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1. Introduction

Let X, = {x;}], pn = {p:i}] denote two sequences of positive real numbers with > 7 p; = 1.
From Theory of Convex Means (cf. [1-3]), the well-known Jensen’s inequality states that
fort<Qort>1,
n n t
D pixi = (Zpixi) , (1.1)
1

1

and vice versa for 0 < ¢ < 1. The equality sign in (1.1) occurs if and only if all members of
X, are equal (cf. [1, page 15]). In this article, we will consider the difference

n n t
di=d"” = d" (% Pu) := > pix! — <Zpixi> , teR/{0,1}. (1.2)
1 1

By the above, d; is identically zero if and only if all members of the sequence X, are equal;
hence this trivial case will be excluded in the sequel. An interesting fact is that there exists
an explicit constant ¢, independent of the sequences X, and p, such that

dsdy = Cs,t(d(s+t)/2)2 (1.3)
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for each s,t € R/{0,1}. More generally, we will prove the following inequality:

M) T =) T )T, —c<r<s<t<+o, (1.4)
where
Pp— dt
A= (i—1) t#0,1,
Ao :=log (Z p,-x,-) - zpi log x;; A= Zp,-x,- log x; — (Z ppc,») log Zpix,-.
1 1 1 1 1
(1.5)

This inequality is very precise. For example (n = 2),

odi— (h)” = 712(P1P2)2(1+P1P2)(x1 - )", (1.6)
Remark 1.1. Note that from (1.1) follows A; > 0, t#0, 1, assuming that not all members
of X, are equal. The same is valid for 1 and 1;. Corresponding integral inequalities will
also be given. As a consequence of Theorem 2.2, a whole variety of applications arise. For
instance, we obtain a substantial improvement of Jensen’s inequality and a converse of
Holder’s inequality, as well. As an application to probability theory, we give a generalized
form of Lyapunov-like inequality for moments of distributions with support on (0, o).

An inequality between the Kullback-Leibler divergence and Hellinger distance will also
be derived.

2. Results

Our main result is contained in the following.

THEOREM 2.1. For }NM Xy, dy defined as above, then

— dt
CHt—1)

A (2.1)

is log-convex for t € I := (—00,0) U (0,1) U (1,+00). As a consequence, the following general
inequality is obtained.

THEOREM 2.2. For —o0 <r <s<t<+oo, then
A< () )T (2.2)

with
)LO c= log (z pixi) — ZP; IOg Xiy
1 1
A= Zpixi log x; — (Zpixz) log (ZPW)-
1 1 1

(2.3)
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Applying standard procedure (cf. [1, page 131]), we pass from finite sums to definite inte-
grals and obtain the following theorem.

TuEOREM 2.3. Let f(x), p(x) be nonnegative and integrable functions for x € (a,b), with
1% p(x)dx = 1.Denote

—Dy(ab, f,p) = Lb () f(x)dx - (Jb p(x) f(x)dx)s. (2.4)

ForO<r<s<tr,s,t#1, then

@) @) @) 2s)

3. Applications

Finally, we give some applications of our results in analysis, probability, and informa-
tion theory. Also, since the involved constants are independent on n, we will write > (-)

instead of >.7(+).

3.1. An improvement of Jensen’s inequality. By the inequality (2.2) various improve-
ments of Jensen’s inequality (1.1) can be established such as the following proposition.

ProposITION 3.1. There exist
(i) fors >3,

s s—2
> pixi = (sz‘xi) + (;) (%) da; (3.1)

(i) for0<s< 1,

s s(1—s) (3@)“
ix; < iXi) — =\ d, 3.2
Yot (Zpw) S5 () & (3.2)
where d, and ds are defined as above.

3.2. A converse of Holder’s inequality. The following converse statement holds.

ProposiTiON 3.2. Let {a;}, {b;}, i=1,2,..., be arbitrary sequences of positive real numbers
and 1/p+1/q=1, p>1. Then

pal (Sa) " (Ze1) " - San|
(zaplogbq (> al )1og§bZ)1/p(qulogp (> b7)10 §p>

(3.3)

For 0 < p < 1, the inequality (3.3) is reversed.
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3.3. A new moments inequality. Apart from Jensen’s inequality, in probability theory is
very important Lyapunov moments inequality which asserts that for 0 < m < n < p,

(EX")P™™ < (EX™)P " (EXP)"™. (3.4)
This inequality is valid for any probability law with support on (0,+). A consequence
of Theorem 2.2 gives a similar but more precise moments inequality.

ProrosiTioN 3.3. For 1 < m < n < p and for any probability distribution P with supp P =
(0,+00), then

(EX" — (EX)")!™ < C(m,n, p) (EX™ — (EX)™)""(EXF — (EX)")"", (3.5)

where the constant C(m,n, p) is given by

"

P

There remains an interesting question: under what conditions on m, n, p is the inequality
(3.5) valid for distributions with support on (—oo,+0c0)?

C(m,n,p) = (3.6)

3.4. An inequality on symmetrized divergence. Define probability distributions P and
Q of a discrete random variable by

PX=i)=py, QX=i)=gq, i=12..., >pi=>g-=L (3.7)

Among the other quantities, of importance in information theory, are Kullback-Leibler
divergence Dk (P[|Q) and Hellinger distance H(P,Q), defined to be

Die(PIIQ) = S pilog 2%,
4 (3.8)

H(P,Q) =1/ (VB —va,)".

The distribution P represents here data, observations, while Q typically represents a
model or an approximation of P. Gibbs’ inequality states that Dk (P[Q) = 0 and
Dxr(Pl|Q) = 0ifand only if P = Q. It is also well known that

Dk (PIQ) = H*(P,Q). (3.9)
Since Kullback and Leibler themselves (see [4]) defined the divergence as
D1 (PIlQ) + Dk (QIIP), (3.10)

we will give a new inequality for this symmetrized divergence form.

ProrosiTION 3.4. Let

D (PlIQ) + Dk (QIIP) = 4H*(P,Q). (3.11)
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4. Proofs

Before we proceed with proofs of the above assertions, we give some preliminaries which
will be used in the sequel.

Definition 4.1. It is said that a positive function f(s) is log-convex on some open interval
Iif
s+t
FOf0= 72 (5) (41)
for each s,t € I.
We quote here a useful lemma from log-convexity theory (cf. [5], [6, pages 284—286].

LEmMa 4.2. A positive function f is log-convex on I if and only if the relation

f(s)u2+2f<%t)uw+f(t)w2 >0 (4.2)

holds for each real u, w, and s,t € I. This result is nothing more than the discriminant test
for the nonnegativity of second-order polynomials. Another well-known assertions are the
following (cf. [1, pages 74, 97-98]).

LemMa 4.3. If g(x) is twice differentiable and g'' (x) = 0 on I, then g(x) is convex on I and

> pigli) = g( > pixi) (4.3)

foreach x; € I, i=1,2,..., and any positive weight sequence {p;}, > pi = 1.

Lemma 4.4. If ¢(s) is continuous and convex for all s, 5, s3 of an open interval I for which
51 < 8 < s3, then

¢(s1) (s3—52) +¢(s2) (51— 53) +P(s3) (52— 1) = 0. (4.4)

Proof of Theorem 2.1. Consider the function f (x,u,w,r,s,t) given by

, X X , o«

yUs W Ty )t = = +2 + 5 45
fx,u,w,r,s,t) := f(x) us(s—l) uwr(r—l) w oD (4.5)
where r:= (s+1t)/2 and u, w, r, s, t are real parameters with r,s,t ¢ {0,1}. Since

f7(x) = x4+ 2uwx" 2+ wlxt 2 = (w2 + wx”2 1) >0, x>0, (4.6)

by Lemma 4.3, we conclude that f(x) is convex for x > 0. Hence, by Lemma 4.3 again,

5 > pixi > pix] 5 zpixf 2 (Zpixi)S (Zpixi)r 2 (Zpixi)t
e T o T - Y o) T o Y o)
(4.7)
that is,

WA+ 2uwh, + w2, = 0 (4.8)
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holds for each u,w € R. By Lemma 4.2 this is possible only if
Ade = A7 = A0 (4.9)
and the proof is done. O

Proof of Theorem 2.2. Note that the function A; is continuous at the pointss = 0 and s = 1
since

Ao :=lim A = log (Z Pixi> ~ 2. pilog xi
s— 1 1
Ay i=limAds = > pixilog xi — (me) log (zpf’“)'
s— 1 1 1

Therefore, log A; is a continuous and convex function for s € R. Applying Lemma 4.4 for
—00 <r<s§s<t<+oo,weget

(4.10)

(t—r)logAs < (t —s)logA, + (s —r)logA,, (4.11)
which is equivalent to the assertion of Theorem 2.2. O

Remark 4.5. The method of proof we just exposed can be easily generalized. This is left
to the reader.

Proof of Theorem 2.3 can be produced by standard means (cf. [1, pages 131-134]) and
therefore is omitted.

Proof of Proposition 3.1. Applying Theorem 2.2 with 2 < 3 <5, we get
A7 A = A5 (4.12)
that is,

_2pix - (S pixi) (M 2
A= s(s—1) - (/\2) Ao, (4.13)

and the proof of Proposition 3.1, part (i), follows. Taking 0 < s < 1 <2 < 3 in Theorem 2.2
and proceeding as before, we obtain the proof of the part (ii). Note that in this case

(Zpixi)s - Zpixf_

= 4.14
s s(1—5s) ( D)
Proof of Proposition 3.2. From Theorem 2.2, forr = 0,5 =35, t = 1, we get
A < A) A, (4.15)
that is,
(X pixi)’ — 3 pix;
s(1—s) (4.16)

1-s N

< (logZpixi - Zpilog x,') (Z pixilog x; — (Z p,'xi) logZp,-x,-) .
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Putting

1 .
s=—, 1-s5s=—; pi=<7 Xi=-g i=12,., (4.17)
p q > bl b

after some calculations, we obtain the inequality (3.3). In the case 0< p < 1, put r =0,
s=1,t=sand proceed as above. O

Proof of Proposition 3.3. For a probability distribution P of a discrete variable X, defined
by

PX=xi)=pi, i=12,..; Dpi=1, (4.18)
its expectance EX and moments EX" of rth-order (if exist) are defined by
EX:= > pixs  EX':= > puxl. (4.19)
Since supp P = (0, 0), for 1 < m < n < p, the inequality (2.2) reads

n—m

(FBe) =) Gesh)

(4.20)

which is equivalent with (3.5). If P is a distribution with a continuous variable, then, by
Theorem 2.3, the same inequality holds for

EX:= Jm (dP(r);  EX'i= r £ dP(t) < o. (421)
0 0
(I
Proof of Proposition 3.4. Putting s = 1/2 in (4.16), we get
12
(logZpixi - Zp,-log xi> (Z pixilog x; — (Z p,-xi) logZp,-xi>
12
=4((Xpm) -2 p”).

Now, for x; = qi/pi, i = 1,2,..., and taking in account that >’ p; = >’ q; = 1, we obtain

1/2

(4.22)

VDxL(PIQ)DxL(QIP) = 4(1= 3 ypigi) =23 (pi+qi — 2y/pidi) = 2HX(P,Q).
(4.23)

Therefore,

Dk (PIQ) + Dx(QlIP) = 2\/DKL(P||Q)DKL(Q||P) > 4H*(P,Q). (4.24)
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