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1. Introduction

The theory of time scales was introduced by Hilger [1] in his Ph.D. thesis in 1988 in order
to unify continuous and discrete analysis. Recently, many authors have extended some
fundamental integral inequalities used in the theory of differential and integral equations
on time scales. For example, we refer the reader to the literatures [2–8] and the references
cited therein.

In this paper, we investigate some nonlinear integral inequalities on time scales, which
unify and extend some inequalities established by Pachpatte in [9]. The obtained inequal-
ities can be used as important tools in the study of certain properties of dynamic equa-
tions on time scales.

2. Preliminaries on time scales

We first briefly introduce the time scales calculus, which can be found in [4, 5].
In what follows,R denotes the set of real numbers, Z denotes the set of integers,N0 de-

notes the set of nonnegative integers, C denotes the set of complex numbers, and C(M,S)
denotes the class of all continuous functions defined on set M with range in the set S.
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We use the usual conventions that empty sums and products are taken to be 0 and 1
respectively.

A time scale T is an arbitrary nonempty closed subset of R. The forward jump operator
σ on T is defined by

σ(t) := inf {s∈ T : s > t} ∈ T ∀t ∈ T. (2.1)

In this definition we put inf∅= supT, where ∅ is the empty set. If σ(t) > t, then we say
that t is right-scattered. If σ(t) = t and t < supT, then we say that t is right-dense. The
backward jump operator, left-scattered and left-dense points are defined in a similar way.
The graininess μ : T→[0,∞) is defined by μ(t) := σ(t)− t. The set Tκ is derived from T as
follows: If T has a left–scattered maximumm, then Tκ = T−{m}; otherwise, Tκ = T.

Remark 2.1. Clearly, we see that σ(t)= t if T=R and σ(t)= t+1 if T= Z.
For f : T→R and t ≥ t0, t ∈ Tκ, we define f �(t) to be the number (provided it exists)

such that given any ε > 0, there is a neighborhood U of t with
∣
∣
[

f (σ(t))− f (s)
]− f �(t)

[

σ(t)− s
]∣
∣≤ ε

∣
∣σ(t)− s

∣
∣ ∀s∈U. (2.2)

We call f �(t) the delta derivative of f at t.

Remark 2.2. f � is the usual derivative f ′ if T = R and the usual forward difference Δ f
(defined by Δ f (t)= f (t+1)− f (t)) if T= Z.

We say that f : T→R is rd–continuous provided f is continuous at each right–dense
point ofT and has a finite left–sided limit at each left–dense point ofT. As usual, the set of
rd–continuous functions is denoted by Crd. A function F : T→R is called an antiderivative
of f : T→R provided F�(t)= f (t) holds for all t ∈ Tκ. In this case we define the Cauchy
integral of f by

∫ b

a
f (t)Δt = F(b)−F(a) for a,b ∈ T. (2.3)

We say that p : T→R is regressive provided 1+ μ(t)p(t) 	=0 for all t ∈ T. We denote by
� the set of all regressive and rd–continuous functions. We define the set of all positively
regressive functions by �+ = {p ∈� : 1 +μ(t)p(t) > 0 for all t∈ T }.

For h > 0, we define the cylinder transformation ξh : Ch→Zh by

ξh(z)=
1
h
Log(1+ zh), (2.4)

where Log is the principal logarithm function, and

Ch =
{

z ∈ C : z 	=− 1
h

}

, Zh=

{

z ∈ C :−π

h
< Im(z)≤ π

h

}

. (2.5)

For h= 0, we define ξ0(z)= z for all z ∈ C.
If p ∈�, then we define the exponential function by

ep(t,s)= exp
(∫ t

s
ξμ(τ)

(

p(τ)
)

Δτ
)

for s, t ∈ T. (2.6)
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Theorem 2.3. If p ∈� and fix t0 ∈ T, then the exponential function ep(·, t0) is for the
unique solution of the initial value problem

xΔ = p(t)x, x
(

t0
)= 1 onT. (2.7)

Theorem 2.4. If p ∈�, then
(i) ep(t, t)≡ 1 and e0(t,s)≡ 1;
(ii) ep(σ(t),s)= (1+μ(t)p(t))ep(t,s);
(iii) if p ∈�+, then ep(t, t0) > 0 for all t ∈ T.

Remark 2.5. Clearly, the exponential function is given by

ep(t,s)= e
∫ t
s p(τ)dτ , eα(t,s)= eα(t−s), eα(t,0)= eαt (2.8)

for s,t ∈R, where α∈R is a constant and p :R→R is a continuous function if T=R, and
the exponential function is given by

ep(t,s)=
t−1
∏

τ=s

[

1+ p(τ)
]

, eα(t,s)= (1+α)t−s, eα(t,0)= (1+α)t (2.9)

for s,t ∈ Z with s < t, where α	= − 1 is a constant and p : Z→R is a sequence satisfying
p(t) 	=− 1 for all t ∈ Z if T= Z.

Theorem 2.6. If p ∈� and a,b,c ∈ T, then

∫ b

a
p(t)ep

(

c,σ(t)
)

Δt = ep(c,a)− ep(c,b). (2.10)

Theorem 2.7. Let t0 ∈ Tκ and w : T×Tκ→R be continuous at (t, t), t ∈ Tκ with t > t0. As-
sume thatwΔ

1 (t,·)t is rd-continuous on [t0,σ(t)]. If for any ε > 0, there exists a neighborhood
Uof t, independent of τ ∈ [t0,σ(t)], such that

∣
∣
∣w
(

σ(t),τ
)−w(s,τ)−wΔ

1 (t,τ)
(

σ(t)− s
)
∣
∣
∣≤ ε

∣
∣σ(t)− s

∣
∣ ∀s∈U , (2.11)

where wΔ
1 denotes the derivative of w with respect to the first variable, then

υ(t) :=
∫ t

t0
w(t,τ)Δτ (2.12)

implies

υΔ(t)=
∫ t

t0
wΔ
1 (t,τ)Δτ +w

(

σ(t), t
)

. (2.13)

The following theorem, which can be found in [4, Theorem 6.1, p.253], is a founda-
tional result in dynamic inequalities.

Theorem 2.8 (Comparison theorem). Suppose u,b ∈ Crd, a∈�+. Then

uΔ(t)≤ a(t)u(t) + b(t), t ≥ t0, t ∈ Tκ (2.14)
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implies

u(t)≤ u
(

t0
)

ea
(

t, t0
)

+
∫ t

t0
ea
(

t,σ(τ)
)

b(τ)Δτ, t ≥ t0, t ∈ Tκ. (2.15)

3. Main results

In this section, we deal with integral inequalities on time scales. Throughout this section,
we always assume that p ≥ q > 0, p and q are real constants, and t ≥ t0, t0 ∈ Tκ.

The following lemma is useful in our main results.

Lemma 3.1. Let a≥ 0. Then

aq/p ≤
(

q

p
K (q−p)/pa+

p− q

p
Kq/p

)

for anyK > 0. (3.1)

Proof. If a= 0, then we easily see that the inequality (3.1) holds. Thus we only prove that
the inequality (3.1) holds in the case of a > 0.

Letting

f (K)= q

p
K (q−p)/pa+

p− q

p
Kq/p, K > 0, (3.2)

we have

f ′(K)= q(p− q)
p2

K (q−2p)/p(K − a). (3.3)

It is easy to see that

f ′(K)≥ 0, K > a,

f ′(K)= 0, K = a,

f ′(K)≤ 0, 0 < K < a.

(3.4)

Therefore,

f (K)≥ f (a)= aq/p. (3.5)

The proof of Lemma 3.1 is complete. �

Theorem 3.2. Assume that u,a,b,g,h∈ Crd, u(t), a(t), b(t), g(t), and h(t) are nonnegative.
Then

up(t)≤ a(t) + b(t)
∫ t

t0

[

g(τ)up(τ) +h(τ)uq(τ)
]

Δτ, t ∈ Tκ, (3.6)

implies

u(t)≤
{

a(t) + b(t)
∫ t

t0

[

a(τ)g(τ) +h(τ)
(
K(p− q) + qa(τ)

pK (p−q)/p

)]

× eF
(

t,σ(τ)
)

Δτ
}1/p

for anyK > 0, t ∈ Tκ,

(3.7)
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where

F(t)= b(t)
(

g(t) +
qh(t)

pK (p−q)/p

)

. (3.8)

Proof. Define a function z(t) by

z(t)=
∫ t

t0

[

g(τ)up(τ) +h(τ)uq(τ)
]

Δτ, t ∈ Tκ. (3.9)

Then z(t0)= 0 and (3.6) can be restated as

up(t)≤ a(t) + b(t)z(t), t ∈ Tκ. (3.10)

Using Lemma 3.1, from (3.10), for any K > 0, we easily obtain

uq(t)≤ (a(t) + b(t)z(t)
)q/p

≤ K(p− q) + qa(t)
pK (p−q)/p +

qb(t)z(t)

pK (p−q)/p .
(3.11)

Combining (3.9)–(3.11), we get

zΔ(t)= g(t)up(t) +h(t)uq(t)

≤ g(t)
[

a(t) + b(t)z(t)
]

+h(t)

(

K(p− q) + qa(t)
pK (p−q)/p +

qb(t)z(t)
pK (p−q)/p

)

=
[

a(t)g(t) +
K(p− q) + qa(t)

pK (p−q)/p h(t)

]

+F(t)z(t), t ∈ Tκ,

(3.12)

where F(t) is defined as in (3.8).
It is easy to see that F(t) ∈�+. Therefore, using Theorem 2.8 and noting z(t0) = 0,

from (3.12) we obtain

z(t)≤
∫ t

t0

[

a(τ)g(τ) +
K(p− q) + qa(τ)

pK (p−q)/p h(τ)

]

eF
(

t,σ(τ)
)

Δτ, t ∈ Tκ. (3.13)

Clearly, the desired inequality (3.7) follows from (3.10) and (3.13). This completes the
proof of Theorem 3.2. �

Corollary 3.3. Let T=R and assume that u(t),a(t),b(t),g(t),h(t)∈ C(R+,R+). Then the
inequality

up(t)≤ a(t) + b(t)
∫ t

0

[

g(s)up(s) +h(s)uq(s)
]

ds, t ∈R+, (3.14)
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implies

u(t)≤
{

a(t) + b(t)
∫ t

0

[

a(τ)g(τ) +h(τ)
(
K(p− q) + qa(τ)

pK (p−q)/p

)]

× exp
(∫ t

τ
F(s)ds

)

dτ

}1/p

for anyK > 0, t ∈R+,

(3.15)

where F(t) is defined as in Theorem 3.2.

Corollary 3.4. Let T= Z and assume that u(t), a(t), b(t), g(t), and h(t) are nonnegative
functions defined for t ∈N0. Then the inequality

up(t)≤ a(t) + b(t)
t−1
∑

s=0

[

g(s)up(s) +h(s)uq(s)
]

, t ∈N0, (3.16)

implies

u(t)≤
{

a(t) + b(t)
t−1
∑

τ=0

[

a(τ)g(τ) +h(τ)
(
K(p− q) + qa(τ)

pK (p−q)/p

)]

×
t−1
∏

s=τ+1

(

1+F(s)
)

}1/p

for anyK > 0, t ∈N0,

(3.17)

where F(t) is defined as in Theorem 3.2.

Remark 3.5. Letting p > 1, K = q = 1 in Corollaries 3.3 and 3.4, we easily obtain Theorem
1(a1) and Theorem 3(c1) established by Pachpatte [9], respectively.

Corollary 3.6. Assume that u,h ∈ Crd, u(t) and h(t) are nonnegative. If β ≥ 0 is a real
constant, then

up(t)≤ β+
∫ t

t0
h(τ)uq(τ)Δτ, t ∈ Tκ, (3.18)

implies

u(t)≤
{

1
q

[

(K(p− q) + qβ)eF(t, t0)−K(p− q)
]

}1/p

for anyK > 0, t ∈ Tκ, (3.19)

where

F(t)= qh(t)
pK (p−q)/p . (3.20)
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Proof. Using Theorem 3.2, it follows from (3.18) that

u(t)≤
{

β+
∫ t

t0
h(τ)

K(p− q) + qβ

pK (p−q)/p eF(t,σ(τ))Δτ

}1/p

=
{

β+
(
K(p− q)

q
+β
)∫ t

t0
F(τ)eF(t,σ(τ))Δτ

}1/p

=
{

β+
(
K(p− q)

q
+β
)[

eF(t, t0)− eF(t, t)
]
}1/p

=
{

β+
(
K(p− q)

q
+β
)

eF(t, t0)−
K(p− q)

q
−β

}1/p

=
{

1
q

[

(K(p− q) + qβ)eF(t, t0)−K(p− q)
]

}1/p

for anyK > 0, t ∈ Tκ,

(3.21)

where the second equation holds because of Theorem 2.6, and the third equation holds
because of Theorem 2.4(i). This completes the proof. �

Theorem 3.7. Assume that u,a,b,g,hi ∈ Crd, u(t), a(t), b(t), g(t), and hi(t) are nonnega-
tive, and i = 1,2, . . . ,n. If there exists a sequence of positive real numbers q1,q2, . . . ,qn such
that p ≥ qi > 0, i= 1,2, . . . ,n, then

up(t)≤ a(t) + b(t)
∫ t

t0

[

g(τ)up(τ)
n
∑

i=1
hi(τ)uqi(τ)

]

Δτ, t ∈ Tκ, (3.22)

implies

u(t)≤
{

a(t) + b(t)
∫ t

t0

[

a(τ)g(τ) +
n
∑

i=1
hi(τ)

(
K(p− qi) + qia(τ)

pK (p−qi)/p

)]

× eF∗
(

t,σ(τ)
)

Δτ

}1/p

for any K > 0, t ∈ Tκ,

(3.23)

where

F∗(t)= b(t)

(

g(t) +
n
∑

i=1

qihi(t)
pK (p−qi)/p

)

. (3.24)

Proof. Define z(t) by

z(t)=
∫ t

t0

[

g(τ)up(τ) +
n
∑

i=1
hi(τ)uqi(τ)

]

Δτ, t ∈ Tκ. (3.25)
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Then z(t0)= 0, and as in the proof of Theorem 3.2, we have (3.10) and

uqi(t)≤ K(p− qi) + qia(t)
pK (p−qi)/p +

qib(t)z(t)
pK (p−qi)/p for anyK > 0, i= 1,2, . . . ,n. (3.26)

Therefore,

zΔ(t)= g(t)up(t) +
n
∑

i=1
hi(t)uqi(t)

≤ g(t)
[

a(t) + b(t)z(t)
]

+
n
∑

i=1
hi(t)

(
K
(

p− qi
)

+ qia(t)
pK (p−qi)/p +

qib(t)z(t)
pK (p−qi)/p

)

=
[

a(t)g(t) +
n
∑

i=1
hi(t)

(
K
(

p− qi
)

+ qia(t)
pK (p−qi)/p

)]

+F∗(t)z(t), t ∈ Tκ,

(3.27)

where F∗(t) is defined as in (3.24).
The remainder of the proof is similar to that of Theorem 3.2 and we omit it here. �

Theorem 3.8. Assume that u,a,b,g,h∈ Crd, u(t), a(t), b(t), g(t), and h(t) are nonnegative,
andw(t,s) is defined as in Theorem 2.7 such thatw(t,s)≥ 0 andwΔ

1 (t,s)≥ 0 for t,s∈ Twith
s≤ t. If for any ε > 0, there exists a neighborhood Uof t, independent of τ ∈ [t0,σ(t)], such
that for all s∈U ,

∣
∣
[

w
(

σ(t),τ
)−w(s,τ)−wΔ

1 (t,τ)(σ(t)− s)
][

g(τ)up(τ) +h(τ)uq(τ)
]∣
∣≤ ε

∣
∣σ(t)− s

∣
∣,
(3.28)

then

up(t)≤ a(t) + b(t)
∫ t

t0
w(t,τ)

[

g(τ)up(τ) +h(τ)uq(τ)
]

Δτ, t ∈ Tκ, (3.29)

implies

u(t)≤
{

a(t) + b(t)
∫ t

t0
eA(t,σ(τ))B(τ)Δτ

}1/p

for anyK > 0, t ∈ Tκ, (3.30)

where

A(t)=w
(

σ(t), t
)

b(t)

(

g(t) +
qh(t)

pK (p−q)/p

)

+
∫ t

t0
wΔ
1 (t,τ)b(τ)

(

g(τ) +
qh(τ)

pK (p−q)/p

)

Δτ,

B(t)=w(σ(t), t)

[

a(t)g(t) +h(t)

(

K(p− q) + qa(t)
pK (p−q)/p

)]

+
∫ t

t0
wΔ
1 (t,τ)

[

a(τ)g(τ) +h(τ)

(

K(p− q) + qa(τ)
pK (p−q)/p

)]

Δτ, t ∈ Tκ.

(3.31)
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Proof. Define a function z(t) by

z(t)=
∫ t

t0
k(t,τ)Δτ, t ∈ Tκ, (3.32)

where

k(t,τ)=w(t,τ)
[

g(τ)up(τ) +h(τ)uq(τ)
]

, t ∈ Tκ. (3.33)

Then z(t0)= 0. As in the proof of Theorem 3.2, we easily obtain (3.10) and (3.11).
It follows from (3.33) that

k(σ(t), t)=w(σ(t), t)
[

g(t)up(t) +h(t)uq(t)
]

, (3.34)

kΔ1 (t,τ)=wΔ
1 (t,τ)

[

g(τ)up(τ) +h(τ)uq(τ)
]

. (3.35)

Therefore, noting the condition (3.28), using Theorem 2.7, and combining (3.32)–(3.35),
(3.10), and (3.11), we have

zΔ(t)= k(σ(t), t) +
∫ t

t0
kΔ1 (t,τ)Δτ

=w(σ(t), t)
[

g(t)up(t) +h(t)uq(t)
]

+
∫ t

t0
wΔ
1 (t,τ)

[

g(τ)up(τ) +h(τ)uq(τ)
]

Δτ

≤w(σ(t), t)

[

a(t)g(t) +h(t)
(
K(p− q) + qa(t)

pK (p−q)/p

)

+ b(t)
(

g(t) +
qh(t)

pK (p−q)/p

)

z(t)

]

+
∫ t

t0
wΔ
1 (t,τ)

[

a(τ)g(τ) +h(τ)
(
K(p− q) + qa(τ)

pK (p−q)/p

)

+ b(τ)
(

g(τ) +
qh(τ)

pK (p−q)/p

)

z(τ)

]

Δτ

≤
[

w(σ(t), t)b(t)
(

g(t) +
qh(t)

pK (p−q)/p

)

+
∫ t

t0
wΔ
1 (t,τ)b(τ)

(

g(τ) +
qh(τ)

pK (p−q)/p

)

Δτ

]

z(t)

+w(σ(t), t)

[

a(t)g(t) +h(t)
(
K(p− q) + qa(t)

pK (p−q)/p

)]

+
∫ t

t0
wΔ
1 (t,τ)

[

a(τ)g(τ) +h(τ)
(
K(p− q) + qa(τ)

pK (p−q)/p

)]

Δτ

=A(t)z(t) +B(t), t ∈ Tκ.
(3.36)

Therefore, using Theorem 2.8 and noting z(t0)= 0, we get

z(t)≤
∫ t

t0
eA(t,σ(τ))B(τ)Δτ, t ∈ Tκ. (3.37)

It is easy to see that the desired inequality (3.30) follows from (3.10) and (3.37). The
proof of Theorem 3.8 is complete. �
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Corollary 3.9. Let T=R and assume that u(t),a(t),b(t),g(t),h(t)∈ C(R+,R+). If w(t,s)
and its partial derivative (∂/∂t) w(t,s) are real-valued nonnegative continuous functions for
t,s∈R+ with s≤ t, then the inequality

up(t)≤ a(t) + b(t)
∫ t

0
w(t,τ)

[

g(τ)up(τ) +h(τ)uq(τ)
]

dτ, t ∈R+, (3.38)

implies

u(t)≤
{

a(t) + b(t)
∫ t

0
exp

(∫ t

τ
A(s)ds

)

B(τ)dτ
}1/p

for anyK > 0, t ∈R+, (3.39)

where

A(t)=w(t, t)b(t)
(

g(t) +
qh(t)

pK (p−q)/p

)

+
∫ t

0

∂w(t,τ)
∂t

b(τ)
(

g(τ) +
qh(τ)

pK (p−q)/p

)

dτ,

B(t)=w(t, t)
[

a(t)g(t) +h(t)
(
K(p− q) + qa(t)

pK (p−q)/p

)]

+
∫ t

0

∂w(t,τ)
∂t

[

a(τ)g(τ) +h(τ)
(
K(p− q) + qa(τ)

pK (p−q)/p

)]

dτ, t ∈R+.

(3.40)

Corollary 3.10. LetT= Z and assume that u(t), a(t), b(t), g(t), and h(t) are nonnegative
functions defined for t ∈N0. Ifw(t,s)andΔ1w(t,s) are real-valued nonnegative functions for
t,s∈N0 with s≤ t, then the inequality

up(t)≤ a(t) + b(t)
t−1
∑

τ=0
w(t,τ)

[

g(τ)up(τ) +h(τ)uq(τ)
]

, t ∈N0, (3.41)

implies

u(t)≤
{

a(t) + b(t)
t−1
∑

τ=0
B̃(τ)

t−1
∏

s=τ+1

(

1+ Ã(s)
)
}1/p

for anyK > 0, t ∈N0, (3.42)

where Δ1w(t,s)=w(t+1,s)−w(t,s) for t,s∈N0 with s≤ t,

Ã(t)=w(t+1, t)b(t)
(

g(t) +
qh(t)

pK (p−q)/p

)

+
t−1
∑

τ=0
Δ1w(t,τ)b(τ)

(

g(τ) +
qh(τ)

pK (p−q)/p

)

,

B̃(t)=w(t+1, t)
[

a(t)g(t) +h(t)
(
K(p− q) + qa(t)

pK (p−q)/p

)]

+
t−1
∑

τ=0
Δ1w(t,τ)

[

a(τ)g(τ) +h(τ)
(
K(p− q) + qa(τ)

pK (p−q)/p

)]

, t ∈N0.

(3.43)

Remark 3.11. Let p > 1, K = q = 1. Then the inequality established in Corollary 3.9 re-
duces to the inequality established by Pachpatte in [9, Theorem 1(a3)], and the inequality
established in Corollary 3.10 reduces to the inequality in [9, Theorem 3(c3)].
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Corollary 3.12. Suppose that α ≥ 0 is a constant, u(t) and w(t,s) are defined as in
Theorem 3.8. If for any ε > 0, there exists a neighborhoodU of t, independent of τ∈[t0,σ(t)],
such that for all s∈U ,

∣
∣uq(τ)

[

w
(

σ(t),τ
)−w(s,τ)−wΔ

1 (t,τ)
(

σ(t)− s
)]∣
∣≤ ε

∣
∣σ(t)− s

∣
∣, (3.44)

then

up(t)≤ α+
∫ t

t0
w(t,τ)uq(τ)Δτ, t ∈ Tκ, (3.45)

implies

u(t)≤
{

1
q

[

(K(p− q) + qα)eÂ(t, t0)−K(p− q)
]

}1/p

for anyK > 0, t ∈ Tκ, (3.46)

where

Â(t)= q

pK (p−q)/p

(

w(σ(t), t) +
∫ t

t0
wΔ
1 (t,τ)Δτ

)

, t ∈ Tκ. (3.47)

Proof. Letting b(t)= 1, g(t)= 0 and h(t)= 1 in Theorem 3.8, we obtain

A(t)= q

pK (p−q)/p

(

w
(

σ(t), t
)

+
∫ t

t0
wΔ
1 (t,τ)Δτ

)

:= Â(t), t ∈ Tκ,

B(t)= K(p− q) + qα

pK (p−q)/p

{

w
(

σ(t), t
)

+
∫ t

t0
wΔ
1 (t,τ)Δτ

}

= K(p− q) + qα

q
Â(t), t ∈ Tκ.

(3.48)

Therefore, by Theorem 3.8, noting (3.48), we easily obtain

u(t)≤
{

α+
∫ t

t0
eA
(

t,σ(τ
)

)B(τ)Δτ
}1/p

=
{

α+
∫ t

t0
eÂ
(

t,σ(τ)
)K(p− q) + qα

q
Â(τ)Δτ

}1/p

=
{

α+
K(p− q) + qα

q

∫ t

t0
eÂ
(

t,σ(τ)
)

Â(τ)Δτ
}1/p

=
{

α+
K(p− q) + qα

q

[

eÂ
(

t, t0
)− eÂ(t, t)

]
}1/p

=
{
K(p− q) + qα

q
eÂ
(

t, t0)− K(p− q
)

q

}1/p

for anyK > 0, t ∈ Tκ.

(3.49)

The proof of Corollary 3.12 is complete. �

By investigating the proof procedure of Theorem 3.8 carefully, we easily obtain the
following result.
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Theorem 3.13. Assume that u,a,b,g,hi ∈ Crd, u(t), a(t), b(t), g(t), and hi(t) are nonneg-
ative, i = 1,2, . . . ,n, and there exists a sequence of positive real numbers q1,q2, . . . ,qn such
that p ≥ qi > 0, i= 1,2, . . . ,n. Let w(t,s) be defined as in Theorem 2.7 such that w(t,s)≥ 0
and wΔ

1 (t,s) ≥ 0 for t,s ∈ T with s ≤ t. If for any ε > 0, there exists a neighborhood U of t,
independent of τ ∈ [t0,σ(t)], such that for all s∈U ,

∣
∣
∣
∣

[

w
(

σ(t),τ
)−w(s,τ)−wΔ

1 (t,τ)
(

σ(t)− s
)]
[

g(τ)up(τ) +
n
∑

i=1
hi(τ)uqi(τ)

]∣
∣
∣
∣≤ ε

∣
∣σ(t)− s

∣
∣,

(3.50)

then

up(t)≤ a(t) + b(t)
∫ t

t0
w(t,τ)

[

g(τ)up(τ) +
n
∑

i=1
hi(τ)uqi(τ)

]

Δτ, t ∈ Tκ, (3.51)

implies

u(t)≤
{

a(t) + b(t)
∫ t

t0
eA∗
(

t,σ(τ)
)

B∗(τ)Δτ
}1/p

for anyK > 0, t ∈ Tκ, (3.52)

where

A∗(t)=w
(

σ(t), t
)

b(t)
(

g(t) +
n
∑

i=1

qihi(t)
pK (p−qi)/p

)

+
∫ t

t0
wΔ
1 (t,τ)b(τ)

(

g(τ) +
n
∑

i=1

qihi(τ)
pK (p−qi)/p

)

Δτ,

B∗(t)=w(σ(t), t)

[

a(t)g(t) +
n
∑

i=1
hi(t)

(
K(p− qi) + qia(t)

pK (p−qi)/p

)]

+
∫ t

t0
wΔ
1 (t,τ)

[

a(τ)g(τ) +
n
∑

i=1
hi(τ)

(
K(p− qi) + qa(τ)

pK (p−qi)/p

)]

Δτ, t ∈ Tκ.

(3.53)

Theorem 3.14. Assume that u,a,b ∈ Crd, u(t), a(t), and b(t) are nonnegative. Let f : Tκ×
R→R+ be a continuous function such that

0≤ f (t,x)− f (t, y)≤ φ(t, y)(x− y), (3.54)

for t ∈ Tκ and x ≥ y ≥ 0, where φ : Tκ×R→R+ is a continuous function. Then

up(t)≤ a(t) + b(t)
∫ t

t0
f
(

τ,uq(τ)
)

Δτ, t ∈ Tκ, (3.55)

implies

u(t)≤
{

a(t) + b(t)
∫ t

t0
eM
(

t,σ(τ)
)

f
(

τ,
K(p− q) + qa(τ)

pK (p−q)/p

)

Δτ
}1/p

for any K > 0, t ∈ Tκ,

(3.56)
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where

M(t)= φ
(

t,
K(p− q) + qa(t)

pK (p−q)/p

)
qb(t)

pK (p−q)/p . (3.57)

Proof. Define a function z(t) by

z(t)=
∫ t

t0
f
(

τ,uq(τ)
)

Δτ, t ∈ Tκ. (3.58)

Then z(t0)= 0 and (3.55) can be written as (3.10). As in the proof of Theorem 3.2, from
(3.10), we easily obtain (3.11). Obviously, it follows from (3.58), (3.11), and (3.54) that

zΔ(t)= f
(

t,uq(t)
)

≤ f
(

t,
K(p− q) + qa(t)

pK (p−q)/p +
qb(t)

pK (p−q)/p z(t)
)

− f
(

t,
K(p− q) + qa(t)

pK (p−q)/p

)

+ f
(

t,
K(p− q) + qa(t)

pK (p−q)/p

)

≤ φ
(

t,
K(p− q) + qa(t)

pK (p−q)/p

)
qb(t)

pK (p−q)/p z(t) + f
(

t,
K(p− q) + qa(t)

pK (p−q)/p

)

=M(t)z(t) + f
(

t,
K(p− q) + qa(t)

pK (p−q)/p

)

, t ∈ Tκ,

(3.59)

whereM(t) is defined as in (3.57). Using Theorem 2.8 and noting z(t0)= 0, from (3.59),
we get

z(t)≤
∫ t

t0
eM
(

t,σ(τ)
)

f
(

τ,
K(p− q) + qa(τ)

pK (p−q)/p

)

Δτ, t ∈ Tκ. (3.60)

It is easy to see that the desired inequality (3.56) follows from (3.10) and (3.60). The
proof of Theorem 3.14 is complete. �

Remark 3.15. Let p > 1, K = q = 1. We easily see that Theorem 3.14 reduces to in
[9, Theorem 2(b1)] if T=R, and in [9, Theorem 4(d1)] if T= Z.

By Theorem 3.14, we can establish the following more general result.

Theorem 3.16. Assume that u,a,b ∈ Crd, u(t), a(t), and b(t) are nonnegative, and fi :
Tκ×R→R+ is a continuous function such that

0≤ fi(t,x)− fi(t, y)≤ φi(t, y)(x− y), (3.61)

for t ∈ Tκ and x ≥ y ≥ 0, where φi : T
κ ×R→R+ is a continuous function, i = 1,2, . . . ,n.

If there exists a sequence of positive real numbers q1,q2, . . . ,qn such that p ≥ qi > 0, i =
1,2, . . . ,n, then

up(t)≤ a(t) + b(t)
n
∑

i=1

∫ t

t0
fi
(

τ,uqi(τ)
)

Δτ, t ∈ Tκ, (3.62)
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implies

u(t)≤
{

a(t) + b(t)
n
∑

i=1

∫ t

t0
eM∗(t,σ(τ)) fi

(

τ,
K(p− qi) + qia(τ)

pK (p−qi)/p

)

Δτ
}1/p

for any K > 0, t ∈ Tκ,

(3.63)

where

M∗(t)=
n
∑

i=1
φi

(

t,
K(p− qi) + qia(t)

pK (p−qi)/p

)
qib(t)

pK (p−qi)/p . (3.64)

Remark 3.17. Using our main results in this paper, we can obtain many dynamic inequal-
ities on some peculiar time scales. Due to limited space, their statements are omitted here.

At the end of this paper, we present an application of Corollary 3.6 to obtain the ex-
plicit estimates on the solutions of a dynamic equation on time scales.

Consider the following initial value problem on time scales

(up(t))Δ =H
(

t,uq(t)
)

, u
(

t0
)= C, t ∈ Tκ, (3.65)

where C, p, and q are constants, p ≥ q > 0, and H : Tκ×R→R is a continuous function.
Assume that

∣
∣H(t,uq(t))

∣
∣≤ h(t)

∣
∣uq(t)

∣
∣, t ∈ Tκ. (3.66)

If u(t) is a solution of IVP (3.65), then

∣
∣u(t)

∣
∣≤

{

1
q

[(

K(p− q) + q|C|p)eF
(

t, t0
)−K(p− q)

]

}1/p

for any K > 0, t ∈ Tκ,

(3.67)

where h(t) is a nonnegative function, and F(t) is defined by (3.20).
In fact, the solution u(t) of IVP (3.65) satisfies the following equivalent equation:

up(t)= Cp +
∫ t

t0
H
(

τ,uq(τ)
)

Δτ, t ∈ Tκ. (3.68)

Noting the assumption (3.66), we easily obtain

∣
∣u(t)

∣
∣
p ≤ |C|p +

∫ t

t0
h(τ)

∣
∣u(τ)

∣
∣
q
Δτ, t ∈ Tκ. (3.69)

Now a suitable application of Corollary 3.6 to (3.69) yields (3.67).
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Mass, USA, 2003.

[6] W. N. Li, “Some new dynamic inequalities on time scales,” Journal of Mathematical Analysis and
Applications, vol. 319, no. 2, pp. 802–814, 2006.

[7] D. B. Pachpatte, “Explicit estimates on integral inequalities with time scale,” Journal of Inequali-
ties in Pure Applied Mathematics, vol. 7, no. 4, article 143, pp. 8 pages, 2006.

[8] F.-H. Wong, C.-C. Yeh, and C.-H. Hong, “Gronwall inequalities on time scales,” Mathematical
Inequalities & Applications, vol. 9, no. 1, pp. 75–86, 2006.

[9] B. G. Pachpatte, “On some new inequalities related to a certain inequality arising in the theory
of differential equations,” Journal of Mathematical Analysis and Applications, vol. 251, no. 2, pp.
736–751, 2000.

Wei Nian Li: Department of Mathematics, Binzhou University, Shandong 256603, China
Email address: wnli@263.net

Weihong Sheng: Department of Mathematics, Binzhou University, Shandong 256603, China
Email address: wh-sheng@163.com

mailto:wnli@263.net
mailto:wh-sheng@163.com

	1. Introduction
	2. Preliminaries on time scales
	3. Main results
	Acknowledgments
	References

