Research Article
 Spectrum of Class $w F(p, r, q)$ Operators

Jiangtao Yuan and Zongsheng Gao
Received 23 November 2006; Accepted 16 May 2007
Dedicated to Professor Daoxing Xia on his 77th birthday with respect and affection
Recommended by Jozsef Szabados

This paper discusses some spectral properties of class $w F(p, r, q)$ operators for $p>0$, $r>0, p+r \leq 1$, and $q \geq 1$. It is shown that if T is a class $w F(p, r, q)$ operator, then the Riesz idempotent E_{λ} of T with respect to each nonzero isolated point spectrum λ is selfadjoint and $E_{\lambda} \mathscr{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$. Afterwards, we prove that every class $w F(p, r, q)$ operator has SVEP and property (β), and Weyl's theorem holds for $f(T)$ when $f \in H(\sigma(T))$.

Copyright © 2007 J. Yuan and Z. Gao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A capital letter (such as T) means a bounded linear operator on a complex Hilbert space \mathscr{H}. For $p>0$, an operator T is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$, where T^{*} is the adjoint operator of T. An invertible operator T is said to be log-hyponormal if $\log \left(T^{*} T\right) \geq \log \left(T T^{*}\right)$. If $p=1, T$ is called hyponormal, and if $p=1 / 2 T$ is called semihyponormal. Log-hyponormality is sometimes regarded as 0 -hyponormal since ($X^{p}-$ 1) $/ p \rightarrow \log X$ as $p \rightarrow 0$ for $X>0$.

See Martin and Putinar [1] and Xia [2] for basic properties of hyponormal and semihyponormal operators. Log-hyponormal operators were introduced by Tanahashi [3], Aluthge and Wang [4], and Fujii et al. [5] independently. Aluthge [6] introduced phyponormal operators.

As generalizations of p-hyponormal and log-hyponormal operators, many authors introduced many classes of operators. Aluthge and Wang [4] introduced w-hyponormal operators defined by $|\widetilde{T}| \geq|T| \geq\left|(\widetilde{T})^{*}\right|$, where the polar decomposition of T is $T=U|T|$ and $\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$ is called Aluthge transformation of T. For $p>0$ and $r>0$, Ito [7]
introduced class $w A(p, r)$ defined by

$$
\begin{equation*}
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{r /(p+r)} \geq\left|T^{*}\right|^{2 r}, \quad\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{s /(p+r)} \leq|T|^{2 p} \tag{1.1}
\end{equation*}
$$

Note that the two exponents $r /(p+r)$ and $p /(p+r)$ in the formula above satisfy $r /$ $(p+r)+p /(p+r)=1$, Yang and Yuan [8] introduced class $w F(p, r, q)$.

Definition 1.1 (see [8, 9]). For $p>0, r>0$, and $q \geq 1$, an operator T belongs to class $w F(p$, r, q) if

$$
\begin{equation*}
\left(\left|T^{*}\right|^{r}|T|^{2 p}\left|T^{*}\right|^{r}\right)^{1 / q} \geq\left|T^{*}\right|^{2(p+r) / q}, \quad|T|^{2(p+r)(1-1 / q)} \geq\left(|T|^{p}\left|T^{*}\right|^{2 r}|T|^{p}\right)^{(1-1 / q)} . \tag{1.2}
\end{equation*}
$$

Denote $\left(1-q^{-1}\right)^{-1}$ by q^{*} when $q>1$ because q and $\left(1-q^{-1}\right)^{-1}$ are a couple of conjugate exponents. It is clear that class $w A(p, r)$ equals class $w F(p, r,(p+r) / r)$.
w-hyponormality equals $w A(1 / 2,1 / 2)$ [7]. Ito and Yamazaki [10] showed that class $w A(p, r)$ coincides with class $A(p, r)$ (introduced by Fujii et al. [11]) for each $p>0$ and $r>0$. Consequently, class $w A(1,1)$ equals class A (i.e., $\left|T^{2}\right| \geq|T|^{2}$, introduced by Furuta et al. [12]). Reference [9] showed that class $w F(p, r, q)$ coincides with class $F(p, r, q)$ (introduced by Fujii and Nakamoto [13]) when $r q \leq p+r$.

Recently, there are great developments in the spectral theory of the classes of operators above. We cite [8,14-22]. In this paper, we will discuss several spectral properties of class $w F(p, r, q)$ for $p>0, r>0, p+r \leq 1$, and $q \geq 1$.

In Section 2, we prove that Riesz idempotent E_{λ} of T with respect to each nonzero isolated point spectrum λ is selfadjoint and $E_{\lambda} \mathscr{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$. In Section 3, we will show that each class $w F(p, r, q)$ operator has SVEP (single-valued extension property) and Bishop's property (β). In Section 4, we show that Weyl's theorem holds for class $w F(p, r, q)$.

2. Riesz idempotent

Let $\sigma(T), \sigma_{p}(T), \sigma_{j p}(T), \sigma_{a}(T), \sigma_{j a}(T)$, and $\sigma_{r}(T)$ mean the spectrum, point spectrum, joint point spectrum, approximate point spectrum, joint approximate point spectrum, and residual spectrum of an operator T, respectively (cf. $[8,23]$). $\sigma_{r}^{\text {Xia }}(T)$ and $\sigma_{\text {iso }}(T)$ mean the set $\sigma(T)-\sigma_{a}(T)$ and the set of isolated points of $\sigma(T)$, see [23, 2].

If $\lambda \in \sigma_{\text {iso }}(T)$, the Riesz idempotent E_{λ} of T with respect λ is defined by

$$
\begin{equation*}
E_{\lambda}=\int_{\partial \mathscr{D}}(z-T)^{-1} d z \tag{2.1}
\end{equation*}
$$

where \mathscr{D} is an open disk which is far from the rest of $\sigma(T)$ and $\partial \mathscr{D}$ means its boundary. Stampfli [24] showed that if T is hyponormal, then E_{λ} is selfadjoint and $E_{\lambda} \mathscr{H}=\operatorname{ker}(T-$ $\lambda)=\operatorname{ker}(T-\lambda)^{*}$. The recent developments of this result are shown in [16, 17, 20, 22], and so on.

In this section, it is shown that when $\lambda \neq 0$, this result holds for class $w F(p, r, q)$ with $p+r \leq 1$ and $q \geq 1$. It is always assumed that $\lambda \in \sigma_{\text {iso }}(T)$ when the idempotent E_{λ} is considered.

Theorem 2.1. Let T belong to class $w F(p, r, q)$ with $p+r \leq 1, \lambda=|\lambda| e^{i \theta} \in \mathscr{C}$, and $\lambda_{p+r}=$ $|\lambda|^{p+r} e^{i \theta}$, then the following assertions hold.
(1) If $\lambda \neq 0$, then $E_{\lambda}=E_{\lambda}(p, r)$ and $E_{\lambda} \mathscr{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$, where $E_{\lambda}(p, r)$ is the Riesz idempotent of $T(p, r)=|T|^{p} U|T|^{r}$ (the generalized Aluthge transformation of T) with respect to λ_{p+r}.
(2) If $\lambda=0$, then $\operatorname{ker} T=E_{0} \mathscr{H}=E_{0}(p, r) \mathscr{H}=\operatorname{ker}(T(p, r))$.

Reference [21] gave an example that the operator T is w-hyponormal, E_{0} is not selfadjoint, and $\operatorname{ker} T \neq \operatorname{ker} T^{*}$.

An operator T is said to be isoloid if $\sigma_{\text {iso }}(T) \subseteq \sigma_{p}(T)$, is said to be reguloid if $(T-\lambda) \mathcal{H}$, is closed for each $\lambda \in \sigma_{\text {iso }}(T)$.

Theorem 2.2. If T belongs to class $w F(p, r, q)$ with $p+r \leq 1$, then T is isoloid and reguloid.
To give proofs, we prepare the following results.
Theorem 2.3 (see [14]). Let $\lambda \neq 0$, and let $\left\{x_{n}\right\}$ be a sequence of vectors. Then the following assertions are equivalent.
(1) $(T-\lambda) x_{n} \rightarrow 0$ and $\left(T^{*}-\bar{\lambda}\right) x_{n} \rightarrow 0$.
(2) $(|T|-|\lambda|) x_{n} \rightarrow 0$ and $\left(U-e^{i \theta}\right) x_{n} \rightarrow 0$.
(3) $\left(|T|^{*}-|\lambda|\right) x_{n} \rightarrow 0$ and $\left(U^{*}-e^{-i \theta}\right) x_{n} \rightarrow 0$.

Theorem 2.4 (see [8]). If T is a class $w F(p, r, q)$ operator for $p+r \leq 1$ and $q \geq 1$, then the following assertions hold.
(1) If $T x=\lambda x, \lambda \neq 0$, then $T^{*} x=\bar{\lambda} x$.
(2) $\sigma_{a}(T)-\{0\}=\sigma_{j a}(T)-\{0\}$.
(3) If $T x=\lambda x, T y=\mu y$ and $\lambda \neq \mu$, then $(x, y)=0$.

Theorem 2.5 (see [9]). If T is a class $w F(p, r, q)$ operator, then there exists $\alpha_{0}>0$, which satisfies

$$
\begin{equation*}
|T(p, r)|^{2 \alpha_{0}} \geq|T|^{2 \alpha_{0}(p+r)} \geq\left|(T(p, r))^{*}\right|^{2 \alpha_{0}} . \tag{2.2}
\end{equation*}
$$

Lemma 2.6. If T belongs to class $w F(p, r, q)$ for $p+r \leq 1, \lambda=|\lambda| e^{i \theta} \in \mathscr{C}$, and $\lambda_{p+r}=|\lambda|^{p+r} e^{i \theta}$, then $\operatorname{ker}(T-\lambda)=\operatorname{ker}\left(T(p, r)-\lambda_{p+r}\right)$.
Proof. We only prove $\operatorname{ker}(T-\lambda) \supseteq \operatorname{ker}\left(T(p, r)-\lambda_{p+r}\right)$ because $\operatorname{ker}(T-\lambda) \subseteq \operatorname{ker}(T(p, r)-$ λ_{p+r}) is obvious by Theorems 2.3-2.4.

If $\lambda \neq 0$, let $0 \neq x \in \operatorname{ker}\left(T(p, r)-\lambda_{p+r}\right)$. By Theorem 2.5, $T(p, r)$ is α_{0}-hyponormal and we have

$$
\begin{gather*}
|T(p, r)| x=|\lambda|^{p+r} x=\left|(T(p, r))^{*}\right| x, \\
|T(p, r)|^{2 \alpha_{0}}-\left|(T(p, r))^{*}\right|^{2 \alpha_{0}} \geq|T(p, r)|^{2 \alpha_{0}}-|T|^{2 \alpha_{0}(p+r)} \geq 0 . \tag{2.3}
\end{gather*}
$$

Hence $\left(|T(p, r)|^{2 \alpha_{0}}-|T|^{2 \alpha_{0}(p+r)}\right) x=0$,

$$
\begin{align*}
& \left\||T|^{2 \alpha_{0}(p+r)} x-|\lambda|^{2 \alpha_{0}(p+r)} x\right\| \\
& \quad \leq\left\||T|^{2 \alpha_{0}(p+r)} x-|T(p, r)|^{2 \alpha_{0}} x\right\|+\left\||T(p, r)|^{2 \alpha_{0}} x-|\lambda|^{2 \alpha_{0}(p+r)} x\right\|=0 . \tag{2.4}
\end{align*}
$$

On the other hand, $(T(p, r))^{*} x=|\lambda|^{p+r} e^{-i \theta} x$ implies that $|T|^{r} U^{*} x=|\lambda|^{r} e^{-i \theta} x, T^{*}=$ $|\lambda| e^{-i \theta} x$. Therefore,

$$
\begin{align*}
\|(T-\lambda) x\|^{2} & =\|T x\|^{2}-\lambda(x, T x)-\bar{\lambda}(T x, x)+|\lambda|^{2}\|x\|^{2} \\
& =\||T| x\|^{2}-\lambda\left(T^{*} x, x\right)-\bar{\lambda}\left(x, T^{*} x\right)+|\lambda|^{2}\|x\|^{2}=0 . \tag{2.5}
\end{align*}
$$

If $\lambda=0$, let $0 \neq x \in \operatorname{ker} T(p, r)$, then $x \in \operatorname{ker}|T|=\operatorname{ker} T$ by Theorem 2.5 so that $\operatorname{ker}(T$ $-\lambda) \supseteq \operatorname{ker}\left(T(p, r)-\lambda_{p+r}\right)$.

Lemma 2.7 (see $[18,25])$. If A is normal, then for every operator $B, \sigma(A B)=\sigma(B A)$.
Let \mathscr{F} be the set of all strictly monotone increasing continuous nonnegative functions on $\mathscr{R}^{+}=[0, \infty)$. Let $\mathscr{F}_{0}=\{\Psi \in \mathscr{F}: \Psi(0)=0\}$. For $\Psi \in \mathscr{F}_{0}$, the mapping $\widetilde{\Psi}$ is defined by $\widetilde{\Psi}\left(\rho e^{i \theta}\right)=e^{i \theta} \Psi(\rho)$ and $\widetilde{\Psi}(T)=U \Psi(|T|)$.

Theorem 2.8 (see [26]). If $\Psi \in \mathscr{F}_{0}$, then for every operator $T, \sigma_{j a}(\widetilde{\Psi}(T))=\widetilde{\Psi}\left(\sigma_{j a}(T)\right)$.
Lemma 2.9. Let T belong to class $w F(p, r, q)$ with $p+r \leq 1, \lambda=|\lambda| e^{i \theta} \in \mathscr{C}, T(t)=$ $U|T|^{1-t+t(p+r)}$, and $\tau_{t}\left(\rho e^{i \theta}\right)=e^{i \theta} \rho^{1+t(p+r-1)}$, where $t \in[0,1]$. Then

$$
\begin{equation*}
\sigma_{a}(T(t))=\tau_{t}\left(\sigma_{a}(T)\right), \quad \sigma_{r}^{\mathrm{Xia}}(T(t))=\tau_{t}\left(\sigma_{r}^{\mathrm{Xia}}(T)\right), \quad \sigma(T(t))=\tau_{t}(\sigma(T)) \tag{2.6}
\end{equation*}
$$

Proof. We only need to show that $\sigma_{a}(T(t))=\tau_{t}\left(\sigma_{a}(T)\right)$ by homotopy property of the spectrum [2, page 19].

Since T belongs to class $w F(p, r, q)$ with $p+r \leq 1, T(t)$ belongs to class $w F(p /(1+$ $t(p+r-1)), r /(1+t(p+r-1), q))$ with $p /(1+t(p+r-1))+r /(1+t(p+r-1)) \leq 1$. By Theorems 2.4(2) and 2.8,

$$
\begin{equation*}
\sigma_{a}(T(t))-\{0\}=\sigma_{j a}(T(t))-\{0\}=\tau_{t}\left(\sigma_{j a}(T)-\{0\}\right)=\tau_{t}\left(\sigma_{a}(T)\right)-\{0\} \tag{2.7}
\end{equation*}
$$

On the other hand, if $0 \in \sigma_{a}(T)$, then there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $U|T| x_{n} \rightarrow 0$. Hence $|T| x_{n}=U^{*} U|T| x_{n} \rightarrow 0$, so that $|T|^{1 /\left(2^{m}\right)} x_{n} \rightarrow 0$ for each positive integer m by induction. Take a positive integer $m(t)$ such that $1 /\left(2^{m(t)}\right) \leq 1+t(p+r-1)$, then

$$
\begin{equation*}
|T|^{1+t(p+r-1)} x_{n}=|T|^{1+t(p+r-1)-1 /\left(2^{m(t)}\right)}|T|^{1 /\left(2^{m(t)}\right)} x_{n} \longrightarrow 0 \tag{2.8}
\end{equation*}
$$

and $0 \in \sigma_{a}(T(t))$. It is obvious that if $0 \in \sigma_{a}(T(t))$, then $0 \in \sigma_{a}(T)$ because of $p+r \leq 1$. Therefore $\sigma_{a}(T(t))=\tau_{t}\left(\sigma_{a}(T)\right)$.

Theorem 2.10 (see [15]). If T is p-hyponormal or log-hyponormal, then E_{λ} is selfadjoint and $E_{\lambda} \mathscr{H}=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$.

Riesz and Sz.-Nagy [27] gave the the formula $E_{\lambda} \mathscr{H}=\left\{x \in \mathscr{H}:\left\|(T-\lambda)^{n} x\right\|^{1 / n} \rightarrow 0\right\}$.
Lemma 2.11. For any operator $T,|T|^{p} \operatorname{ker}(T-\lambda) \subseteq|T|^{p} E_{\lambda} \mathcal{H} \subseteq E_{\lambda}(p, r) \mathcal{H}$ for $p+r=1$.

Proof. Let $x \in E_{\lambda}$, by the formula above we have

$$
\begin{equation*}
\left\|(T(p, r)-\lambda)^{n}|T|^{p} x\right\|^{1 / n}=\left\||T|^{p}(T-\lambda)^{n} x\right\|^{1 / n} \longrightarrow 0 \tag{2.9}
\end{equation*}
$$

Hence $|T|^{p} x \in E_{\lambda}(p, r) \mathcal{H}$.
Lemma 2.12. If T belongs to class $w F(p, r, q)$ with $p+r \leq 1$, then

$$
\begin{equation*}
\operatorname{ker} T=E_{0} \mathscr{H}=E_{0}(p, r) \mathscr{H}=\operatorname{ker}(T(p, r)) . \tag{2.10}
\end{equation*}
$$

Note that $\lambda_{p+r} \in \sigma_{\text {iso }}(T(t))$ if $\lambda \in \sigma_{\text {iso }}(T)$ by Lemma 2.9, so the notion $E_{0}(p, r)$ in Lemma 2.11 is reasonable.

Proof. Since $T(p, r)$ is α_{0}-hyponormal by Theorem 2.5, we only need to prove that $E_{0} \mathscr{H} \subseteq$ $E_{0}(p, r) \mathscr{H}$ for $E_{0} \mathscr{H} \supseteq E_{0}(p, r) \mathscr{H}$ holds by Lemma 2.6 and Theorem 2.10. We may also assume that $p+r=1$ by Lemma 2.6.

It follows from Lemma 2.11 that

$$
\begin{equation*}
|T|^{p} E_{0}(p, r) \mathscr{H} \subseteq|T|^{p} E_{0} \mathscr{H} \subseteq E_{0}(p, r) \mathcal{H}, \tag{2.11}
\end{equation*}
$$

thus $E_{0}(p, r) \mathscr{H}$ is reduced by $|T|^{p}$.
Let $x \in E_{0} \mathscr{H}$ and $x=x_{1}+x_{2} \in E_{0}(p, r) \mathscr{H} \oplus\left(E_{0}(p, r) \mathcal{H}\right)^{\perp}$. Then $|T|^{p} x \in|T|^{p} E_{0} \mathscr{H} \subseteq$ $E_{0}(p, r) \mathscr{H},|T|^{p} x_{1} \in E_{0}(p, r) \mathcal{H},|T|^{p} x_{2} \in\left(E_{0}(p, r) \mathscr{H}\right)^{\perp}$ by (2.11), and $E_{0}(p, r) \mathcal{H}$ is reduced by $|T|^{p}$.

Thus $|T|^{p} x_{2}=|T|^{p} x-|T|^{p} x_{1} \in E_{0}(p, r) \mathscr{H},|T|^{p} x_{2} \in E_{0}(p, r) \mathcal{H} \cap\left(E_{0}(p, r) \mathscr{H}\right)^{\perp}$ so that $x_{2} \in \operatorname{ker}|T|^{p} \subseteq \operatorname{ker}(T(p, r))=E_{0}(p, r) \mathcal{H}, x \in E_{0}(p, r) \mathcal{H}$.

Proof of Theorem 2.1. We only need to prove (1) for (2) holds by Lemma 2.12.
Since $\sigma(T(p, r))=\sigma\left(U|T|^{p+r}\right)=\left\{e^{i \theta} \rho^{p+r}: e^{i \theta} \rho \in \sigma(T)\right\}$ by Lemmas 2.7 and 2.9, $\lambda_{p+r} \in$ $\sigma_{\text {iso }}(T(p, r))$. Hence

$$
\begin{equation*}
\left(E_{\lambda}(p, r) \mathscr{H}\right)^{\perp}=\operatorname{ker}\left(E_{\lambda}(p, r)\right)=\left(I-E_{\lambda}(p, r)\right) \mathscr{H} \tag{2.12}
\end{equation*}
$$

by Theorem 2.10, so $\lambda_{p+r} \notin \sigma\left(\left.T(p, r)\right|_{\left.\left(E_{\lambda}(p, r)^{H}\right)^{\perp}\right)}\right.$. By Theorem 2.4(1) and Lemma 2.6, we have $T=\lambda \oplus T_{22}$ on $\mathscr{H}=E_{\lambda}(p, r) \mathscr{H} \oplus\left(E_{\lambda}(p, r) \mathscr{H}\right)^{\perp}$, where $T_{22}=\left.T\right|_{(\operatorname{ker}(T-\lambda))^{\perp}}$.

Since $\operatorname{ker}(T-\lambda)$ is reduced by T, T_{22} also belongs to class $w F(p, r, q)$ and $T_{22}(p, r)=$ $\left.T(p, r)\right|_{\left(E_{\lambda}(p, r)^{\mathscr{L}}\right)^{\perp}}$ so that $\lambda \notin \sigma\left(T_{22}\right)$ because $\lambda_{p+r} \notin \sigma\left(T_{22}(p, r)\right)$. Hence $T-\lambda=0 \oplus\left(T_{22}-\right.$ λ) and $\operatorname{ker}(T-\lambda)^{*}=\operatorname{ker}(T-\lambda) \oplus \operatorname{ker}\left(T_{22}-\lambda\right)^{*}=\operatorname{ker}(T-\lambda)$.

Meanwhile, $E_{\lambda}=\int_{\partial \mathscr{D}}(z-\lambda)^{-1} \oplus\left(z-T_{22}\right)^{-1} d z=1 \oplus 0=E_{\lambda}(p, r)$.
Proof of Theorem 2.2. We only need to prove that T is reguloid for T being isoloid follows by Theorem 2.1 easily.

If $\lambda \in \sigma_{\text {iso }}(T)$, then $\mathscr{H}=E_{\lambda} \mathscr{H}+\left(I-E_{\lambda}\right) \mathscr{H}$, where $E_{\lambda} \mathscr{H}$, and $\left(I-E_{\lambda}\right) \mathscr{H}$ are topologically complemented [28, page 94]. By $T=\left.T\right|_{E_{\lambda} \mathscr{H}}+\left.T\right|_{\left(I-E_{\lambda}\right) \mathscr{H}}$ on $\mathscr{H}=E_{\lambda} \mathscr{H}+\left(I-E_{\lambda}\right) \mathcal{H}$ and Theorem 2.1, we have

$$
\begin{equation*}
(T-\lambda) \mathscr{H}=\left(\left.T\right|_{\left(I-E_{\lambda}\right) \mathscr{H}}-\lambda\right)\left(I-E_{\lambda}\right) \mathscr{H} . \tag{2.13}
\end{equation*}
$$

Therefore $(T-\lambda) \mathscr{H}$ is closed because $\sigma\left(\left.T\right|_{\left(I-E_{\lambda}\right) \mathscr{H}}\right)=\sigma(T)-\{\lambda\}$.

3. SVEP and Bishop's property (β)

Definition 3.1. An operator T is said to have SVEP at $\lambda \in \mathscr{C}$ if for every open neighborhood G of λ, the only function $f \in H(G)$ such that $(T-\lambda) f(\mu)=0$ on G is $0 \in H(G)$, where $H(G)$ means the space of all analytic functions on G.

When T have SVEP at each $\lambda \in \mathscr{C}$, say that T has SVEP.
This is a good property for operators. If T has SVEP, then for each $\lambda \in \mathscr{C}, \lambda-T$ is invertible if and only if it is surjective (cf. [29, 18]).

Definition 3.2. An operator T is said to have Bishop's property (β) at $\lambda \in \mathscr{C}$ if for every open neighborhood G of λ, the function $f_{n} \in H(G)$ with $(T-\lambda) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G implies that $f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G.

When T has Bishop's property (β) at each $\lambda \in \mathscr{C}$, simply say that T has property (β).
This is a generalization of SVEP and it is introduced by Bishop [30] in order to develop a general spectral theory for operators on Banach space.

Theorem 3.3. Let p and r be positive numbers. If $p+r=1$, then T has SVEP if and only if $T(p, r)$ has SVEP, T has property (β) if and only if $T(p, r)$ has property (β). In particular, every class $w F(p, r, q)$ operator T with $p+r \leq 1$ has SVEP and property (β).

This result is a generalization of [18]. Lemma 3.4 and the relations between T and its transformation $T(p, r)$ are important:

$$
\begin{gather*}
T(p, r)|T|^{p}=|T|^{p} U|T|^{r}|T|^{p}=|T|^{p} T, \\
U|T|^{r} T(p, r)=U|T|^{r}|T|^{p} U|T|^{r}=T U|T|^{r} . \tag{3.1}
\end{gather*}
$$

Lemma 3.4 (see [18]). Let G be open subset of complex plane \mathscr{C} and let $f_{n} \in H(G)$ be functions such that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, then $f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G.

Proof of Theorem 3.3. We only prove that T has property (β) if and only if $T(p, r)$ has property (β) because the assertion that T has SVEP if and only if $T(p, r)$ has SVEP can be proved similarly.

Suppose that $T(p, r)$ has property (β). Let G be an open neighborhood of λ and let $f_{n} \in H(G)$ be functions such that $(\mu-T) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. By (3.1), $(T(p, r)-\mu)|T|^{p} f_{n}(\mu)=|T|^{p}(T-\mu) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. Hence $T f_{n}(\mu)=U|T|^{r}|T|^{p} f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G for $T(p, r)$ has property (β), so that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, and T having property (β) follows by Lemma 3.4.

Suppose that T has property (β). Let G be an open neighborhood of λ and let $f_{n} \in$ $H(G)$ be functions such that $(\mu-T(p, r)) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. By (3.1), $(\mu-T)\left(U|T|^{r} f_{n}(\mu)\right)=U|T|^{r}(\mu-T(p, r)) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G. Hence $T(p, r) f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G for T has property (β) so that $\mu f_{n}(\mu) \rightarrow 0$ uniformly on every compact subset of G, and $T(p, r)$ having property (β) follows by Lemma 3.4.

4. Weyl spectrum

For a Fredholm operator T, ind T means its (Fredholm) index. A Fredholm operator T is said to be Weyl if ind $T=0$.

Let $\sigma_{e}(T), \sigma_{w}(T)$, and $\pi_{00}(T)$ mean the essential spectrum, Weyl spectrum, and the set of all isolated eigenvalues of finite multiplicity of an operator T, respectively (cf. [28, 17]).

According to Coburn [31], we say that Weyl's theorem holds for an operator T if $\sigma(T)-\sigma_{w}(T)=\pi_{00}(T)$. Very recently, the theorem was shown to hold for several classes of operators including w-hyponormal operators and paranormal operators (cf. [17, 32, 20]).

In this section, we will prove that Weyl's theorem and Weyl spectrum mapping theorem hold for class $w F(p, r, q)$ operator T with $p+r \leq 1$. We also assume that $p+r=1$ because of the inclusion relations among class $w F(p, r, q)$ [9].

Theorem 4.1. Let T belong to class $w F(p, r, q)$ with $p+r=1$ and let $H(\sigma(T))$ be the space of all functions f analytic on some open set G containing $\sigma(T)$, then the following assertions hold.
(1) Weyl's theorem holds for T.
(2) $\sigma_{w}(f(T))=f\left(\sigma_{w}(T)\right)$ when $f \in H(\sigma(T))$.
(3) Weyl's theorem holds for $f(T)$ when $f \in H(\sigma(T))$.

This is a generalization of the related assertions of [17].
Theorem 4.2. Let T belong to class $w F(p, r, q)$ with $p+r=1$, then the following assertions hold.
(1) If $m_{2}(\sigma(T))=0$ where m_{2} means the planar Lebesgue measure, then T is normal.
(2) If $\sigma_{w}(T)=0$, then T is compact and normal.

Theorem 4.2(1) is a generalization of [26] and (2) is a generalization of [24].
To give proofs, the following results are needful.
Theorem 4.3 [9]. Let $p>0, r>0$, and $q \geq 1, s \geq p, t \geq r$. If T is a class $w F(p, r, q)$ operator and $T(s, t)$ is normal, then T is normal.

Lemma 4.4. If T belongs to class $w F(p, r, q)$ with $p+r=1$ and is Fredholm, then $\operatorname{ind} T \leq 0$.
This result can be regarded as a good complement of Theorem 2.1.
Proof. Since T is Fredholm, $|T|^{p}$ is also Fredholm and $\operatorname{ind}\left(|T|^{p}\right)=0$. By (3.1),

$$
\begin{equation*}
\operatorname{ind} T=\operatorname{ind}\left(|T|^{p} T\right)=\operatorname{ind}\left(T(p, r)|T|^{p}\right)=\operatorname{ind}(T(p, r)) . \tag{4.1}
\end{equation*}
$$

Hence, ind $T \leq 0$ for $\operatorname{ind}(T(p, r)) \leq 0$ by Theorem 2.5.
Proof of Theorem 4.1. (1) Let $\lambda \in \sigma(T)-\sigma_{w}(T)$, then $T-\lambda$ is Fredholm, $\operatorname{ind}(T-\lambda)=0$, and $\operatorname{dim} \operatorname{ker}(T-\lambda)>0$.

If λ is an interior point of $\sigma(T)$, there would be an open subset $G \subseteq \sigma(T)$ including λ such that ind $(T-\mu)=\operatorname{ind}(T-\lambda)=0$ for all $\mu \in G[28$, page 357]. So dimker $(T-\mu)>0$ for all $\mu \in G$, this is impossible for T has SVEP by Theorem 3.3 [29, Theorem 10]. Thus $\lambda \in \partial \sigma(T)-\sigma_{w}(T), \lambda \in \sigma_{\text {iso }}(T)$ by [28, Theorem 6.8, page 366], and $\lambda \in \pi_{00}(T)$ follows.

Let $\lambda \in \pi_{00}(T)$, then the Riesz idempotent E_{λ} has finite rank by Theorem 2.1, and $\lambda \in \sigma(T)-\sigma_{w}(T)$ follows.
(2) We only need to prove that $\sigma_{w}(f(T)) \supseteq f\left(\sigma_{w}(T)\right)$ since $\sigma_{w}(f(T)) \subseteq f\left(\sigma_{w}(T)\right)$ is always true for any operators.

Assume that $f \in H(\sigma(T))$ is not constant. Let $\lambda \notin \sigma_{w}(f(T))$ and $f(z)-\lambda=(z-$ $\left.\lambda_{1}\right) \cdots\left(z-\lambda_{k}\right) g(z)$, where $\left\{\lambda_{i}\right\}_{1}^{k}$ are the zeros of $f(z)-\lambda$ in G (listed according to multiplicity) and $g(z) \neq 0$ for each $z \in G$. Thus

$$
\begin{equation*}
f(T)-\lambda=\left(T-\lambda_{1}\right) \cdots\left(T-\lambda_{k}\right) g(T) . \tag{4.2}
\end{equation*}
$$

Obviously, $\lambda \in f\left(\sigma_{w}(T)\right)$ if and only if $\lambda_{i} \in \sigma_{w}(T)$ for some i. Next we prove that $\lambda_{i} \notin$ $\sigma_{w}(T)$ for every $i \in\{1, \ldots, k\}$, thus $\lambda \notin f\left(\sigma_{w}(T)\right)$ and $\sigma_{w}(f(T)) \supseteq f\left(\sigma_{w}(T)\right)$.

In fact, for each $i, T-\lambda_{i}$ is also Fredholm because $f(T)-\lambda$ is Fredholm. By Theorem 2.1 and Lemma 4.4, $\operatorname{ind}\left(T-\lambda_{i}\right) \leq 0$ for each i. Since $0=\operatorname{ind}(f(T)-\lambda)=\operatorname{ind}\left(T-\lambda_{1}\right)+$ $\cdots+\operatorname{ind}\left(T-\lambda_{k}\right), \operatorname{ind}\left(T-\lambda_{i}\right)=0$ and $\lambda_{i} \notin \sigma_{w}(T)$ for each i.
(3) By Theorem 2.2, T is isoloid and it follows from [33] that

$$
\begin{equation*}
\sigma(f(T))-\pi_{00}(f(T))=f\left(\sigma(T)-\pi_{00}(T)\right) \tag{4.3}
\end{equation*}
$$

On the other hand, $f\left(\sigma(T)-\pi_{00}(T)\right)=f\left(\sigma_{w}(T)\right)=\sigma_{w}(f(T))$ by (1)-(2). The proof is complete.

Proof of Theorem 4.2. (1) By α_{0}-hyponormality of $T(p, r)$ and Putnam's inequality for α_{0}-hyponormal operators [26], $T(p, r)$ is normal. Hence, (1) follows by Theorem 4.3.
(2) Since $\sigma_{w}(T)=0, \sigma(T)-\{0\}=\pi_{00}(T) \subseteq \sigma_{\text {iso }}(T)$ by Theorem 4.1(1). Hence $m_{2}(\sigma(T))=0$ and T is normal by (1).

Next to prove that T is compact, we may assume that $\sigma(T)-\{0\}$ is a countable infinite set for $\sigma(T)-\{0\} \subseteq \sigma_{\text {iso }}(T)$. Let $\sigma(T)-\{0\}=\left\{\lambda_{n}\right\}_{1}^{\infty}$ with $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq 0$ and $\lambda_{0}=$ $\lim _{n \rightarrow \infty}\left|\lambda_{n}\right|$, then $\lambda_{0}=0$. Since every $E_{\lambda_{n}}$ has finite rank by Theorems 2.1 and 4.1, for every $\varepsilon>0, \bigoplus_{\left|\lambda_{n}\right|>\varepsilon} E_{\lambda_{n}}$ also has finite rank. Therefore T is compact [28, page 271].

Acknowledgments

The authors would like to express their cordial gratitude to the referee for valuable advice and suggestions, and Professor Atsushi Uchiyama for sending them [22]. This work was supported in part by the National Key Basic Research Project of China Grant no. 2005CB321902.

References

[1] M. Martin and M. Putinar, Lectures on Hyponormal Operators, vol. 39 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 1989.
[2] D. Xia, Spectral Theory of Hyponormal Operators, vol. 10 of Operator Theory: Advances and Applications, Birkhäuser, Basel, Switzerland, 1983.
[3] K. Tanahashi, "On log-hyponormal operators," Integral Equations and Operator Theory, vol. 34, no. 3, pp. 364-372, 1999.
[4] A. Aluthge and D. Wang, " w-hyponormal operators," Integral Equations and Operator Theory, vol. 36, no. 1, pp. 1-10, 2000.
[5] M. Fujii, C. Himeji, and A. Matsumoto, "Theorems of Ando and Saito for p-hyponormal operators," Mathematica Japonica, vol. 39, no. 3, pp. 595-598, 1994.
[6] A. Aluthge, "On p-hyponormal operators for $0<p<1$," Integral Equations and Operator Theory, vol. 13, no. 3, pp. 307-315, 1990.
[7] M. Ito, "Some classes of operators associated with generalized Aluthge transformation," SUT Journal of Mathematics, vol. 35, no. 1, pp. 149-165, 1999.
[8] C. Yang and J. Yuan, "Spectrum of class $w F(p, r, q)$ operators for $p+r \leq 1$ and $q \geq 1$," Acta Scientiarum Mathematicarum, vol. 71, no. 3-4, pp. 767-779, 2005.
[9] C. Yang and J. Yuan, "On class $w F(p, r, q)$ operators," Acta Mathematica Scientia. Series A. (Chinese Edition), vol. 27, no. 5, pp. 769-780, 2007.
[10] M. Ito and T. Yamazaki, "Relations between two inequalities $\left(B^{r / 2} A^{p} B^{r / 2}\right)^{r /(p+r)} \geq B^{r}$ and $A^{p} \geq$ $\left(A^{p / 2} B^{r} A^{p / 2}\right)^{p /(p+r)}$ and their applications," Integral Equations and Operator Theory, vol. 44, no. 4, pp. 442-450, 2002.
[11] M. Fujii, D. Jung, S. H. Lee, M. Y. Lee, and R. Nakamoto, "Some classes of operators related to paranormal and log-hyponormal operators," Mathematica Japonica, vol. 51, no. 3, pp. 395-402, 2000.
[12] T. Furuta, M. Ito, and T. Yamazaki, "A subclass of paranormal operators including class of loghyponormal and several related classes," Scientiae Mathematicae, vol. 1, no. 3, pp. 389-403, 1998.
[13] M. Fujii and R. Nakamoto, "Some classes of operators derived from Furuta inequality," Scientiae Mathematicae, vol. 3, no. 1, pp. 87-94, 2000.
[14] A. Aluthge and D. Wang, "The joint approximate point spectrum of an operator," Hokkaido Mathematical Journal, vol. 31, no. 1, pp. 187-197, 2002.
[15] M. Chō and K. Tanahashi, "Isolated point of spectrum of p-hyponormal, log-hyponormal operators," Integral Equations and Operator Theory, vol. 43, no. 4, pp. 379-384, 2002.
[16] M. Chō and T. Yamazaki, "An operator transform from class A to the class of hyponormal operators and its application," Integral Equations and Operator Theory, vol. 53, no. 4, pp. 497-508, 2005.
[17] Y. M. Han, J. I. Lee, and D. Wang, "Riesz idempotent and Weyl's theorem for w-hyponormal operators," Integral Equations and Operator Theory, vol. 53, no. 1, pp. 51-60, 2005.
[18] F. Kimura, "Analysis of non-normal operators via Aluthge transformation," Integral Equations and Operator Theory, vol. 50, no. 3, pp. 375-384, 2004.
[19] K. Tanahashi and A. Uchiyama, "Isolated point of spectrum of p-quasihyponormal operators," Linear Algebra and Its Applications, vol. 341, no. 1-3, pp. 345-350, 2002.
[20] A. Uchiyama, "On the isolated points of the spectrum of paranormal operators," Integral Equations and Operator Theory, vol. 55, no. 1, pp. 145-151, 2006.
[21] A. Uchiyama and K. Tanahashi, "On the Riesz idempotent of class A operators," Mathematical Inequalities \& Applications, vol. 5, no. 2, pp. 291-298, 2002.
[22] A. Uchiyama, K. Tanahashi, and J. I. Lee, "Spectrum of class $A(s, t)$ operators," Acta Scientiarum Mathematicarum, vol. 70, no. 1-2, pp. 279-287, 2004.
[23] K. Tanahashi, "Putnam's inequality for log-hyponormal operators," Integral Equations and Operator Theory, vol. 48, no. 1, pp. 103-114, 2004.
[24] J. G. Stampfli, "Hyponormal operators," Pacific Journal of Mathematics, vol. 12, no. 4, pp. 14531458, 1962.
[25] T. Huruya, "A note on p-hyponormal operators," Proceedings of the American Mathematical Society, vol. 125, no. 12, pp. 3617-3624, 1997.
[26] M. Chō and M. Itoh, "Putnam's inequality for p-hyponormal operators," Proceedings of the American Mathematical Society, vol. 123, no. 8, pp. 2435-2440, 1995.
[27] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar, New York, NY, USA, 1955.
[28] J. B. Conway, A Course in Functional Analysis, vol. 96 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2nd edition, 1990.
[29] J. K. Finch, "The single valued extension property on a Banach space," Pacific Journal of Mathematics, vol. 58, no. 1, pp. 61-69, 1975.
[30] E. Bishop, "A duality theorem for an arbitrary operator," Pacific Journal of Mathematics, vol. 9, no. 2, pp. 379-397, 1959.
[31] L. A. Coburn, "Weyl's theorem for nonnormal operators," Michigan Mathematical Journal, vol. 13, no. 3, pp. 285-288, 1966.
[32] I. H. Kim, "On (p, k)-quasihyponormal operators," Mathematical Inequalities \& Applications, vol. 7, no. 4, pp. 629-638, 2004.
[33] W. Y. Lee and S. H. Lee, "A spectral mapping theorem for the Weyl spectrum," Glasgow Mathematical Journal, vol. 38, no. 1, pp. 61-64, 1996.

Jiangtao Yuan: LMIB and Department of Mathematics, Beihang University, Beijing 100083, China
Email address: yuanjiangtao@ss.buaa.edu.cn
Zongsheng Gao: LMIB and Department of Mathematics, Beihang University, Beijing 100083, China
Email address: zshgao@buaa.edu.cn

