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1. Introduction

Throughout the paper,R denotes the set of real numbers andR+ denotes the set of strictly
positive real numbers. Let n≥ 2, n∈N, x = (x1,x2, . . . ,xn)∈Rn

+, and x1/r = (x1/r1 ,x1/r2 , . . . ,
x1/rn ), where r ∈R, r �=0; let En−1 ⊂Rn−1 be the simplex

En−1 =
{(

u1, . . . ,un−1
)
: ui > 0(1≤ i≤ n− 1),

n−1∑
i=1

ui ≤ 1

}
, (1.1)

and let dμ= du1, . . . ,dun−1 be the differential of the volume in En−1.
The weighted arithmetic mean A(x,u) and the power mean Mr(x,u) of order r with

respect to the numbers x1,x2, . . . ,xn and the positive weights u1,u2, . . . ,un with
∑n

i=1ui = 1

are defined, respectively, as A(x,u) =∑n
i=1uixi, Mr(x,u) = (

∑n
i=1uix

r
i )

1/r
for r �=0, and

M0(x,u)=
∏n

i=1x
ui
i . For u=(1/n,1/n, . . . ,1/n), we denoteA(x,u)

Δ=A(x),Mr(x,u)
Δ=Mr(x).

The well-known logarithmic mean L(x1,x2) of two positive numbers x1 and x2 is

L
(
x1,x2

)=
⎧⎪⎨
⎪⎩

x1− x2
ln x1− ln x2

, x1 �=x2,
x1, x1 = x2.

(1.2)



2 Journal of Inequalities and Applications

As further generalization of L(x1,x2), Stolarsky [1] studied the one-parameter mean, that
is,

Lr
(
x1,x2

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xr+11 − xr+12

(r +1)
(
x1− x2

)
)1/r

, r �=− 1,0, x1 �=x2,

x1− x2
ln x1− ln x2

, r =−1, x1 �=x2,

1
e

(
xx11
xx22

)1/(x1−x2)
, r = 0, x1 �=x2,

x1, x1 = x2.

(1.3)

Alzer [2, 3] obtained another form of one-parameter mean, that is,

Fr
(
x1,x2

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r

r +1
·x

r+1
1 − xr+12

xr1− xr2
, r �=− 1,0, x1 �=x2,

x1x2· ln x1− ln x2
x1− x2

, r =−1, x1 �=x2,

x1− x2
ln x1− ln x2

, r = 0, x1 �=x2,
x1, x1 = x2.

(1.4)

These two means can be written also as

Lr
(
x1,x2

)=
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∫ 1

0

(
x1u+ x2(1−u)

)r
du
)1/r

, r �=0,

exp
(∫ 1

0
ln
(
x1u+ x2(1−u)

)
du
)
, r = 0,

Fr
(
x1,x2

)=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1

0

(
xr1u+ xr2(1−u)

)1/r
du, r �=0,

∫ 1

0
xu1x

1−u
2 du, r = 0.

(1.5)

Correspondingly, Pittenger [4] and Pearce et al. [5] investigated the means above in n
variables, respectively,

Lr(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(n− 1)!

∫
En−1

(
A(x,u)

)r
dμ
)1/r

, r �=0,

exp
(
(n− 1)!

∫
En−1

lnA(x,u)dμ
)
, r = 0,

Fr(x)= (n− 1)!
∫
En−1

Mr(x,u)dμ,

(1.6)

where un = 1−∑n−1
i=1 ui.
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Expressions (1.3) and (1.4) can be also written by using 2-order determinants, that is,

Lr
(
x1,x2

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 1
r +1

·
∣∣∣∣∣∣
1 xr+12

1 xr+11

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 x2

1 x1

∣∣∣∣∣∣
⎞
⎠
1/r

, r �=− 1,0, x1 �=x2,
∣∣∣∣∣∣
1 x2

1 x1

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 ln x2

1 ln x1

∣∣∣∣∣∣ , r =−1, x1 �=x2,

exp

⎧⎨
⎩
⎛
⎝
∣∣∣∣∣∣
1 x2 ln x2

1 x1 ln x1

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 x2

1 x1

∣∣∣∣∣∣
⎞
⎠− 1

⎫⎬
⎭ , r = 0, x1 �=x2,

x1, x1 = x2,

Fr
(
x1,x2

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝r
∣∣∣∣∣∣
1 xr+12

1 xr+11

∣∣∣∣∣∣
⎞
⎠
/⎛
⎝(r +1)

∣∣∣∣∣∣
1 xr2
1 xr1

∣∣∣∣∣∣
⎞
⎠ , r �=− 1,0, x1 �=x2,

x1x2

∣∣∣∣∣∣
1 ln x2

1 ln x1

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 x2

1 x1

∣∣∣∣∣∣ , r =−1, x1 �=x2,
∣∣∣∣∣∣
1 x2

1 x1

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 ln x2

1 ln x1

∣∣∣∣∣∣ , r = 0, x1 �=x2,

x1, x1 = x2.

(1.7)

Utilizing higher-order generalized Vandermonde determinants, Xiao et al. [8, 7, 6, 9] gave
the analogous definitions of Lr(x) and Fr(x).

Obviously, Lr(x) and Fr(x) are symmetric with respect to x1,x2, . . . ,xn, r �→ Lr(x) and
r �→ Fr(x) are continuous for any x ∈Rn

+.
In [4, 5, 10, 11], the authors studied the Schur-convexities of Lr(x1,x2) and Fr(x1,x2).

In this paper, we establish the Schur-convexities of two types of one-parameter mean
values Lr(x) and Fr(x) for several positive numbers. As applications, Schur-convexities of
some well-known functions involving the complete elementary symmetric functions are
obtained.

2. Some definitions and lemmas

The Schur-convex function was introduced by Schur [12] in 1923, and has many impor-
tant applications in analytic inequalities. The following definitions can be found in many
references such as [12–17].

Definition 2.1. For u = (u1,u2, . . . ,un), v = (v1,v2, . . . ,vn) ∈ Rn, without loss of general-
ity, it is assumed that u1 ≥ u2 ≥ ··· ≥ un and v1 ≥ v2 ≥ ··· ≥ vn. Then u is said to be
majorized by v (in symbols u≺ v) if

∑ k
i=1ui ≤

∑ k
i=1vi for k = 1,2, . . . ,n− 1 and

∑n
i=1ui =∑n

i=1vi.

Definition 2.2. Let Ω ⊂ Rn. A function ϕ : Ω �→ R is said to be a Schur-convex (Schur-
concave) function if u≺ v implies ϕ(u)≤ (≥ )ϕ(v).
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Every Schur-convex function is a symmetric function [18]. But it is not hard to see that
not every symmetric function can be a Schur-convex function [15, page 258]. However,
we have the following so-called Schur condition.

Lemma 2.3 [12, page 57]. Suppose that Ω⊂Rn is symmetric with respect to permutations
and convexset, and has a nonempty interior set Ω0. Let ϕ :Ω �→ R be continuous on Ω and
continuously differentiable inΩ0. Then, ϕ is a Schur-convex (Schur-concave) function if and
only if it is symmetric and if

(
u1−u2

)( ∂ϕ

∂u1
− ∂ϕ

∂u2

)
≥ (≤ )0 (2.1)

holds for any u= (u1,u2, . . . ,un)∈Ω0.

Lemma 2.4. Let m≥ 1,n≥ 2, m, n∈N, Λ⊂Rm, Ω⊂Rn, φ : Λ×Ω �→R, φ(v,x) be con-
tinuous with respect to v ∈Λ for any x ∈Ω. Let Δ be a set of all v ∈Λ such that the function
x �→ φ(v,x) is a Schur-convex (Schur-concave) function. Then Δ is a closed set of Λ.

Proof. Let l ≥ 1, l ∈ N, vl ∈ Δ, v0 ∈ Λ, vl→v0 if l→ +∞. According to Definition 2.2,
φ(vl,y)≥ (≤ )φ(vl,z) holds for any y,z∈Ω and y � z. Let l→+∞, then we have φ(v0,y)≥
(≤ )φ(v0,z). Hence v0 ∈ Δ, so Δ is a closed set of Λ. �

3. Main results

Theorem 3.1. Given r ∈R, Lr(x) is Schur-convex if r ≥ 1 and Schur-concave if r ≤ 1.

Proof. Denote ũ= (u2,u1,u3, . . . ,un).
If r �=0, owing to the symmetry of Lr(x) with respect to x1,x2, . . . ,xn, we have

gr(x)�
∫
En−1

(
A(x,u)

)r
dμ=

∫
En−1

(
A
(
x, ũ

))r
dμ. (3.1)

Therefore,

∂gr
∂x1

= r
∫
En−1

u1
(
A(x,u)

)r−1
dμ= r

∫
En−1

u2
(
A
(
x, ũ

))r−1
dμ,

∂gr
∂x2

= r
∫
En−1

u1
(
A
(
x, ũ

))r−1
dμ= r

∫
En−1

u2
(
A(x,u)

)r−1
dμ.

(3.2)

It follows that

∂gr
∂x1

− ∂gr
∂x2

= r
∫
En−1

u1
[(
A(x,u)

)r−1− (A(x, ũ))r−1]dμ,
∂gr
∂x1

− ∂gr
∂x2

= r
∫
En−1

u2
[(
A
(
x, ũ

))r−1− (A(x,u))r−1]dμ.
(3.3)

By combining (3.3) with (3.2), we have

∂gr
∂x1

− ∂gr
∂x2

= r

2

∫
En−1

(
u1−u2

)[(
A(x,u)

)r−1− (A(x, ũ))r−1]dμ. (3.4)
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By Lagrange’s mean value theorem, we find that

(
A(x,u)

)r−1− (A(x, ũ))r−1 = (r− 1)
(
x1u1 + x2u2− x2u1− x1u2

)(
ξ +

n∑
i=3

uixi

)r−2

= (r− 1)
(
u1−u2

)(
x1− x2

)(
ξ +

n∑
i=3

uixi

)r−2
,

(3.5)

where ξ is between x1u1 + x2u2 and x2u1 + x1u2.
From (3.4) and (3.5), we have

(
x1− x2

)( ∂gr
∂x1

− ∂gr
∂x2

)
= r(r− 1)

2

(
x1− x2

)2
Sr(x), (3.6)

where

Sr(x)=
∫
En−1

(
u1−u2

)2(
ξ +

n∑
i=3

uixi

)r−2
dμ≥ 0. (3.7)

Hence, for r �=0, we get

(
x1− x2

)(∂Lr
∂x1

− ∂Lr
∂x2

)
= (n− 1)!·1

r
·(Lr)1−r·(x1− x2

)( ∂gr
∂x1

− ∂gr
∂x2

)

= (n− 1)!· r− 1
2
·(Lr)1−r·(x1− x2

)2
Sr(x).

(3.8)

From Lemma 2.3, it is clear that Lr is Schur-convex for r > 1 and Schur-concave for r < 1
and r �=0.

According to Lemma 2.4 and the continuity of r �→ Lr(x), let r→0,1−, or 1+ in Lr(x),
we know that L0(x) is a Schur-concave function, and L1(x) is both a Schur-concave func-
tion and a Schur-convex function. �

Theorem 3.2. Given r ∈R, Fr(x) is Schur-convex if r ≥ 1 and Schur-concave if r ≤ 1.

Proof. Denote ũ= (u2,u1,u3, . . . ,un). For r �=0,

Fr(x)= (n− 1)!
∫
En−1

Mr(x,u)dμ= (n− 1)!
∫
En−1

Mr
(
x, ũ

)
dμ, (3.9)

∂Fr
∂x1

= (n− 1)!
∫
En−1

xr−11 u1
(
Mr(x,u)

)1−r
dμ= (n− 1)!

∫
En−1

u1

[
Mr(x,u)

x1

]1−r
dμ,

(3.10)

∂Fr
∂x2

= (n− 1)!
∫
En−1

xr−12 u1
(
Mr
(
x, ũ

))1−r
dμ= (n− 1)!

∫
En−1

u1

[
Mr
(
x, ũ

)
x2

]1−r
dμ.

(3.11)
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Combination of (3.10) with (3.11) yields

∂Fr
∂x1

− ∂Fr
∂x2

= (n− 1)!
∫
En−1

u1

{[
Mr(x,u)

x1

]1−r
−
[
Mr
(
x, ũ

)
x2

]1−r}
dμ. (3.12)

By using the mean value theorem, we find

[
Mr(x,u)

x1

]1−r
−
[
Mr
(
x, ũ

)
x2

]1−r

=
(
u1 +

u2x
r
2 +

∑n
i=3 uix

r
i

xr1

)(1−r)/r
−
(
u1 +

u2x
r
1 +

∑n
i=3 uix

r
i

xr2

)(1−r)/r

= 1− r

r

(
u2x

r
2 +

∑n
i=3 uix

r
i

xr1
− u2x

r
1 +

∑n
i=3 uix

r
i

xr2

)(
u1 + θ1

)(1−2r)/r

= 1− r

r
·u2x

2r
2 + xr2

∑n
i=3 uix

r
i −u2x

2r
1 − xr1

∑n
i=3 uix

r
i

xr1x
r
2

·(u1 + θ1
)(1−2r)/r

= (1− r)
(
x2− x1

)(
u1 + θ1

)(1−2r)/r
T
(
x,u;θ2

)
,

(3.13)

where θ1 is between (u2xr2 +
∑n

i=3 uix
r
i )/x

r
1 and (u2x

r
1 +

∑n
i=3 uix

r
i )/x

r
2, θ2 is between x1 and

x2, and T(x,u;θ2)= (2u2θ
2r−1
2 + θr−12

∑n
i=3 uix

r
i )/x

r
1x

r
2 ≥ 0.

From (3.12) and (3.13), we have

(
x1− x2

)(∂Fr
∂x1

− ∂Fr
∂x2

)

= (r− 1)
(
x1− x2

)2
(n− 1)!

∫
En−1

u1
(
u1 + θ1

)(1−2r)/r
T
(
x,u;θ2

)
dμ.

(3.14)

It follows that Fr is Schur-convex for r > 1 and Schur-concave for r < 1 and r �=0 by
Lemma 2.3.

According to Lemma 2.4 and the continuity of r �→ Fr(x), let r→0,1−, or 1+ in Fr(x).
We know that F0(x) is a Schur-concave function, and F1(x) is both a Schur-concave func-
tion and a Schur-convex function. �

Theorem 3.3. Lr(x1/r) and Fr(x1/r) are Schur-concave functions if r ≥ 1, and Schur-convex
functions if r ≤ 1 and r �=0.
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Proof. We can easily obtain that

Lr
(
x1/r

)=
[
(n− 1)!

∫
En−1

M1/r(x,u)dμ

]1/r

= F1/r
1/r (x),

Fr
(
x1/r

)= (n− 1)!
∫
En−1

[
A(x,u)

]1/r
dμ = Lr1/r(x),

(3.15)

(
x1− x2

)(∂Lr(x1/r)
∂x1

− ∂Lr
(
x1/r

)
∂x2

)
= 1

r

(
x1− x2

)(∂F1/r(x)
∂x1

− ∂F1/r(x)
∂x2

)
·F(1−r)/r

1/r (x),

(
x1− x2

)(∂Fr(x1/r)
∂x1

− ∂Fr
(
x1/r

)
∂x2

)
= r

(
x1− x2

)(∂L1/r(x)
∂x1

− ∂L1/r(x)
∂x2

)
·Lr−11/r (x).

(3.16)

From Theorems 3.1 and 3.2, we know that both L1/r(x) and F1/r(x) are Schur-concave
functions if r≥1 and Schur-convex functions if 0<r≤1 or r < 0. According to Lemma 2.3
and (3.16), the required result of Theorem 3.3 is proved. �

4. Applications

As applications of the theorems above, we have the following corollaries.

Corollary 4.1 (See [19, Theorem 3.1] and [12, page 82]). For r ≥ 1, r ∈N, the complete
elementary symmetric function

Cr(x)=
∑

i1+i2+···+in=r,
i1,...,in≥0 are integers

xi11 x
i2
2 , . . . ,x

in
n (4.1)

is Schur-convex.

Proof. If r ≥ 1, r ∈N, then (see [20, page 164])

Cr(x)=
(
n− 1+ r

r

)
Lrr (x). (4.2)

By Theorem 3.1 and Lemma 2.3, it is easy to see that Lrr (x) is a Schur-convex function.
Therefore, Cr(x) is a Schur-convex function. �

Corollary 4.2. The complete symmetric function of the first degree:

Dr(x)=
∑

i1+i2+···+in=r,
i1,...,in≥0 are integers

(
xi11 x

i2
2 , . . . ,x

in
n

)1/r
(4.3)

(see [6, Theorem 5] and [9]), is Schur-concave for r ≥ 1, r ∈N.
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Proof. If r ≥ 1, r ∈N, then we have (see [6, Theorem 5])

Dr(x)=
(
n− 1+ r

r

)
F1/r (x). (4.4)

By considering Theorem 3.2, we prove the required result. �

Corollary 4.3. Let r �=0, x,y ∈ Rn
+, x

r � yr . Then Lr(x) ≤ Lr(y) and Fr(x) ≤ Fr(y) if
r ≥ 1. They are reversed if r ≤ 1 and r �=0.
Proof. Suppose r ≥ 1(r ≤ 1,r �=0). Lr(x1/r) is a Schur-concave (Schur-convex) function by
Theorem 3.3. Then

Lr
((
xr
)1/r)≤ (≥ )Lr

((
yr
)1/r)

, Lr(x)≤ (≥ )Lr(y). (4.5)

For Fr(x1/r), the proof is similar; we omit the details. �

Corollary 4.4. If r ≥ 1, then

A(x)≤ Lr(x)≤Mr(x),

A(x)≤ Fr(x)≤Mr(x).
(4.6)

Inequalities (4.6) are reversed if r ≤ 1.

Proof. If r ≥ 1, owing to Theorem 3.1 and

(
x1,x2, . . . ,xn

)� (A(x),A(x), . . . ,A(x))� A(x), (4.7)

we have

Lr(x)≥ Lr
(
A(x)

)=
(
(n− 1)!

∫
En−1

( n∑
i=1

A(x)ui

)r

dμ

)1/r

= A(x)

(
(n− 1)!

∫
En−1

( n∑
i=1

ui

)r

dμ

)1/r

= A(x).

(4.8)

Obviously, if r ≤ 1, r �=0, inequality (4.8) is reversed by Theorem 3.1. For r = 0, because
of the continuity of r �→ Lr(x), we have L0(x)≤A(x).

By the same way, we find that Fr(x)≥A(x) if r ≥ 1, and Fr(x)≤ A(x) if r ≤ 1. In addi-
tion,

xr = (xr1,xr2, . . . ,xrn)� (Mr
r (x),M

r
r (x), . . . ,M

r
r (x)

)
�
(
Mr(x),Mr(x), . . . ,Mr(x)

)r �
(
Mr(x)

)r
.

(4.9)
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If r ≥ 1, according to Corollary 4.3, we get

Lr(x)≤ Lr
(
Mr(x)

)=
(
(n− 1)!

∫
En−1

( n∑
i=1

Mr(x)ui

)r

dμ

)1/r

=Mr(x). (4.10)

If r ≤ 1, inequality (4.10) is obviously reversed by Corollary 4.3 again.
Similarly, we have Fr(x)≤Mr(x) if r ≥ 1, and Fr(x)≥Mr(x) if r ≤ 1. �

Acknowledgments

This work was supported by the NSF of Zhejiang Broadcast and TV University under
Grant no. XKT-07G19. The authors are grateful to the referees for their valuable sugges-
tions.

References

[1] K. B. Stolarsky, “Generalizations of the logarithmic mean,” Mathematics Magazine, vol. 48, pp.
87–92, 1975.
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