
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2007, Article ID 39345, 12 pages
doi:10.1155/2007/39345

Research Article
On Star Duality of Mixed Intersection Bodies

Lu Fenghong, Mao Weihong, and Leng Gangsong

Received 7 July 2006; Revised 22 October 2006; Accepted 30 October 2006

Recommended by Y. Giga

A new kind of duality between intersection bodies and projection bodies is presented.
Furthermore, some inequalities for mixed intersection bodies are established. A geomet-
ric inequality is derived between the volumes of star duality of star bodies and their asso-
ciated mixed intersection integral.

Copyright © 2007 Lu Fenghong et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction andmain results

Intersection bodies were first explicitly defined and named by Lutwak [1]. It was here that
the duality between intersection bodies and projection bodies was first made clear. De-
spite considerable ingenuity of earlier attacks on the Busemann-Petty problem, it seems
fair to say that the work of Lutwak [1] represents the beginning of its eventual solu-
tion. In [1], Lutwak also showed that if a convex body is sufficiently smooth and not
an intersection body, then there exists a centered star body such that the conditions of
Busemann-Petty problem hold, but the result inequality is reversed. Following Lutwak,
the intersection body of order i of a star body is introduced by Zhang [2]. It follows from
this definition that every intersection body of order i of a star body is an intersection body
of a star body, and vice versa. As Zhang observes, the new definition of intersection body
allows a more appealing formulation, namely, the Busemann-Petty problem has a posi-
tive answer in n-dimensional Euclidean space if and only if each centered convex body is
an intersection body. The intersection body plays an essential role in Busemann’s theory
[3] of area in Minkowski spaces.

In [4], Moszyńska introduced the notion of the star dual of a star body. Generally, star
dual of a convex body is different from its polar dual. For every convex body K , let K∗

and Ko denote the polar body and the star dual of K , respectively.
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In recent years, some authors including Haberl and Ludwig [5], Kalton and Koldob-
sky [6], Klain [7, 8], Koldobsky [9], Ludwig [10, 11], and so on have given considerable
attention to the intersection bodies and their various properties. The aim of this paper
is to establish several inequalities about the star dual version of intersection bodies. We
establish the star dual version of the general Busemann intersection inequality.

Theorem 1.1. Let K1, . . . ,Kn−1 be star bodies in Rn. Then

V
(
K1
)···V(Kn−1

)
V
(
Io
(
K1, . . . ,Kn−1

))≥
(

ωn

ωn−1

)n
(1.1)

with equality if and only if K1, . . . ,Kn−1 are dilates of centered balls.

Theorem 1.1 is an analogue of the general Petty projection inequality which was given
by Lutwak [12], concerning the polar duality of convex bodies.

Theorem 1.2. Let K1, . . . ,Kn−1 be convex bodies in Rn. Then

V
(
K1
)···V(Kn−1

)
V
(
Π∗
(
K1, . . . ,Kn−1

))≤
(

ωn

ωn−1

)n
(1.2)

with equality if and only if K1, . . . ,Kn−1 are homothetic ellipsoids.

For two star bodiesK and L, letK+̆L denote the radial Blaschke sum ofK and L [1].We
establish the dual Brunn-Minkowski inequality for the star duality of mixed intersection
bodies concerning the radial Blaschke sum.

Theorem 1.3. If K , L are star bodies in Rn and 0≤ i < n, then

W̃i
(
Io
(
K+̆L

))−1/(n−i) ≥ W̃i
(
IoK

)−1/(n−i)
+ W̃i

(
IoL
)−1/(n−i)

(1.3)

with equality if and only if K and L are dilates. For i > n, inequality (1.3) is reversed.

Theorem 1.3 is an analogue of the general Brunn-Minkowski inequality for the polar
duality of mixed projection bodies concerning the Blaschke sum [1].

Theorem 1.4. If K ,L are convex bodies in Rn and 0≤ i < n, then

W̃i
(
Π∗
(
K+̇L

))−1/(n−i) ≥ W̃i
(
Π∗K

)−1/(n−i)
+ W̃i

(
Π∗L

)−1/(n−i)
(1.4)

with equality if and only if K and L are dilates. For i > n, inequality (1.4) is reversed.

Besides, we establish the following relationship between star duality and intersection
operator I .

Theorem 1.5. If K1, . . . ,Kn−1 are star bodies in Rn, then

ω2
n−1I

o
(
K1, . . . ,Kn−1

)⊂ I
(
Ko
1 , . . . ,K

o
n−1
)

(1.5)

with equality if and only if K1, . . . ,Kn−1 are dilates of centered balls.
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In Section 2, some basic definitions and facts are restated. The elementary results (and
definitions) are from the theory of convex bodies. The reader may consult the standard
works on the subject [13, 14] for reference. Some properties and inequalities of star du-
ality are established in Section 3. A general Busemann intersection inequality and its star
dual forms are derived; the Brunn-Minkowski inequalities for the star dual and other
inequalities are given in Section 4. By using the inequalities concerning star duality of
mixed intersection bodies, a geometric inequality is derived between the volumes of star
duality of star bodies and their associated mixed intersection integral in Section 5.

2. Basic definitions and notation

As usual, let B denote the unit ball in Euclidean n-space, Rn. While its boundary is Sn−1

and the origin is denoted by o, let ωi denote the volume of the i-dimensional unit ball.
If u is a unit vector, that is, an element of Sn−1, we denote by u⊥ the (n− 1)-dimensional
linear subspace orthogonal to u.

For a compact subset L of Rn, with o ∈ L, star-shaped with respect to o, the radial
function ρ(L,·) : Sn−1→R is defined by

ρ(L,u)= ρL(u)=max{λ : λu∈ L}. (2.1)

If ρ(L,·) is continuous and positive, L will be called a star body.
Let �n

o denote the set of star bodies in Rn. Two star bodies K ,L ∈ �n
o are said to be

dilatate(of each other) if ρ(K ,u)/ρ(L,u) is independent of u∈ Sn−1 .

2.1. Dual-mixed volume. If xi ∈ Rn, 1 ≤ i ≤ m, then x1+̃··· +̃xm is defined to be the
usual vector sum of the points xi, if all of them are contained in a line through origin, and
0 otherwise.

If Ki ∈�n
o and ti ≥ 0, 1≤ i≤m, then the radial linear combination, t1K1+̃··· +̃tmKm,

is defined by

t1K1+̃··· +̃tmKm =
{
t1x1+̃··· +̃tmxm : xi ∈ Ki

}
. (2.2)

Moreover, for each u∈ Sn−1,

ρt1K1+̃t2K2
(u)= t1ρK1 (u) + t2ρK2 (u). (2.3)

If L∈�n
o , then the polar coordinate formula for volume is

V(L)= 1
n

∫

Sn−1
ρL(u)ndS(u). (2.4)

Let Lj ∈�n
o (1≤ j ≤ n). The dual-mixed volume Ṽ(L1, . . . ,Ln) is defined by Lutwak in

[15, 16] by

Ṽ
(
L1, . . . ,Ln

)= 1
n

∫

Sn−1
ρL1 (u)···ρLn(u)dS(u). (2.5)

If K1 = ··· = Kn−i = K , Kn−i+1 = ··· = Kn = L, the dual-mixed volumes are written as
Ṽi(K ,L) and the dual-mixed volumes Ṽi(K ,B) are written as W̃i(K).
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Let L∈�n
o , i∈Rn, the dual quermassintegrals W̃i(L) is defined by Lutwak in [15] by

W̃i(L)= 1
n

∫

Sn−1
ρL(u)n−idS(u). (2.6)

If K is a star body in Rn and u ∈ Sn−1, then we use K ∩ u⊥ to denote the intersec-
tion of K with the subspace u⊥ that passes through the origin and is orthogonal to u.
If K1, . . . ,Kn−1 are star bodies in Rn and u ∈ Sn−1, then the (n− 1)-dimensional dual-
mixed volume of K1 ∩ u⊥, . . . ,Kn−1 ∩ u⊥ in u⊥ is written ṽ(K1 ∩ u⊥, . . . ,Kn−1 ∩ u⊥). If
K1 = ··· = Kn−i−1 = K and Kn−i = ··· = Kn−1 = B, then ṽ(K1∩u⊥, . . . ,Kn−1∩u⊥) is just
the ith dual quermassintegrals of K ∩ u⊥ in u⊥, it will be denoted by w̃i(K ∩ u⊥) and is
called the (n− i− 1)-section of K in the direction u. The (n− 1)-dimensional volume of
K ∩u⊥ will be written v(K ∩u⊥) rather than w̃0(K ∩u⊥).

2.2.Mixed intersection bodies. LetK ∈�n
o . The intersection body IK ofK is a star body

such that [1]

ρIK (u)= v
(
K ∩u⊥

)= 1
n− 1

∫

Sn−1∩u⊥
ρK (v)n−1dλn−2(v), (2.7)

where λi denote the i-dimensional volume.
Let K1, . . . ,Kn−1 ∈ �n

o . The mixed intersection body I(K1, . . . ,Kn−1) of star bodies
K1, . . . ,Kn−1 is defined by

ρI(K1,...,Kn−1)(u)= ṽ
(
K1∩u⊥, . . . ,Kn−1∩u⊥

)= 1
n− 1

∫

Sn−1∩u⊥
ρK1 (v)···ρKn−1 (v)dλn−2(v).

(2.8)

If K1 = ··· = Kn−i−1 = K , Kn−i = ··· = Kn−1 = L, then I(K1, . . . ,Kn−1) will be denoted
as Ii(K ,L). If L = B, then Ii(K ,B) is called the intersection body of order i of K ; it will
often be written as IiK . Specially, I0K = IK . This term was introduced by Zhang [2].

Let K ∈�n
o and i ∈ R, the intersection body of order i of K is the centered star body

IiK such that [2]

ρIiK (u)=
1

n− 1

∫

Sn−1∩u⊥
ρn−1−iK (v)dλn−2(v). (2.9)

If K ,L ∈ �n
o and λ,μ ≥ 0 (not both zero), then for each u ∈ Sn−1, the radial Blaschke

linear combination, λ ·K+̆μ ·L, is the star body whose radial function is given by [15]

ρ(λ ·K+̆μ ·L,u)n−1 = λρ(K ,u)n−1 +μρ(L,u)n−1. (2.10)

It is easy to verify the following relation between radial Blaschke and radial Minkowski
scalar multiplication: if K ∈�n

o and λ≥ 0, then λ ·K = λ1/(n−1)K .
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The following properties will be used later: if K ,L∈�n
o and λ,μ≥ 0, then

I(λ ·K+̆μ ·L)= λIK+̃μIL. (2.11)

3. Inequalities for star duality of star body

Also associated with a star body L ∈ �n
o is its star duality Lo, which was introduced by

Moszyńska [4](and was improved in [17]). Let i be the inversion of Rn\{0}, with respect
to Sn−1,

i(x) := x

‖x‖2 . (3.1)

Then the star duality Lo of a star body L∈�n
o is defined by

Lo = cl
(
Rn\i(L)). (3.2)

It is easy to verify that for every u∈ Sn−1 [4],

ρ
(
Lo,u

)= 1
ρ(L,u)

. (3.3)

By applying the conception of star duality, we establish the following properties for
star body and its star duality.

Theorem 3.1. If K ∈�n
o and i∈R, then

W̃2n−i
(
Ko
)= W̃i(K). (3.4)

Proof. From definition (2.6), equality (3.3), and definition (2.6) again, we have

W̃2n−i
(
Ko
)= 1

n

∫

Sn−1
ρ
(
Ko,u

)n−(2n−i)
dS(u)= 1

n

∫

Sn−1
ρ(K ,u)n−idS(u)= W̃i(K). (3.5)

�

In particular, for i= 0 in Theorem 3.1, we have

W̃2n
(
Ko
)=V(K). (3.6)

The following statement is an analogue of the Blaschke-Santaló inequality [3] for dual
quermassintegrals of star bodies.

Theorem 3.2. If K ∈�n
o and i∈R, then

W̃i(K)W̃i
(
Ko
)≥ ω2

n (3.7)

with equality if and only if K is a centered ball.
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Proof. From equality (3.3), Hölder inequality [18], and definition (2.6), we have

ωn = 1
n

∫

Sn−1
1dS(u)= 1

n

∫

Sn−1
ρ(K ,u)(n−i)/2ρ(K ,u)−(n−i)/2dS(u)

= 1
n

∫

Sn−1
ρ(K ,u)(n−i)/2ρ

(
Ko,u

)(n−i)/2
dS(u)

≤
(
1
n

∫

Sn−1
ρ(K ,u)n−idS(u)

)1/2(
1
n

∫

Sn−1
ρ
(
Ko,u

)n−i
dS(u)

)1/2

= W̃i(K)1/2W̃i
(
Ko
)1/2

.

(3.8)

According to the equality condition of Hölder inequality, we know that equality in in-
equality (3.7) holds if and only if K is a centered ball. �

In particular, for i= 0 in Theorem 3.2, we have the following.

Corollary 3.3. If K ∈�n
o , then

V(K)V
(
Ko
)≥ ω2

n (3.9)

with equality if and only if K is a centered ball.

Inequality (3.9) just is an analogue of the Blaschke-Santaló inequality [3] of convex
bodies.

Corollary 3.4. If K is a convex body in Rn, then

V(K)V
(
K∗
)≤ ω2

n (3.10)

with equality if and only if K is an ellipsoid.

4. Star dual intersection inequalities

The following theorem is the general Busemann intersection inequality involving the vol-
ume of a convex body and that of its associated intersection bodies.

Theorem 4.1 (general Busemann intersection inequality). Let K1, . . . ,Kn−1 be star bodies
in Rn. Then,

V
(
I
(
K1, . . . ,Kn−1

))≤ ωn
n−1

ωn−2
n

V
(
K1
)···V(Kn−1

)
(4.1)

with equality if and only if all K1, . . . ,Kn−1 are dilates of centered ellipsoids.
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Let K1 = ··· = Kn−1 = L in Theorem 4.1, we get the Busemann intersection inequality,
which was established by Busemann [19].

Corollary 4.2. If K is a star body in Rn, then

V(IK)≤ ωn
n−1

ωn−2
n

V(K)n−1 (4.2)

with equality if and only if K is a centered ellipsoid.

Proof of Theorem 4.1. From definition (2.4), definition (2.8), Hölder inequality [18], def-
inition (2.7), Hölder inequality, definition (2.4) again, and inequality (4.2), it follows that

V
(
I
(
K1, . . . ,Kn−1

))= 1
n

∫

Sn−1
ρ
(
I
(
K1, . . . ,Kn−1

)
,u
)n
dS(u)

= 1
n

∫

Sn−1

(
1

n− 1

∫

Sn−1∩u⊥
ρ
(
K1,v

)···ρ(Kn−1,v
)
dλn−2(v)

)n

dS(u)

≤ 1
n

∫

Sn−1

(
1

n− 1

∫

Sn−1∩u⊥
ρ
(
K1,v

)n−1
dλn−2(v)

)n/(n−1)

×···
(

1
n− 1

∫

Sn−1∩u⊥
ρ
(
Kn−1,v

)n−1
dλn−2(v)

)n/(n−1)
dS(u)

= 1
n

∫

Sn−1

(
ρ
(
IK1,u

)···ρ(IKn−1,u
))n/(n−1)

dS(u)

≤
(
1
n

∫

Sn−1
ρ
(
IK1,u

)n
dS(u)

)1/(n−1)

×···
(
1
n

∫

Sn−1
ρ
(
IKn−1,u

)n
dS(u)

)1/(n−1)

=V
(
IK1

)1/(n−1) ···V(IKn−1
)1/(n−1) ≤ ωn

n−1
ωn−2
n

V
(
K1
)···V(Kn−1

)
.

(4.3)

According to the equality conditions of Hölder inequality and inequality (4.2), equality
holds in inequality (4.1) if and only if Ki are dilates of centered ellipsoids. �

The following statement is the star duality of the general Busemann intersection in-
equality.

Theorem 4.3. Let L1, . . . ,Ln−1 be star bodies in Rn. Then,

V
(
L1
)···V(Ln−1

)
V
(
I◦
(
L1, . . . ,Ln−1

))≥
(

ωn

ωn−1

)n
(4.4)

with equality if and only if all Li (i= 0,1, . . . ,n− 1) are dilates of centered balls.
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Proof. Combing inequality (3.9) with inequality (4.1), we have

V
(
K1
)···V(Kn−1

)
V
(
Io
(
K1, . . . ,Kn−1

))≥
(

ωn

ωn−1

)n
. (4.5)

According to the equality conditions of inequality (3.9) and inequality (4.1), equality
holds if and only if Ki (i= 0,1, . . . ,n− 1) are dilates of centered balls. �

Theorem 4.3 is an analogue of the general Petty projection inequality which was given
by Lutwak [12] concerning the polar duality of convex bodies.

In particular, let L1 = ··· = Ln−1 = L in Theorem 4.3, we get the following.

Corollary 4.4. Let L∈�n
o . Then,

V(L)n−1V
(
I◦L
)≥

(
ωn

ωn−1

)n
(4.6)

with equality if and only if L is a centered ball.

This is just an analogue of the Petty projection inequality concerning the polar duality
of convex bodies, which was given by Petty [20].

Corollary 4.5. Let K be a convex body in Rn. Then,

V(K)n−1V
(
Π∗K

)≤
(

ωn

ωn−1

)n
(4.7)

with equality if and only if K is an ellipsoid.

There is a relationship between star duality and the operator I .

Theorem 4.6. If K1, . . . ,Kn−1 ∈�n
o , then

ω2
n−1I

o
(
K1, . . . ,Kn−1

)⊂ I
(
Ko
1 , . . . ,K

o
n−1
)

(4.8)

with equality if and only if K1, . . . ,Kn−1 are dilates of centered balls.

Proof. From equality (3.3), definition (2.8), and Hölder inequality [18], we obtain

ρ
(
Io
(
K1, . . . ,Kn−1

)
,u
)−1

ρ
(
I
(
Ko
1 , . . . ,K

o
n−1
)
,u
)

= ρ
(
I
(
K1, . . . ,Kn−1

)
,u
)
ρ
(
I
(
Ko
1 , . . . ,K

o
n−1
)
,u
)

= 1
(n− 1)2

∫

Sn−1∩u⊥
ρK1 (v)···ρKn−1 (v)dλn−2(v)

∫

Sn−1∩u⊥
ρKo

1
(v)···ρKo

n−1 (v)dλn−2(v)

≥ 1
(n− 1)2

(∫

Sn−1∩u⊥
1dλn−2(v)

)2

= ω2
n−1.

(4.9)

Thus we get the inequality (4.8).
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According to the equality conditions of Hölder inequality, equality in inequality (4.8)
holds if and only if Ki are dilates of centered balls. �

In particular, for K1 = ··· = Kn−1−i = K , Kn−i = ··· = Kn−1 = B in Theorem 4.6, we
have the following statement which is a result of [4].

Corollary 4.7. If K ∈�n
o and 0≤ j < n− 1, then

ω2
n−1I

o
j K ⊂ I jK

o (4.10)

with equality if and only if K is a centered ball.

By using Theorem 4.6, we obtain the following theorem.

Theorem 4.8. If K1, . . . ,Kn−1 ∈�n
o , then

(i)

V
(
I
(
K1, . . . ,Kn−1

))
V
(
I
(
Ko
1 , . . . ,K

o
n−1
))≥ ω2

nω
2n
n−1, (4.11)

(ii)

V
(
K1
)···V(Kn−1

)
V
(
I
(
Ko
1 , . . . ,K

o
n−1
))≥ (ωnωn−1

)n
(4.12)

with equality in each inequality if and only if K1, . . . ,Kn−1 are dilates of centered ball.

Proof. (i) From inequality (4.8) and inequality (3.9), we have

V
(
I
(
K1, . . . ,Kn−1

))
V
(
I
(
Ko
1 , . . . ,K

o
n−1
))

≥ ω2n
n−1V

(
I
(
K1, . . . ,Kn−1

))
V
(
I
(
Ko
1 , . . . ,K

o
n−1
))≥ ω2

nω
2n
n−1.

(4.13)

According to the equality conditions of inequality (4.8) and inequality (3.9), equality in
inequality (4.11) holds if and only if Ki are dilates of centered balls.

(ii) From inequality (4.1) and inequality (4.11), we get

ω2
nω

2n
n−1 ≤V

(
I
(
K1, . . . ,Kn−1

))
V
(
I
(
Ko
1 , . . . ,K

o
n−1
))

≤ ωn
n−1

ωn−2
n

V
(
Ko
1

)···V(Ko
n−1
)
V
(
I
(
K1, . . . ,Kn−1

))
.

(4.14)

Therefore, we obtain inequality (4.12).
According to the equality conditions of inequality (4.1) and inequality (4.11), equality

in inequality (4.12) holds if and only if Ki are dilates of centered balls. �
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Proof of Theorem 1.3. From definition (2.6), equality (3.3), equality (2.11), Minkowski
integral inequality [18], and definition (2.6) again, it follows that for 0≤ i < n,

W̃i
(
Io
(
K+̆L

))−1/(n−i) =
(
1
n

∫

Sn−1
ρ
(
Io
(
K+̆L

)
,u
)n−i

dS(u)

)−1/(n−i)

=
(
1
n

∫

Sn−1
ρ
(
I
(
K+̃L

)
,u
)−(n−i)

dS(u)

)−1/(n−i)

=
(
1
n

∫

Sn−1

(
ρ(IK ,u) + ρ(IK ,u)

)−(n−i)
dS(u)

)−1/(n−i)

≥
(
1
n

∫

Sn−1
ρ(IK ,u)−(n−i)dS(u)

)−1/(n−i)

+

(
1
n

∫

Sn−1
ρ(IK ,u)−(n−i)dS(u)

)−1/(n−i)

= W̃i
(
IoK

)−1/(n−i)
+ W̃i

(
IoL
)−1/(n−i)

.

(4.15)

According to the equality conditions of Minkowski inequality, equality in inequality (1.5)
holds if and only if K and L are dilates. For i > n, inequality (1.3) is reversed. �

5. Mixed intersection integrals

For star bodies K1, . . . ,Kn in Rn and a fixed integer r with 0 ≤ r < n, we define the rth
mixed intersection integral of K1, . . . ,Kn by

Jr
(
K1, . . . ,Kn

)= ωn−r−2

nωn
n−1

∫

Sn−1
w̃r
(
K1∩u⊥

)··· w̃r
(
Kn∩u⊥

)
dS(u). (5.1)

For K1 = ··· = Kn = B, a trivial computation shows that

Jr(B, . . . ,B)= ωn−r−1
n . (5.2)

The following lemma will be used later.

Lemma 5.1. K ,L∈�n
o and 0≤ r < n− 1, then

V
(
Ior K

)= 1
n

∫

Sn−1
w̃r
(
K ∩u⊥

)−n
dS(u). (5.3)

From definition (2.4), definition (2.9), Lemma 5.1 easily follows.
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For 0≤ r < n− 1, apply the Hölder inequality, use equality (5.3), and we obtain

(
1
n

∫

Sn−1

(
w̃r
(
K1∩u⊥

)··· w̃r
(
Kn∩u⊥

))−1
dS(u)

)n

≤V
(
Ior K1

)···V(Ior Kn
)

(5.4)

with equality if and only if (for all i, j) the (n− 1− r)-sections of Ki and Kj are propor-
tional.

From Jensen’s inequality [18], we get

nωn−r
n ≤ ωn

n−1Jr
(
K1, . . . ,Kn

)1
n

∫

Sn−1

(
w̃r
(
K1∩u⊥

)··· w̃r
(
Kn∩u⊥

))−1
dS(u). (5.5)

If we combine inequalities (4.2), (4.10), (5.4), and (5.5), we obtain the following.

Theorem 5.2. If K1, . . . ,Kn−1 are star bodies in Rn and 0≤ r < n− 1, then

ω2n(n−r−1)
n ≤ Jr

(
K1, . . . ,Kn

)n(
V
(
Ko
1 , . . . ,K

o
n

))n−r−1
(5.6)

with equality if and only if K1, . . . ,Kn are centered balls.

Theorem 5.2 is just an analogue of the geometric inequality between the volumes of
convex bodies and their associated mixed projection integrals which was given by Lutwak
[12].
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