ qnx
− 1

)
+

[n]

[n+1]2
x

1+ x

)
.

(3.9)

A small calculation shows that

[n][n− 1]

[n+1]2
= 1

q3n

(
1− 2+ qn

[n+1]
+

1+ qn
[n+1]2

)
. (3.10)

Thus we have

∥∥∥∥Ln
((

t

1+ t

)2
;x
)
−
(

x

1+ x

)2∥∥∥∥
CB

≤ 1
q2n

(
1− q2n−

2
[n+1]

+
1

[n+1]2

)
. (3.11)

This means that condition (3.7) holds also for υ = 2 and the proof is completed by the
Theorem 3.2. �
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Theorem 3.4. Let q = qn satisfies 0 < qn < 1 and let qn→1 as n→∞. If Ln is defined by (2.5),
then for each x ≥ 0 and for any f ∈Hω, the following inequality:

∣∣Ln( f ;x)− f (x)
∣∣≤ 2ω

(√
μn(x)

)
(3.12)

holds, where

μn(x)=
(

x

1+ x

)2(
1− 2

[n]
[n+1]

+
[n][n− 1]

[n+1]2
q2n

(1+ x)(
1+ qnx

)
)
+

[n]

[n+1]2
x

1+ x
. (3.13)

Proof. Since Ln(1;x)= 1, we can write

∣∣Ln( f ;x)− f (x)
∣∣≤ Ln

(∣∣ f (t)− f (x)
∣∣;x
)
. (3.14)

On the other hand, from (3.1) and (3.3),

∣∣ f (t)− f (x)
∣∣≤ ω

(∣∣∣∣
t

1+ t
− x

1+ x

∣∣∣∣
)
≤
(
1+

∣∣t/(1+ t)− x/(1+ x)
∣∣

δ

)
ω(δ), (3.15)

where we choose λ= δ−1|t/(1+ t)− x/(1+ x)|. This inequality and (3.14) imply that

∣∣Ln( f ;x)− f (x)
∣∣≤ ω(δ)

(
1+

1
δ
Ln

(∣∣∣∣
t

1+ t
− x

1+ x

∣∣∣∣;x
))

. (3.16)

According to the Cauchy-Schwarz inequality, we have

∣∣Ln( f ;x)− f (x)
∣∣≤ ω(δ)

(
1+

1
δ
Ln

(∣∣∣∣
t

1+ t
− x

1+ x

∣∣∣∣
2

;x
)1/2)

. (3.17)

By choosing δ = μn(x)= Ln(|t/(1+ t)− x/(1+ x)|2;x), we obtain desired result. �

Remark 3.5. Using (3.13) and taking into consideration [n− 1]qn +1= [n] and [n+1]−
[n]= qn < 1, then we have that

sup
x≥0

μn(x)≤ 1− 2
[n]

[n+1]
+

[n]

[n+1]2
(
[n− 1]qn +1

)=
(
[n+1]− [n]

[n+1]

)2
≤ 1

[n+1]2

(3.18)

holds for n large enough. Thus, if the assumptions of Theorem 3.4 hold, then, depending
on the selection of qn, the rate of convergence of the operators (2.5) to f is 1/[n+1]2 that
is better than 1/(n+1)2, which is the rate of convergence of the BBH operators. Indeed,
if we take qn = 1− 1/(n + 2), since limn→∞qnn = e−1, the rate of convergence of q-BBH
operators to f is exactly of order (1− qn)

2 = 1/(n+2)2 that is better than 1/(n+1)2.



A. Aral and O. Doğru 7

Now we will give an estimate concerning the rate of convergence as given in [13, 15,
16]. We define the space of general Lipschitz-type maximal functions on E ⊂ [0,∞) by
W∼

α,E as

W∼
α,E =

{
f : sup(1+ x)α fα(x, y)≤M

1
(1+ y)a

, x ≥ 0, y ∈ E
}
, (3.19)

where f is bounded and continuous on [0,∞),M is a positive constant, 0 < α≤ 1, and fα
is the following function:

fα(x, t)=
∣∣ f (t)− f (x)

∣∣

|x− t|α . (3.20)

Also, let d(x,E) be the distance between x and E, that is,

d(x,E)= inf
{|x− y|; y ∈ E

}
. (3.21)

Theorem 3.6. If Ln is defined by (2.5), then for all f ∈W∼
α,E we have

∣∣Ln( f ;x)− f (x)
∣∣≤M

(
μα/2n (x) + 2

(
d(x,E)

)α)
, (3.22)

where μn(x) defined in (3.13).

Proof. Let E denote the closure of the set E. Then there exists an x0 ∈ E such that
|x− x0| = d(x,E), where x ∈ [0,∞). Thus, we can write

∣∣ f − f (x)
∣∣≤ ∣∣ f − f

(
x0
)∣∣+

∣∣ f
(
x0
)− f (x)

∣∣. (3.23)

Since Ln is a positive and linear operator and f ∈W∼
α,E by using above inequality, then we

have

∣∣Ln( f ;x)− f (x)
∣∣≤ Ln

(∣∣ f − f
(
x0
)∣∣;x

)
+
∣∣ f
(
x0
)− f (x)

∣∣

≤MLn

(∣∣∣∣
t

1+ t
− x0
1+ x0

∣∣∣∣
α

;x
)
+M

∣∣x− x0
∣∣α

(1+ x)α
(
1+ x0

)α .
(3.24)

If we use the classical inequality (a+ b)α ≤ aα + bα for a≥ 0,b ≥ 0, one can write

∣∣∣∣
t

1+ t
− x0
1+ x0

∣∣∣∣
α

≤
∣∣∣∣

t

1+ t
− x

1+ x

∣∣∣∣
α

+
∣∣∣∣

x

1+ x
− x0
1+ x0

∣∣∣∣
α

(3.25)

for 0 < α≤ 1 and t ∈ [0,∞). Consequently, we obtain

Ln

(∣∣∣∣
t

1+ t
− x0
1+ x0

∣∣∣∣
α

;x
)
≤ Ln

(∣∣∣∣
t

1+ t
− x

1+ x

∣∣∣∣
α

;x
)
+

∣∣x− x0
∣∣α

(1+ x)α
(
1+ x0

)α . (3.26)
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Since Ln(1;x)= 1, applying Hölder inequality with p = 2/α and q = 2/(2−α), we have

Ln

(∣∣∣∣
t

1+ t
− x0
1+ x0

∣∣∣∣
α

;x
)
≤ Ln

((
t

1+ t
− x

1+ x

)2
;x
)α/2

+

∣∣x− x0
∣∣α

(1+ x)α
(
1+ x0

)α . (3.27)

Thus, in view of (3.24), we get (3.22). �

As a particular case of Theorem 3.6, when E = [0,∞), the following is true.

Corollary 3.7. If f ∈W∼
α,[0,∞), then one has

∣∣Ln( f ;x)− f (x)
∣∣≤Mμα/2n (x), (3.28)

where μn(x) is defined in (3.13).

In the following theorem, a Stancu-type formula for the remainder of q-BBH opera-
tors is obtained which reduce to the formula of remainder of classical BBH operators (see
[17, page 151]). Similar formula is obtained for q-Szasz Mirakyan operators in [18].

Here, [x0,x1, . . . ,xn; f ] denotes the divided difference of the function f with respect to
distinct points in the domain of f and can be expressed as the following formula:

[
x0,x1, . . . ,xn; f

]=
[
x1, . . . ,xn; f

]− [x0, . . . ,xn−1; f
]

xn− x0
. (3.29)

Theorem 3.8. If x ∈ (0,∞) \ {[k]/[n− k+1]qk | k = 0,1,2, . . . ,n}, then the following iden-
tity holds:

Ln( f ;x)− f
(
x

q

)
=− xn+1

�n(x)

[
x

q
,
[n]
qn

; f
]

+
x

�n(x)

n−1∑

k=0

[
x

q
,

[k]
[n− k+1]qk

,
[k+1]

[n− k]qk+1
; f
]
qk(k+1)/2−2

[n− k]

[
n+1
k

]
xk.

(3.30)

Proof. By using (2.5), we have

Ln( f ;x)− f
(
x

q

)
= 1

�n(x)

n∑

k=0

[
f
(

[k]
[n− k+1]qk

)
− f

(
x

q

)]
qk(k−1)/2

[
n
k

]
xk

=− 1
�n(x)

n∑

k=0

(
x

q
− [k]
[n− k+1]qk

)[
x

q
,

[k]
[n− k+1]qk

; f
]
qk(k−1)/2

[
n
k

]
xk.

(3.31)

Since

[k]
[n− k+1]

[
n
k

]
=
[

n
k− 1

]
, (3.32)
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then we have

Ln( f ;x)− f
(
x

q

)
=− 1

�n(x)

n∑

k=0

[
x

q
,

[k]
[n− k+1]qk

; f
]
q k(k−1)/2−1

[
n
k

]
xk+1

+
1

�n(x)

n∑

k=1

[
x

q
,

[k]
[n− k+1]qk

; f
]
q k(k−1)/2−k

[
n

k− 1

]
xk.

(3.33)

Rearranging the above equality, we can write

Ln( f ;x)− f
(
x

q

)

=− xn+1

�n(x)

[
x

q
,
[n]
qn

; f
]
q n(n−1)/2−1

+
1

�n(x)

n−1∑

k=0

([
x

q
,

[k+1]
[n− k]qk+1

; f
]
−
[
x

q
,

[k]
[n− k+1]qk

; f
])

q k(k−1)/2−1
[
n
k

]
xk+1.

(3.34)

Using the equality

[k+1]
[n− k]qk+1

− [k]
[n− k+1]qk

= [n+1]
[n− k][n− k+1]qk+1

, (3.35)

we have the following formula for divided differences:

[
x

q
,

[k]
[n− k+1]qk

,
[k+1]

[n− k]qk+1
; f
]

[n+1]
[n− k][n− k+1]qk+1

=
[
x

q
,

[k+1]
[n− k]qk+1

; f
]
−
[
x

q
,

[k]
[n− k+1]qk

; f
]
,

(3.36)

and therefore, we obtain that the remainder formula for q-BBH can be written as (3.30).
�

We know that a function is convex on an interval if and only if all second-order di-
vided differences of f are nonnegative. From this property and Theorem 3.8, we have the
following result.

Corollary 3.9. If f is convex and nonincreasing, then

f
(
x

q

)
≤ Ln( f ;x) (n= 0,1, . . .). (3.37)

4. Some generalization of Ln

In this section, similarly as in [13], we will define some generalization of the operators
Ln.



10 Journal of Inequalities and Applications

We consider a sequence of linear positive operators as follows:

L
γ
n( f ;x)= 1

�n(x)

n∑

k=0
f
(
[k] + γ

bn,k

)
qk(k−1)/2

[
n
k

]
xk (γ ∈R), (4.1)

where bn,k satisfies the following condition:

[k] + bn,k = cn,
[n]
cn
−→ 1, for n−→∞. (4.2)

It is easy to check that if bn,k = [n− k + 1]qk + β for any n,k and 0 < q < 1, then cn =
[n + 1] + β and these operators turn out into Stancu-type generalization of Bleimann,
Butzer, and Hahn operators based on q-integers (see [19]). If we choose γ = 0 and q = 1,
then the operators become the special case of Balázs-type generalization of the operators
(1.1), which is given in [13].

Theorem 4.1. Let q = qn satisfies 0 < qn ≤ 1 and let qn→1 as n→∞. If f ∈W∼
α,[0,∞), then

the following inequality:

∥∥Lγn( f ;x)− f (x)
∥∥
CB

≤ 3Mmax

{(
[n]
cn + γ

)α( γ

[n]

)α
,
∣∣∣∣1−

[n+1]
cn + γ

∣∣∣∣
α( [n]

[n+1]

)α
,1− 2

[n]
[n+1]

+
[n][n− 1]

[n+1]2
qn

}

(4.3)

holds for a large n.

Proof. Using (2.5) and (4.1), we have

∣∣Lγn( f ;x)− f (x)
∣∣≤ 1

�n(x)

n∑

k=0

∣∣∣∣ f
(
[k] + γ

bn,k

)
− f

(
[k]

γ+ bn,k

)∣∣∣∣qk(k−1)/2n

[
n
k

]
xk

+
1

�n(x)

n∑

k=0

∣∣∣∣ f
(

[k]
γ+ bn,k

)
− f

(
[k]

[n− k+1]qkn

)∣∣∣∣qk(k−1)/2n

[
n
k

]
xk

+
∣∣Ln( f ;x)− f (x)

∣∣.
(4.4)

Since f ∈W∼
α,[0,∞) and by using Corollary 3.7 , we can write

∣∣Lγn( f ;x)− f (x)
∣∣≤ M

�n(x)

n∑

k=0

∣∣∣∣
[k] + γ

[k] + γ+ bn,k
− [k]
γ+ [k] + bn,k

∣∣∣∣
α

qk(k−1)/2n

[
n
k

]
xk

+
M

�n(x)

n∑

k=0

∣∣∣∣
[k]

[k] + γ+ bn,k
− [k]
[n+1]

∣∣∣∣
α

qk(k−1)/2n

[
n
k

]
xk +μα/2n (x)
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≤
(

[n]
cn + γ

)α( γ

[n]

)α
+
∣∣∣∣1−

[n+1]
cn + γ

∣∣∣∣
α

× 1
�n(x)

n∑

k=0

(
[k]

[n+1]

)α
qk(k−1)/2n

[
n
k

]
xk +μα/2n (x).

(4.5)

Using the Hölder inequality for p = 1/α, q = 1/(1−α), and (2.9), we obtain

∣∣Lγn( f ;x)− f (x)
∣∣≤M

(
[n]
cn + γ

)α( γ

[n]

)α
+M

∣∣∣∣1−
[n+1]
cn + γ

∣∣∣∣
α( x

x+1
[n]

[n+1]

)α
+μα/2n (x).

(4.6)

Thus, inequality (4.3) holds for x ∈ [0,∞). �
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Timişoara, vol. 34, no. 2, pp. 173–180, 1996.
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ics/Ouvrages de Mathématiques de la SMC, 14, Springer, New York, NY, USA, 2003.

[15] O. Agratini, “Note on a class of operators on infinite interval,” Demonstratio Mathematica,
vol. 32, no. 4, pp. 789–794, 1999.
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