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1. Introduction and preliminaries

Ulam [1] gave a talk before theMathematics Club of the University ofWisconsin in which
he discussed a number of unsolved problems. Among these was the following question
concerning the stability of homomorphisms.

We are given a group G and a metric group G� with metric ρ(�,�). Given ε > 0, does there
exist a δ > 0 such that if f :G�G� satisfies ρ( f (xy), f (x) f (y)) < δ for all x, y �G, then a
homomorphism h :G�G� exists with ρ( f (x),h(x)) < ε for all x �G?

Hyers [2] considered the case of approximately additive mappings f : E� E�, where E
and E� are Banach spaces and f satisfies Hyers inequality

∥
∥ f (x+ y)� f (x)� f (y)

∥
∥� ε (1.1)

for all x, y � E. It was shown that the limit

L(x)= lim
n��

f
(

2nx
)

2n
(1.2)
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exists for all x � E and that L : E� E� is the unique additive mapping satisfying

∥
∥ f (x)�L(x)

∥
∥� ε. (1.3)

Rassias [3] provided a generalization of Hyers’ theorem which allows the Cauchy dif-
ference to be unbounded.

Theorem 1.1 (Rassias). Let f : E� E� be a mapping from a normed vector space E into a
Banach space E� subject to the inequality

∥
∥ f (x+ y)� f (x)� f (y)

∥
∥� ε

(

�x�p +�y�p
)

(1.4)

for all x, y � E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x)= lim
n��

f
(

2nx
)

2n
(1.5)

exists for all x � E and L : E� E� is the unique additive mapping which satisfies

∥
∥ f (x)�L(x)

∥
∥�

2ε
2� 2p

�x�p (1.6)

for all x � E. If p < 0, then inequality (1.4) holds for x, y �= 0 and (1.6) for x �= 0.

Rassias [4] during the 27th International Symposium on Functional Equations asked
the question whether such a theorem can also be proved for p 	 1. Gajda [5], follow-
ing the same approach as in Rassias [3], gave an affirmative solution to this question for
p > 1. It was shown by Gajda [5] as well as by Rassias and Šemrl [6] that one cannot prove
a Rassias-type theorem when p = 1. The inequality (1.4) that was introduced for the first
time by Rassias [3] provided a lot of influence in the development of a generalization
of the Hyers-Ulam stability concept. This new concept of stability is known as general-
ized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations (cf. the
books of Czerwik [7], Hyers et al. [8]).

Rassias [9] followed the innovative approach of Rassias’ theorem [3] in which he re-
placed the factor �x�p +�y�p by �x�p � �y�q for p,q �R with p+ q �= 1.

Găvruţa [10] provided a further generalization of Rassias’ theorem. During the last
two decades, a number of papers and research monographs have been published on vari-
ous generalizations and applications of the generalized Hyers-Ulam stability to a number
of functional equations and mappings (see [11–14]).

Throughout this paper, letG be a 2-divisible abelian group. Assume thatX is a normed
space with norm � � �X and that Y is a Banach space with norm � � �Y .

In [15], Gilányi showed that if f satisfies the functional inequality

∥
∥2 f (x) + 2 f (y)� f

(

xy�1
)∥
∥�

∥
∥ f (xy)

∥
∥ (1.7)
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then f satisfies the Jordan-von Neumann functional equation

2 f (x) + 2 f (y)= f (xy) + f
(

xy�1
)

, (1.8)

see also [16]. Gilányi [17] and Fechner [18] proved the generalized Hyers-Ulam stability
of the functional inequality (1.7).

In Section 2, we prove that if f satisfies one of the inequalities � f (x)+ f (y) + f (z)��
�2 f ((x+ y + z)/2)�, � f (x)+ f (y) + f (z)��� f (x+ y + z)�, and � f (x) + f (y) + 2 f (z)� �
�2 f ((x+ y)/2+ z)� then f is Cauchy additive.

In Section 3, we prove the generalized Hyers-Ulam stability of the functional inequal-
ity � f (x) + f (y) + f (z)� � �2 f (x+ y + z/2)�.

In Section 4, we prove the generalized Hyers-Ulam stability of the functional inequal-
ity � f (x) + f (y) + f (z)� � � f (x+ y + z)�.

In Section 5, we prove the generalized Hyers-Ulam stability of the functional inequal-
ity � f (x) + f (y) + 2 f (z)� � �2 f (x+ y/2+ z)�.

2. Functional inequalities associated with Jordan-von Neumann-type
additive functional equations

Proposition 2.1. Let f :G� Y be a mapping such that

∥
∥ f (x) + f (y) + f (z)

∥
∥
Y �

∥
∥
∥
∥2 f

(
x+ y + z

2

)∥
∥
∥
∥
Y

(2.1)

for all x, y,z �G. Then f is Cauchy additive.

Proof. Letting x = y = z = 0 in (2.1), we get

∥
∥3 f (0)

∥
∥
Y �

∥
∥2 f (0)

∥
∥
Y . (2.2)

So f (0)= 0.
Letting z = 0 and y =�x in (2.1), we get

∥
∥ f (x) + f (�x)

∥
∥
Y �

∥
∥2 f (0)

∥
∥
Y = 0 (2.3)

for all x �G. Hence f (�x)=� f (x) for all x �G.
Letting z =�x� y in (2.1), we get

∥
∥ f (x) + f (y)� f (x+ y)

∥
∥
Y = ∥∥ f (x) + f (y) + f (�x� y)

∥
∥
Y �

∥
∥2 f (0)

∥
∥
Y = 0 (2.4)

for all x, y �G. Thus

f (x+ y)= f (x) + f (y) (2.5)

for all x, y �G, as desired. �
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Proposition 2.2. Let f :G� Y be a mapping such that

∥
∥ f (x) + f (y) + f (z)

∥
∥
Y �

∥
∥ f (x+ y + z)

∥
∥
Y (2.6)

for all x, y,z �G. Then f is Cauchy additive.

Proof. Letting x = y = z = 0 in (2.6), we get

∥
∥3 f (0)

∥
∥
Y �

∥
∥ f (0)

∥
∥
Y . (2.7)

So f (0)= 0.
Letting z = 0 and y =�x in (2.6), we get

∥
∥ f (x) + f (�x)

∥
∥
Y �

∥
∥ f (0)

∥
∥
Y = 0 (2.8)

for all x �G. Hence f (�x)=� f (x) for all x �G.
Letting z =�x� y in (2.6), we get

∥
∥ f (x) + f (y)� f (x+ y)

∥
∥
Y = ∥∥ f (x) + f (y) + f (�x� y)

∥
∥
Y �

∥
∥ f (0)

∥
∥
Y = 0 (2.9)

for all x, y �G. Thus

f (x+ y)= f (x) + f (y) (2.10)

for all x, y �G, as desired. �

Proposition 2.3. Let f :G� Y be a mapping such that

∥
∥ f (x) + f (y) + 2 f (z)

∥
∥
Y �

∥
∥
∥
∥2 f

(
x+ y

2
+ z
)∥
∥
∥
∥
Y

(2.11)

for all x, y,z �G. Then f is Cauchy additive.

Proof. Letting x = y = z = 0 in (2.11), we get

∥
∥4 f (0)

∥
∥
Y �

∥
∥2 f (0)

∥
∥
Y . (2.12)

So f (0)= 0.
Letting z = 0 and y =�x in (2.11), we get

∥
∥ f (x) + f (�x)

∥
∥
Y �

∥
∥ f (0)

∥
∥
Y = 0 (2.13)

for all x �G. Hence f (�x)=� f (x) for all x �G.
Replacing x by �2z and letting y = 0 in (2.11), we get

∥
∥� f (2z) + 2 f (z)

∥
∥
Y = ∥∥ f (�2z) + 2 f (z)

∥
∥
Y �

∥
∥ f (0)

∥
∥
Y = 0 (2.14)

for all z �G. Thus f (2z)= 2 f (z) for all z �G.
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Letting z =�(x+ y)/2 in (2.11), we get

∥
∥ f (x) + f (y)� f (x+ y)

∥
∥
Y =

∥
∥
∥
∥ f (x) + f (y) + 2 f

(

�
x+ y

2

)∥
∥
∥
∥
Y
�
∥
∥ f (0)

∥
∥
Y = 0 (2.15)

for all x, y �G. Thus

f (x+ y)= f (x) + f (y) (2.16)

for all x, y �G, as desired. �

3. Stability of a functional inequality associated with a 3-variable
Jensen additive functional equation

We prove the generalized Hyers-Ulam stability of a functional inequality associated with
a Jordan-von Neumann-type 3-variable Jensen additive functional equation.

Theorem 3.1. Let r > 1 and θ be nonnegative real numbers, and let f : X � Y be a mapping
such that

∥
∥ f (x) + f (y) + f (z)

∥
∥
Y �

∥
∥
∥
∥2 f

(
x+ y + z

2

)∥
∥
∥
∥
Y
+ θ
(

�x�rX +�y�
r
X +�z�

r
X

)

(3.1)

for all x, y,z � X . Then there exists a unique Cauchy additive mapping h : X � Y such that

∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

2r +2
2r � 2

θ�x�rX (3.2)

for all x � X .

Proof. Letting y = x and z =�2x in (3.1), we get
∥
∥2 f (x) + f (�2x)

∥
∥
Y �

(

2+2r
)

θ�x�rX (3.3)

for all x � X . Replacing x by �x in (3.3), we get
∥
∥2 f (�x) + f (2x)

∥
∥
Y �

(

2+2r
)

θ�x�rX (3.4)

for all x � X . Let g(x) := ( f (x)� f (�x))/2. It follows from (3.3) and (3.4) that
∥
∥2g(x)� g(2x)

∥
∥
Y �

(

2+2r
)

θ�x�rX (3.5)

for all x � X . So
∥
∥
∥
∥g(x)� 2g

(
x

2

)∥
∥
∥
∥
Y
�

2+2r

2r
θ�x�rX (3.6)

for all x � X . Hence

∥
∥
∥
∥2

lg
(
x

2l

)

� 2mg
(
x

2m

)∥
∥
∥
∥
Y
�

m�1
∑

j=l

∥
∥
∥
∥2

j g
(
x

2 j

)

� 2 j+1g
(

x

2 j+1

)∥
∥
∥
∥
Y
�

2+2r

2r

m�1
∑

j=l

2 j

2r j
θ�x�rX

(3.7)
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for all nonnegative integers m and l with m > l and all x � X . It follows from (3.7) that
the sequence 
2ng(x/2n)� is a Cauchy sequence for all x � X . Since Y is complete, the
sequence 
2ng(x/2n)� converges. So one can define the mapping h : X � Y by

h(x) := lim
n��

2ng
(
x

2n

)

(3.8)

for all x � X . Moreover, letting l = 0 and passing the limitm�� in (3.7), we get (3.2).
It follows from (3.1) that

∥
∥h(x) +h(y) +h(z)

∥
∥
Y = lim

n��
2n
∥
∥
∥
∥g
(
x

2n

)

+ g
(
y

2n

)

+ g
(
z

2n

)∥
∥
∥
∥
Y

= lim
n��

2n

2

∥
∥
∥
∥ f
(
x

2n

)

+ f
(
y

2n

)

+
(
z

2n

)

� f
(
�x

2n

)

� f
(
�y

2n

)

�

(
�z

2n

)∥
∥
∥
∥
Y

� lim
n��

2n

2

∥
∥
∥
∥2 f

(
x+ y + z

2n+1

)

� 2 f
(
x+ y + z

�2n+1

)∥
∥
∥
∥
Y

+ lim
n��

2nθ
2nr
(

�x�rX +�y�
r
X +�z�

r
X

)

=
∥
∥
∥
∥2h

(
x+ y + z

2

)∥
∥
∥
∥
Y

(3.9)

for all x, y,z � X . So

∥
∥h(x) +h(y) +h(z)

∥
∥
Y �

∥
∥
∥
∥2h

(
x+ y + z

2

)∥
∥
∥
∥
Y

(3.10)

for all x, y,z � X . By Proposition 2.1, the mapping h : X � Y is Cauchy additive.
Now, let T : X � Y be another Cauchy additive mapping satisfying (3.2). Then we have

∥
∥h(x)�T(x)

∥
∥
Y = 2n

∥
∥
∥
∥h
(
x

2n

)

�T
(
x

2n

)∥
∥
∥
∥
Y

� 2n
(∥
∥
∥
∥h
(
x

2n

)

� g
(
x

2n

)∥
∥
∥
∥
Y
+
∥
∥
∥
∥T
(
x

2n

)

� g
(
x

2n

)∥
∥
∥
∥
Y

)

�
2
(

2r +2
)

2n
(

2r � 2
)

2nr
θ�x�rX ,

(3.11)

which tends to zero as n�� for all x � X . So we can conclude that h(x) = T(x) for all
x � X . This proves the uniqueness of h. Thus the mapping h : X � Y is a unique Cauchy
additive mapping satisfying (3.2). �

Theorem 3.2. Let r < 1 and θ be positive real numbers, and let f : X � Y be a mapping
satisfying (3.1). Then there exists a unique Cauchy additive mapping h : X � Y such that

∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

2+2r

2� 2r
θ�x�rX (3.12)

for all x � X .
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Proof. It follows from (3.5) that

∥
∥
∥
∥g(x)�

1
2
g(2x)

∥
∥
∥
∥
Y
�

2+2r

2
θ�x�rX (3.13)

for all x � X . Hence

∥
∥
∥
∥

1
2l
g
(

2lx
)

�
1
2m

g
(

2mx
)
∥
∥
∥
∥
Y
�

m�1
∑

j=l

∥
∥
∥
∥

1
2 j g

(

2 jx
)

�
1

2 j+1 g
(

2 j+1x
)
∥
∥
∥
∥
Y
�

2+2r

2

m�1
∑

j=l

2r j

2 j θ�x�
r
X

(3.14)

for all nonnegative integers m and l with m > l and all x � X . It follows from (3.14) that
the sequence 
(1/2n)g(2nx)� is a Cauchy sequence for all x � X . Since Y is complete, the
sequence 
(1/2n)g(2nx)� converges. So one can define the mapping h : X � Y by

h(x) := lim
n��

1
2n

g
(

2nx
)

(3.15)

for all x � X . Moreover, letting l = 0 and passing the limitm�� in (3.14), we get (3.12).
The rest of the proof is similar to the proof of Theorem 3.1. �

Theorem 3.3. Let r > 1/3 and θ be nonnegative real numbers, and let f : X � Y be a
mapping such that

∥
∥ f (x) + f (y) + f (z)

∥
∥
Y �

∥
∥
∥
∥2 f

(
x+ y + z

2

)∥
∥
∥
∥
Y
+ θ � �x�rX � �y�

r
X � �z�

r
X (3.16)

for all x, y,z � X . Then there exists a unique Cauchy additive mapping h : X � Y such that

∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

2rθ
8r � 2

�x�3rX (3.17)

for all x � X .

Proof. Letting y = x and z =�2x in (3.16), we get

∥
∥2 f (x) + f (�2x)

∥
∥
Y � 2rθ�x�3rX (3.18)

for all x � X . Replacing x by �x in (3.18), we get

∥
∥2 f (�x) + f (2x)

∥
∥
Y � 2rθ�x�3rX (3.19)

for all x � X . Let g(x) := ( f (x)� f (�x))/2. It follows from (3.18) and (3.19) that

∥
∥2g(x)� g(2x)

∥
∥
Y � 2rθ�x�3rX (3.20)

for all x � X . So
∥
∥
∥
∥g(x)� 2g

(
x

2

)∥
∥
∥
∥
Y
�

2r

8r
θ�x�3rX (3.21)
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for all x � X . Hence

∥
∥
∥
∥2

lg
(
x

2l

)

� 2mg
(
x

2m

)∥
∥
∥
∥
Y
�

m�1
∑

j=l

∥
∥
∥
∥2

jg
(
x

2 j

)

� 2 j+1g
(

x

2 j+1

)∥
∥
∥
∥
Y
�

2r

8r

m�1
∑

j=l

2 j

8r j
θ�x�3rX

(3.22)

for all nonnegative integersm and l withm> l and all x � X .
It follows from (3.22) that the sequence 
2ng(x/2n)� is a Cauchy sequence for all x � X .

Since Y is complete, the sequence 
2ng(x/2n)� converges. So one can define the mapping
h : X � Y by

h(x) := lim
n��

2ng
(
x

2n

)

(3.23)

for all x � X . Moreover, letting l = 0 and passing the limitm�� in (3.22), we get (3.17).
The rest of the proof is similar to the proof of Theorem 3.1. �

Theorem 3.4. Let r < 1/3 and θ be positive real numbers, and let f : X � Y be a mapping
satisfying (3.16). Then there exists a unique Cauchy additive mapping h : X � Y such that

∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

2rθ
2� 8r

�x�3rX (3.24)

for all x � X .

Proof. It follows from (3.20) that

∥
∥
∥
∥g(x)�

1
2
g(2x)

∥
∥
∥
∥
Y
�

2r

2
θ�x�3rX (3.25)

for all x � X . Hence

∥
∥
∥
∥

1
2l
g
(

2lx
)

�
1
2m

g
(

2mx
)
∥
∥
∥
∥
Y
�

m�1
∑

j=l

∥
∥
∥
∥

1
2 j g

(

2 jx
)

�
1

2 j+1 g
(

2 j+1x
)
∥
∥
∥
∥
Y
�

2r

2

m�1
∑

j=l

8r j

2 j θ�x�
r
X

(3.26)

for all nonnegative integersm and l withm> l and all x � X .
It follows from (3.26) that the sequence 
(1/2n)g(2nx)� is a Cauchy sequence for all

x � X . Since Y is complete, the sequence 
(1/2n)g(2nx)� converges. So one can define the
mapping h : X � Y by

h(x) := lim
n��

1
2n

g
(

2nx
)

(3.27)

for all x � X . Moreover, letting l = 0 and passing the limitm�� in (3.26), we get (3.24).
The rest of the proof is similar to the proof of Theorem 3.1. �
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4. Stability of a functional inequality associated with a 3-variable
Cauchy additive functional equation

We prove the generalized Hyers-Ulam stability of a functional inequality associated with
a Jordan-von Neumann-type 3-variable Cauchy additive functional equation.

Theorem 4.1. Let r > 1 and θ be nonnegative real numbers, and let f : X � Y be a mapping
such that

∥
∥ f (x) + f (y) + f (z)

∥
∥
Y �

∥
∥ f (x+ y + z)

∥
∥
Y + θ

(

�x�rX +�y�
r
X +�z�

r
X

)

(4.1)

for all x, y,z � X . Then there exists a unique Cauchy additive mapping h : X � Y such that
∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

2r +2
2r � 2

θ�x�rX (4.2)

for all x � X .

Proof. Letting y = x and z =�2x in (4.1), we get
∥
∥2 f (x) + f (�2x)

∥
∥
Y �

(

2+2r
)

θ�x�rX (4.3)

for all x � X . Replacing x by �x in (4.3), we get
∥
∥2 f (�x) + f (2x)

∥
∥
Y �

(

2+2r
)

θ�x�rX (4.4)

for all x � X . Let g(x) := ( f (x)� f (�x))/2. It follows from (4.3) and (4.4) that
∥
∥2g(x)� g(2x)

∥
∥
Y �

(

2+2r
)

θ�x�rX (4.5)

for all x � X .
The rest of the proof is the same as in the proof of Theorem 3.1. �

Theorem 4.2. Let r < 1 and θ be positive real numbers, and let f : X � Y be a mapping
satisfying (4.1). Then there exists a unique Cauchy additive mapping h : X � Y such that

∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

2+2r

2� 2r
θ�x�rX (4.6)

for all x � X .

Proof. It follows from (4.5) that
∥
∥
∥
∥g(x)�

1
2
g(2x)

∥
∥
∥
∥
Y
�

2+2r

2
θ�x�rX (4.7)

for all x � X .
The rest of the proof is the same as in the proofs of Theorems 3.1 and 3.2. �

Theorem 4.3. Let r > 1/3 and θ be nonnegative real numbers, and let f : X � Y be a
mapping such that

∥
∥ f (x) + f (y) + f (z)

∥
∥
Y �

∥
∥ f (x+ y + z)

∥
∥
Y + θ � �x�rX � �y�

r
X � �z�

r
X (4.8)
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for all x, y,z � X . Then there exists a unique Cauchy additive mapping h : X � Y such that

∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

2rθ
8r � 2

�x�3rX (4.9)

for all x � X .

Proof. Letting y = x and z =�2x in (4.8), we get

∥
∥2 f (x) + f (�2x)

∥
∥
Y � 2rθ�x�3rX (4.10)

for all x � X . Replacing x by �x in (4.10), we get

∥
∥2 f (�x) + f (2x)

∥
∥
Y � 2rθ�x�3rX (4.11)

for all x � X . Let g(x) := ( f (x)� f (�x))/2. It follows from (4.10) and (4.11) that

∥
∥2g(x)� g(2x)

∥
∥
Y � 2rθ�x�3rX (4.12)

for all x � X .
The rest of the proof is the same as in the proofs of Theorems 3.1 and 3.3. �

Theorem 4.4. Let r < 1/3 and θ be positive real numbers, and let f : X � Y be a mapping
satisfying (4.8). Then there exists a unique Cauchy additive mapping h : X � Y such that

∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

2rθ
2� 8r

�x�3rX (4.13)

for all x � X .

Proof. It follows from (4.12) that

∥
∥
∥
∥g(x)�

1
2
g(2x)

∥
∥
∥
∥
Y
�

2r

2
θ�x�3rX (4.14)

for all x � X .
The rest of the proof is the same as in the proofs of Theorems 3.1 and 3.4. �

5. Stability of a functional inequality associated with the
Cauchy-Jensen functional equation

We prove the generalized Hyers-Ulam stability of a functional inequality associated with
a Jordan-von Neumann-type Cauchy-Jensen functional equation.

Theorem 5.1. Let r > 1 and θ be nonnegative real numbers, and let f : X � Y be a mapping
such that

∥
∥ f (x) + f (y) + 2 f (z)

∥
∥
Y �

∥
∥
∥
∥2 f

(
x+ y

2
+ z
)∥
∥
∥
∥
Y
+ θ
(

�x�rX +�y�
r
X +�z�

r
X

)

(5.1)
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for all x, y,z � X . Then there exists a unique Cauchy additive mapping h : X � Y such that

∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

2r +1
2r � 2

θ�x�rX (5.2)

for all x � X .

Proof. Replacing x by 2x and letting y = 0 and z =�x in (5.1), we get

∥
∥ f (2x) + 2 f (�x)

∥
∥
Y �

(

1+2r
)

θ�x�rX (5.3)

for all x � X . Replacing x by �x in (5.3), we get

∥
∥ f (�2x) + 2 f (x)

∥
∥
Y �

(

1+2r
)

θ�x�rX (5.4)

for all x � X . Let g(x) := ( f (x)� f (�x))/2. It follows from (5.3) and (5.4) that

∥
∥2g(x)� g(2x)

∥
∥
Y �

(

1+2r
)

θ�x�rX (5.5)

for all x � X . So

∥
∥
∥
∥g(x)� 2g

(
x

2

)∥
∥
∥
∥
Y
�

1+2r

2r
θ�x�rX (5.6)

for all x � X .
The rest of the proof is similar to the proof of Theorem 3.1. �

Theorem 5.2. Let r < 1 and θ be positive real numbers, and let f : X � Y be a mapping
satisfying (5.1). Then there exists a unique Cauchy additive mapping h : X � Y such that

∥
∥
∥
∥

f (x)� f (�x)
2

�h(x)
∥
∥
∥
∥
Y
�

1+2r

2� 2r
θ�x�rX (5.7)

for all x � X .
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Proof. It follows from (5.5) that
∥
∥
∥
∥g(x)�

1
2
g(2x)

∥
∥
∥
∥
Y
�

1+2r

2
θ�x�rX (5.8)

for all x � X .
The rest of the proof is similar to the proofs of Theorems 3.1 and 3.2. �

Acknowledgment

This work was supported by the second Brain Korea 21 Project.

References

[1] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied
Mathematics, no. 8, Interscience, New York, NY, USA, 1960.

[2] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 27, pp. 222–224, 1941.

[3] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the
American Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978.

[4] Th. M. Rassias, “Problem 16; 2, Report of the 27th International Symp. on Functional Equa-
tions,” Aequationes Mathematicae, vol. 39, pp. 292–293; 309, 1990.

[5] Z. Gajda, “On stability of additive mappings,” International Journal of Mathematics and Mathe-
matical Sciences, vol. 14, no. 3, pp. 431–434, 1991.
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