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1. Introduction

Let � denote the class of functions of the form

f (z)= z+
∞∑

k=2
akz

k (1.1)

which are analytic in the open unit disk U= {z : z ∈ C and |z| < 1}. If f and g are analytic
in U, we say that f is subordinate to g, written f ≺ g or f (z) ≺ g(z), if there exists a
Schwarz function w, analytic in U with w(0)= 0 and |w(z)| < 1 (z ∈ U), such that f (z)=
g(w(z)) (z ∈ U). In particular, if the function g is univalent in U, the above subordination
is equivalent to f (0)= g(0) and f (U)⊂ g(U). For 0≤ η, β < 1, we denote by�∗(η),�(η),
and �(η,β) the subclasses of � consisting of all analytic functions which are, respectively,
starlike of order η, convex of order η, close-to-convex of order η, and type β in U. For
various other interesting developments involving functions in the class �, the reader may
be referred (for example) to the work of Srivastava and Owa [1].

Let � be the class of all functions φ which are analytic and univalent in U and for
which φ(U) is convex with φ(0)= 1 and Re{φ(z)} > 0 for z ∈ U.
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Making use of the principle of subordination between analytic functions, we introduce
the subclasses �∗(η;φ), �(η;φ), and �(η,δ;φ,ψ) of the class � for 0 ≤ η, β < 1, and
φ,ψ ∈� (cf. [2, 3]), which are defined by

�∗(η;φ) :=
{
f ∈� :

1
1−η

(
z f ′(z)
f (z)

−η
)
≺ φ(z) in U

}
,

�(η;φ) :=
{
f ∈� :

1
1−η

(
1+

z f ′′(z)
f ′(z)

−η
)
≺ φ(z) in U

}
,

�(η,β;φ,ψ) :=
{
f ∈� : ∃g ∈�∗(η;φ) s.t.

1
1−β

{
z f ′(z)
g(z)

−β
}
≺ ψ(z) in U

}
.

(1.2)

We note that the classes mentioned above are the familiar classes which have been used
widely on the space of analytic and univalent functions in U, and for special choices for
the functions φ and ψ involved in these definitions, we can obtain the well-known sub-
classes of �. For examples, we have

�∗
(
η;

1 + z

1− z

)
=�∗(η), �

(
η;

1 + z

1− z

)
=�(η),

�
(
η,β;

1 + z

1− z
,
1 + z

1− z

)
=�(η,β).

(1.3)

Also let the Hadamard product (or convolution) f ∗ g of two analytic functions

f (z)=
∞∑

k=0
akz

k, g(z)=
∞∑

k=0
bkz

k (1.4)

be given (as usual) by

( f ∗ g)(z)=
∞∑

k=0
akbkz

k. (1.5)

Making use of the Hadamard product (or convolution) given by (1.5), we now define
the Dziok-Srivastava operator

H
(
α1, . . . ,αq;β1, . . . ,βs

)
: �−→�, (1.6)

which was introduced and studied in a series of recent papers by Dziok and Srivastava
([4–6]; see also [7, 8]). Indeed, for complex parameters

α1, . . . ,αq, β1, . . . ,βs
(
βj ∈ C\Z−0 ;Z−0 = 0,−1,−2, . . .; j = 1, . . . ,s

)
, (1.7)

the generalized hypergeometric function qFs(α1, . . . ,αq;β1, . . . ,βs;z) is given by

qFs
(
α1, . . . ,αq;β1, . . . ,βs;z

)
:=

∞∑

n=0

(
α1
)
n ···

(
αq
)
n(

β1
)
n ···

(
βs
)
n

zn

n!
(
q ≤ s+1; q,s∈N0 :=N∪{0}; z ∈ U

)
,

(1.8)
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where (ν)k is the Pochhammer symbol (or the shifted factorial) defined (in terms of the
Gamma function) by

(ν)k := Γ(ν+ k)
Γ(ν)

=
⎧
⎨
⎩
1 if k = 0, ν∈ C\{0},
ν(ν+1)···(ν+ k− 1) if k ∈N, ν∈ C.

(1.9)

Corresponding to a function �(α1, . . . ,αq;β1, . . . ,βs;z), defined by

�
(
α1, . . . ,αq;β1, . . . ,βs;z

)
:= zqFs

(
α1, . . . ,αq;β1, . . . ,βs;z

)
, (1.10)

Dziok and Srivastava [5] considered a linear operator defined by the following Hadamard
product (or convolution):

H
(
α1, . . . ,αq;β1, . . . ,βs

)
f (z) :=�

(
α1, . . . ,αq;β1, . . . ,βs;z

)∗ f (z). (1.11)

We note that the linear operator H(α1, . . . ,αq;β1, . . . ,βs) includes various other linear
operators which were introduced and studied by Carlson and Shaffer [9], Hohlov [10],
Ruscheweyh [11], and so on [12, 13].

Corresponding to the function �(α1, . . . ,αq;β1, . . . ,βs;z), defined by (1.10), we intro-
duce a function �λ(α1, . . . ,αq;β1, . . . ,βs;z) given by

�
(
α1, . . . ,αq;β1, . . . ,βs;z

)∗�λ
(
α1, . . . ,αq;β1, . . . ,βs;z

)= z

(1− z)λ
(λ > 0). (1.12)

Analogous to H(α1, . . . ,αq;β1, . . . ,βs), we now define the linear operator Hλ(α1, . . . ,αq;
β1, . . . ,βs) on � as follows:

Hλ
(
α1, . . . ,αq;β1, . . . ,βs

)
f (z)=�λ

(
α1, . . . ,αq;β1, . . . ,βs;z

)∗ f (z)
(
αi,βj ∈ C\Z−0 ; i= 1, . . . ,q; j = 1, . . . ,s; λ > 0; z ∈ U; f ∈�

)
.

(1.13)

For convenience, we write

Hλ,q,s
(
α1
)
:=Hλ

(
α1, . . . ,αq;β1, . . . ,βs

)
. (1.14)

It is easily verified from the definition (1.13) that

z
(
Hλ,q,s

(
α1 + 1

)
f (z)

)′ = α1Hλ,q,s
(
α1
)
f (z)− (α1− 1

)
Hλ,q,s

(
α1 + 1

)
f (z), (1.15)

z
(
Hλ,q,s

(
α1
)
f (z)

)′ = λHλ+1,q,s
(
α1
)
f (z)− (λ− 1)Hλ,q,s

(
α1
)
f (z). (1.16)

In particular, the operator Hλ(γ+1,1;1)(λ > 0;γ >−1) was introduced by Choi et al. [2],
who investigated (among other things) several inclusion properties involving various
subclasses of analytic and univalent functions. For γ = n(n ∈ N∪ 0;N = {1,2, . . .}) and
λ= 2, we also note that the Choi-Sago-Srivastava operator Hλ,2,1(γ+1,1;1) f is the Noor
integral operator of nth order of f studied by Liu [14] and K. I. Noor and M. A. Noor
[15, 16].
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Next, by using the operator Hλ,q,s(α1), we introduce the following classes of analytic
functions for φ,ψ ∈�, and 0≤ η, β < 1:

�λ,α1 (q,s;η;φ) :=
{
f ∈� :Hλ,q,s

(
α1
)
f ∈�∗(η;φ)

}
,

�λ,α1 (q,s;η;φ) :=
{
f ∈� :Hλ,q,s

(
α1
)
f ∈�(η;φ)

}
,

�λ,α1 (q,s;η,β;φ,ψ) :=
{
f ∈� :Hλ,q,s

(
α1
)
f ∈�(η,β;φ,ψ)

}
.

(1.17)

We also note that

f (z)∈�λ,α1 (q,s;η;φ)⇐⇒ z f ′(z)∈�λ,α1 (q,s;η;φ). (1.18)

In particular, we set

�λ,α1

(
q,s;η;

1 +Az

1+Bz

)
=: �λ,α1 (q,s;η;A,B) (−1≤ B < A≤ 1),

�λ,α1

(
q,s;η;

1 +Az

1+Bz

)
=: �λ,α1 (q,s;η;A,B) (−1≤ B < A≤ 1).

(1.19)

In this paper, we investgate several inclusion properties of the classes �λ,α1 (q,s;η;φ),
�λ,α1 (q,s;η;φ), and �λ,α1 (q,s;η,β;φ,ψ) associated with the operator Hλ,q,s(α1). Some ap-
plications involving integral operators are also considered.

2. Inclusion Properties Involving the OperatorHλ,q,s(α1)

The following results will be required in our investigation.

Lemma 2.1 [17]. Let φ be convex univalent in U with φ(0) = 1 and Re{κφ(z) + ν} > 0
(κ,ν∈ C). If p is analytic in U with p(0)= 1, then

p(z) +
zp′(z)

κp(z) + ν
≺ φ(z) (z ∈ U) (2.1)

implies

p(z)≺ φ(z) (z ∈ U). (2.2)

Lemma 2.2 [18]. Let φ be convex univalent in U and let ω be analytic in U with Re{ω(z)} ≥
0. If p is analytic in U and p(0)= φ(0), then

p(z) +ω(z)zp′(z)≺ φ(z) (z ∈ U) (2.3)

implies

p(z)≺ φ(z) (z ∈ U). (2.4)

Theorem 2.3. Let α1,λ > 1 and φ∈�. Then,

�λ+1,α1 (q,s;η;φ)⊂�λ,α1 (q,s;η;φ)⊂�λ,α1+1(q,s;η;φ). (2.5)
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Proof. First of all, we will show that

�λ+1,α1 (q,s;η;φ)⊂�λ,α1 (q,s;η;φ). (2.6)

Let f ∈�λ+1,α1 (q,s;η;φ) and set

p(z)= 1
1−η

(
z
(
Hλ,q,s

(
α1
)
f (z)

)′

Hλ,q,s
(
α1
)
f (z)

−η

)
, (2.7)

where p is analytic in U with p(0)= 1. Using (1.16) and (2.7), we have

1
1−η

(
z
(
Hλ+1,q,s

(
α1
)
f (z)

)′

Hλ+1,q,s
(
α1
)
f (z)

−η

)
= p(z) +

zp′(z)
(1−η)p(z) + λ− 1+η

(z ∈ U). (2.8)

Since λ > 1 and φ ∈�, we see that

Re
{
(1−η)φ(z) + λ− 1+η

}
> 0 (z ∈ U). (2.9)

Applying Lemma 2.1 to (2.8), it follows that p ≺ φ, that is, f ∈�λ,α1 (q,s;η;φ).
To prove the second part, let f ∈�λ,α1 (q,s;η;φ) and put

s(z)= 1
1−η

(
z
(
Hλ,q,s

(
α1 + 1

)
f (z)

)′

Hλ,q,s
(
α1 + 1

)
f (z)

−η

)
, (2.10)

where s is analytic function with s(0)= 1. Then, by using the arguments similar to those
detailed above with (1.15), it follows that s≺ φ in U, which implies that f ∈�λ,α1+1(q,s;
η;φ). Therefore, we complete the proof of Theorem 2.3. �

Theorem 2.4. Let α1,λ > 1 and φ∈�. Then,

�λ+1,α1 (q,s;η;φ)⊂�λ,α1 (q,s;η;φ)⊂�λ,α1+1(q,s;η;φ). (2.11)

Proof. Applying (1.18) and Theorem 2.3, we observe that

f (z)∈�λ+1,α1 (q,s;η;φ)⇐⇒Hλ+1,q,s
(
α1
)
f (z)∈�(η;φ)

⇐⇒Hλ+1,q,s
(
α1
)(
z f ′(z)

)∈�(η;φ)

⇐⇒ z f ′(z)∈�λ+1,α1 (q,s;η;φ)

=⇒ z f ′(z)∈�λ,α1 (q,s;η;φ)

⇐⇒ z
(
Hλ,q,s

(
α1
)
f (z)

)′ ∈�(η;φ)

⇐⇒ f (z)∈�λ,α1 (q,s;η;φ),

f (z)∈�λ,α1 (q,s;η;φ)⇐⇒ z f ′(z)∈�λ,α1 (q,s;η;φ)

=⇒ z f ′(z)∈�λ,α1+1(q,s;η;φ)

⇐⇒ f (z)∈�λ,α1+1(q,s;η;φ),

(2.12)

which evidently proves Theorem 2.4. �
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Taking

φ(z)= 1+Az

1+Bz
(−1≤ B < A≤ 1; z ∈ U) (2.13)

in Theorems 2.3 and 2.4, we have the following.

Corollary 2.5. Let α1,λ > 1. Then,

�λ+1,α1 (q,s;η;A,B)⊂�λ,α1 (q,s;η;A,B)⊂�λ,α1+1(q,s;η;A,B),

�λ+1,α1 (q,s;η;A,B)⊂�λ,α1 (q,s;η;A,B)⊂�λ,α1+1(q,s;η;A,B).
(2.14)

Next, by using Lemma 2.2, we obtain the following inclusion relation for the class
�λ,α1 (q,s;η,β;φ,ψ).

Theorem 2.6. Let α1,λ > 1 and φ,ψ ∈�. Then,

�λ+1,α1 (q,s;η,β;φ,ψ)⊂�λ,α1 (q,s;η,β;φ,ψ)⊂�λ,α1+1(q,s;η,β;φ,ψ). (2.15)

Proof. We begin by proving that

�λ+1,α1 (q,s;η,β;φ,ψ)⊂�λ,α1 (q,s;η,β;φ,ψ). (2.16)

Let f ∈�λ+1,α1 (q,s;η,β;φ,ψ). Then, from the definition of �λ+1,α1 (q,s;η,β;φ,ψ), there
exists a function r ∈�∗(η;φ) such that

1
1−β

(
z
(
Hλ+1,q,s

(
α1
)
f (z)

)

r(z)
−β

)
≺ ψ(z) (z ∈ U). (2.17)

Choose the function g such that Hλ+1,q,s(α1)g(z)= r(z). Then, g ∈�λ+1,α1 (q,s;η;φ) and

1
1−β

(
z
(
Hλ+1,q,s

(
α1
)
f (z)

)′

Hλ+1,q,s
(
α1
)
g(z)

−β

)
≺ ψ(z) (z ∈ U). (2.18)

Now let

p(z)= 1
1−β

(
z
(
Hλ,q,s

(
α1
)
f (z)

)′

Hλ,q,s
(
α1
)
g(z)

−β

)
, (2.19)

where p is analytic in U with p(0)= 1. Using (1.16), we have

(1−β)zp′(z)Hλ,q,s
(
α1
)
g(z) +

(
(1−β)p(z) +β

)
z
(
Hλ,q,s

(
α1
)
g(z)

)′

= λz
(
Hλ+1,q,s

(
α1
)
f (z)

)′ − (λ− 1)z
(
Hλ,q,s

(
α1
)
f (z)

)′
.

(2.20)

Since g ∈�λ+1,α1 (q,s;η;φ), by Theorem 2.3, we know that g ∈�λ,α1 (q,s;η;φ). Let

q(z)= 1
1−η

(
z
(
Hλ,q,s

(
α1
)
g(z)

)′

Hλ,q,s
(
α1
)
g(z)

−η

)
. (2.21)
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Then, using (1.16) once again, we have

λ
Hλ+1,q,s

(
α1
)
g(z)

Hλ,q,s
(
α1
)
g(z)

= (1−η)q(z) + λ− 1+η. (2.22)

From (2.20) and (2.22), we obtain

1
1−β

(
z
(
Hλ+1,q,s

(
α1
)
f (z)

)′

Hλ+1,q,s
(
α1
)
g(z)

−β

)
= p(z) +

zp′(z)
(1−η)q(z) + λ− 1+η

. (2.23)

Since λ > 1 and q ≺ φ in U,

Re
{
(1−η)q(z) + λ− 1+η

}
> 0 (z ∈ U). (2.24)

Hence, applying Lemma 2.2, we can show that p ≺ ψ, so that f ∈�λ,α1 (q,s;η,β;φ,ψ).
For the second part, by using the arguments similar to those detailed above with (1.15),

we obtain

�λ,α1 (q,s;η,β;φ,ψ)⊂�λ,α1+1(q,s;η,β;φ,ψ). (2.25)

Therefore, we complete the proof of Theorem 2.6. �

3. Inclusion Properties Involving the Integral Operator Fc

In this section, we consider the generalized Libera integral operator Fc [13] (cf. [2, 12])
defined by

Fc( f ) := Fc( f )(z)= c+1
zc

∫ z

0
tc−1 f (t)dt ( f ∈�; c >−1). (3.1)

We first prove the following.

Theorem 3.1. If f ∈�λ,α1 (q,s;η;φ), then Fc( f )∈�λ,α1 (q,s;η;φ) (c ≥ 0).

Proof. Let f ∈�λ,α1 (q,s;η;φ) and set

p(z)= 1
1−η

(
z
(
Hλ,q,s

(
α1
)
Fc( f )(z)

)′

Hλ,q,s
(
α1
)
Fc( f )(z)

−η

)
, (3.2)

where p is analytic in U with p(0)= 1. From (3.1), we have

z
(
Hλ,q,s

(
α1
)
Fc( f )(z)

)′ = (c+1)Hλ,q,s
(
α1
)
f (z)− cHλ,q,s

(
α1
)
Fc( f )(z). (3.3)

Then, by using (3.2) and (3.3), we obtain

(c+1)
Hλ,q,s

(
α1
)
f (z)

Hλ,q,s
(
α1
)
Fc( f )(z)

= (1−η)p(z) + c+η. (3.4)
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Taking the logarithmic differentiation on both sides of (3.4) and multiplying by z, we
have

p(z) +
zp′(z)

(1−η)p(z) + c+η
= 1

1−η

(
z
(
Hλ,q,s

(
α1
)
f (z)

)′

Hλ,q,s
(
α1
)
f (z)

−η

)
(z ∈ U). (3.5)

Hence, by virtue of Lemma 2.1, we conclude that p ≺ φ in U, which implies that Fc( f )∈
�λ,α1 (q,s;η;φ). �

Next, we derive an inclusion property involving Fc, which is given by the following.

Theorem 3.2. If f ∈�λ,α1 (q,s;η;φ), then Fc( f )∈�λ,α1 (q,s;η;φ) (c ≥ 0).

Proof. By applying Theorem 3.1, it follows that

f (z)∈�λ,α1 (q,s;η;φ)⇐⇒ z f ′(z)∈�λ,α1 (q,s;η;φ)

=⇒ Fc
(
z f ′(z)

)∈�λ,α1 (q,s;η;φ)

⇐⇒ z
(
Fc( f )(z)

)′ ∈�λ,α1 (q,s;η;φ)

⇐⇒ Fc( f )(z)∈�λ,α1 (q,s;η;φ),

(3.6)

which proves Theorem 3.2. �

From Theorems 3.1 and 3.2, we have the following.

Corollary 3.3. If f belongs to the class �λ,α1 (q,s;η;A,B) (or �λ,α1 (q,s;η;A,B)), then
Fc( f ) belongs to the class �λ,α1 (q,s;η;A,B) (or �λ,α1 (q,s;η;A,B)) (c ≥ 0).

Finally, we prove.

Theorem 3.4. If f ∈�λ,α1 (q,s;η,β;φ,ψ), then Fc( f )∈�λ,α1 (q,s;η,β;φ,ψ) (c ≥ 0).

Proof. Let f ∈�λ,α1 (q,s;η,β;φ,ψ). Then, in view of the definition of the class �λ,α1 (q,s;η,
β;φ,ψ), there exists a function g ∈�λ,α1 (q,s;η;φ) such that

1
1−β

(
z
(
Hλ,q,s

(
α1
)
f (z)

)′

Hλ,q,s
(
α1
)
g(z)

−β

)
≺ ψ(z) (z ∈ U). (3.7)

Thus, we set

p(z)= 1
1−β

(
z
(
Hλ,q,s

(
α1
)
Fc( f )(z)

)′

Hλ,q,s
(
α1
)
Fc(g)(z)

−β

)
, (3.8)

where p is analytic in Uwith p(0)= 1. Since g ∈�λ,α1 (q,s;η;φ), we see from Theorem 3.1
that Fc(g)∈�λ,α1 (q,s;η;φ). Using (3.3), we have

(
(1−β)p(z) +β

)
Hλ,q,s

(
α1
)
Fc(g)(z) + cHλ,q,s

(
α1
)
Fc( f )(z)= (c+1)Hλ,q,s

(
α1
)
f (z).

(3.9)
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Then, by a simple calculation, we get

(c+1)
z
(
Hλ,q,s

(
α1
)
f (z)

)′

Hλ,q,s
(
α1
)
Fc(g)(z)

= ((1−β)p(z) +β
)(
(1−η)q(z) + c+η

)
+ (1−β)zp′(z),

(3.10)

where

q(z)= 1
1−η

(
z
(
Hλ,q,s

(
α1
)
Fc(g)(z)

)′

Hλ,q,s
(
α1
)
Fc(g)(z)

−η

)
. (3.11)

Hence, we have

1
1−β

(
z
(
Hλ,q,s

(
α1
)
f (z)

)′

Hλ,q,s
(
α1
)
g(z)

−β

)
= p(z) +

zp′(z)
(1−η)q(z) + c+η

. (3.12)

The remaining part of the proof in Theorem 3.4 is similar to that of Theorem 2.6 and so
we omit it. �
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