Skip to main content

M-hyponormality in several variables operator theory

Abstract

In recent years, the study of bounded linear operators in several variables has received great interest from many authors, including the second author’s previous contributions. In our present work, we define a new class of multivariable operator theory, which we have called M-hyponormal tuple. We present some algebraic and spectral properties associated with them.

1 Introduction and preliminaries

Let \(\mathcal{{H}}\) be a separable infinite dimensional complex Hilbert space with inner product \(\langle .\;| \;.\rangle \), \(\mathcal{B}((\mathcal{H})\) be the set of all bounded linear operators on \(\mathcal{H}\). An operator \(\mathcal{U}\in {\mathcal {B}}({\mathcal {H}})\) is said to be normal if \(\mathcal{U}^{*}\mathcal{U}-\mathcal{U}\mathcal{U}^{*}=0\) \(\big([\mathcal{U}^{*},\mathcal{U}]=0\big)\) [12, 17, 19], hyponormal if \(\mathcal{U}^{*}\mathcal{U}-\mathcal{U}\mathcal{U}^{*}\geq 0 \) \(\big([\mathcal{U}^{*},\mathcal{U}] \geq 0\big)\) [9, 21]) and M-hyponormal if \(M\|\big(\mathcal{U}-\gamma \big)\omega \| \geq \|\big(\mathcal{U}- \gamma \big)^{*}\omega \|\geq 0\) for all \(\gamma \in {\mathbb{C}}\), \(\omega \in \mathcal{H}\) and \(M>0\) ([20, 22]). The concepts of multivariable operators have attracted the attention of many authors. Recently, many extensions of some concepts of single operators to tuple of operators on Hilbert and Banach spaces have been immensely studied in several papers (see [1, 37, 10, 11, 13, 14, 16, 18].

An m-tuple \({\mathbf{U}}=(\mathcal{U}_{1},\ldots ,\mathcal{U}_{m})\in { \mathcal {B}}({\mathcal {H}})^{m}\) is said to be joint normal if \(\mathcal{U}_{l}\mathcal{U}_{k}=\mathcal{U}_{k}\mathcal{U}_{l}\) for all \((l,\;k)\in \{1,\ldots ,m\}^{2}\) and each \(\mathcal{U}_{k}\) is a normal. However, \({\mathbf{U}}=(\mathcal{U}_{1},\ldots ,\mathcal{U}_{m})\) is said a joint hyponormal if the matrix operator

$$ [ {\mathbf{U^{*}}},{\mathbf{U}}]=\bigg(\big[\mathcal{U}_{k}^{*}, \; \mathcal{U}_{l}\big]\bigg)_{l,\;k=1}^{m}=\left ( \textstyle\begin{array}{cccc} [\mathcal{U}_{1}^{*}, \mathcal{U}_{1}] & [\mathcal{U}_{2}^{*}, \mathcal{U}_{1}] &\cdots & [\mathcal{U}_{m}^{*},\mathcal{U}_{1}] \cr [\mathcal{U}_{1}^{*}, \mathcal{U}_{2} ]& [\mathcal{U}_{2}^{*}, \mathcal{U}_{2}] &\cdots & [\mathcal{U}_{m}^{*},\mathcal{U}_{2}] \cr \vdots & \vdots & \vdots & \vdots \cr [\mathcal{U}_{1}^{*},\mathcal{U}_{m}] & [\mathcal{U}_{2}^{*}, \mathcal{U}_{m}] &\cdots & [\mathcal{U}_{m}^{*}, \mathcal{U}_{m}] \cr \end{array}\displaystyle \right ) $$

is positive on \(\displaystyle \bigoplus _{k=1}^{m}{\mathcal {H}}\), that is \(\displaystyle \sum _{1\leq l,\;k\;\leq m}\left \langle [\mathcal{U}_{k}^{*}, \;\mathcal{U}_{l}] \omega _{k}\;|\;\omega _{l}\right \rangle \geq 0\), for each finite collection \(\omega _{1}, \ldots ,\omega _{m}\) of \({\mathcal {H}}\) (see [5]). Note that \({\mathbf{U}}^{*}:=(\mathcal{U}_{1}^{*},\ldots ,\mathcal{U}_{m}^{*})\).

Recently, Sid Ahmed et al. [2] has introduced the notion of joint m-quasihyponormal as follows: \({\mathbf{U}}=(\mathcal{U}_{1},\;\ldots ,\mathcal{U}_{m})\in { \mathcal {B}}({\mathcal {H}})^{m}\) is said to be joint m-quasihyponormal if U satisfies

$$ \displaystyle \sum _{1\leq l,\;k\;\leq m}\big\langle \mathcal{U}_{k}^{*} \big[\mathcal{U}_{k}^{*},\;\; \mathcal{U}_{l}\big]\mathcal{U}_{l} \omega _{k}\;|\;\omega _{l}\big\rangle \geq 0$$
(1.1)

for each finite collections \((\omega _{l})_{1\leq l\leq m}\in {\mathcal {H}}^{m}\).

Equivalently, \({\mathbf{U}}=(\mathcal{U}_{1},\ldots ,\mathcal{U}_{m})\in { \mathcal {B}}({\mathcal {H}})^{m}\) is joint m-quasihyponormal tuple if the operator matrix,

$$\begin{aligned} {\mathbf{U^{*}}}[ {\mathbf{U^{*}}},{\mathbf{U}}] {\mathbf{U}} &= \bigg(\mathcal{U}_{k}^{*}\big[\mathcal{U}_{k}^{*},\; \mathcal{U}_{l} \big]\mathcal{U}_{l}\bigg)_{l,\;k=1}^{m}\\&=\left ( \textstyle\begin{array}{cccc} \mathcal{U}_{1}^{*} [\mathcal{U}_{1}^{*}, \mathcal{U}_{1}]\mathcal{U}_{1} & \mathcal{U}_{2}^{*}[\mathcal{U}_{2}^{*},\mathcal{U}_{1}]\mathcal{U}_{1} &\cdots & \mathcal{U}_{m}^{*}[\mathcal{U}_{m}^{*},\mathcal{U}_{1}] \mathcal{U}_{1} \cr \mathcal{U}_{1}^{*} [\mathcal{U}_{1}^{*}, \mathcal{U}_{2} ] \mathcal{U}_{2}&\mathcal{U}_{2}^{*} [\mathcal{U}_{2}^{*}, \mathcal{U}_{2}] \mathcal{U}_{2} &\cdots &\mathcal{U}_{m}^{*} [\mathcal{U}_{m}^{*}, \mathcal{U}_{2}]\mathcal{U}_{2} \cr \vdots & \vdots & \vdots & \vdots \cr \mathcal{U}_{1}^{*} [\mathcal{U}_{1}^{*},\mathcal{U}_{m}] \mathcal{U}_{m}& \mathcal{U}_{2}^{*}[\mathcal{U}_{2}^{*}, S_{m}]\mathcal{U}_{m} & \cdots & \mathcal{U}_{m}^{*} [\mathcal{U}_{m}^{*}, \mathcal{U}_{m}] \mathcal{U}_{m} \cr \end{array}\displaystyle \right ) \end{aligned}$$

is positive on \(\displaystyle \bigoplus _{k=1}^{m}{\mathcal {H}}\).

The aim of this work is to present a concept of M-hyponormality for tuple of operators. A tuple \(\mathcal{U}=(\mathcal{U}_{1},\ldots .\mathcal{U}_{m}) \in { \mathcal {B}}({\mathcal {H}})^{m}\) is said to be M-hyponormal if there exists \(M> 0\) for which

$$ \sum _{1\leq k,l\leq m}\left \langle \bigg(M^{2}\big(\mathcal{U}_{k}- \gamma _{k}\big)^{*}\big(\mathcal{U}_{l}-\gamma _{l}\big)-\big( \mathcal{U}_{l}-\gamma _{l}\big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \bigg)\omega _{k}\mid \omega _{l}\right \rangle \geq 0, $$
(1.2)

for all \(\omega =(\omega _{k})_{1\leq k \leq m}\in \mathcal{H}^{m}\) and \(\gamma =(\gamma _{1},\ldots ,\gamma _{m})\in \mathbb{C}^{m}\).

When \(m=1\) (1.2) coincides with

$$ \left \langle \bigg(M^{2}\big(\mathcal{U}-\gamma \big)^{*}\big( \mathcal{U}-\gamma \big)-\big(\mathcal{U}-\gamma \big)\big( \mathcal{U}-\gamma \big)^{*}\bigg)\omega \mid \omega \right \rangle \geq 0, $$
(1.3)

\(\forall \;\;\gamma \in \mathbb{C}\), \(\omega \in {\mathcal{H}}\) or equivalently

$$ M^{2}\big(\mathcal{U}-\gamma \big)^{*}\big(\mathcal{U}-\gamma \big)- \big(\mathcal{U}-\gamma \big)\big(\mathcal{U}-\gamma \big)^{*}\geq 0, $$

that is \(\mathcal{U}\) is M-hyponormal.

When \(m=2\) (1.2) coincides with

$$\begin{aligned} &\left \langle \bigg(M^{2}\big(\mathcal{U}_{1}-\gamma _{1}\big)^{*} \big(\mathcal{U}_{1}-\gamma _{1}\big)-\big(\mathcal{U}_{1}-\gamma _{1} \big)\big(\mathcal{U}-\gamma _{1}\big)^{*}\bigg)\omega _{1}\mid \omega _{1}\right \rangle \\ &+\left \langle \bigg(M^{2}\big(\mathcal{U}_{1}-\gamma _{1}\big)^{*} \big(\mathcal{U}_{2}-\gamma _{2}\big)-\big(\mathcal{U}_{2}-\gamma _{2} \big)\big(\mathcal{U}_{1}-\gamma _{1}\big)^{*}\bigg)\omega _{1}\mid \omega _{2}\right \rangle \\ &+ \left \langle \bigg(M^{2}\big(\mathcal{U}_{2}-\gamma _{2}\big)^{*} \big(\mathcal{U}_{1}-\gamma _{1}\big)-\big(\mathcal{U}_{1}-\gamma _{1} \big)\big(\mathcal{U}_{2}-\gamma _{2}\big)^{*}\bigg)\omega _{2}\mid \omega _{1}\right \rangle \\ &+ \left \langle \bigg(M^{2}\big(\mathcal{U}_{2}-\gamma _{2}\big)^{*} \big(\mathcal{U}_{2}-\gamma _{2}\big)-\big(\mathcal{U}_{-}\gamma _{2} \big)\big(\mathcal{U}_{2}-\gamma _{2}\big)^{*}\bigg)\omega _{2}\mid \omega _{2}\right \rangle \\ \geq &0. \end{aligned}$$

2 Main results

Our interest in this section is to provide most important results obtained for this new class of multivariable operators.

Theorem 2.1

Let \({\mathbf{U}}=\left ( \mathcal{U}_{1},\ldots ,\mathcal{U}_{m} \right ) \in {\mathcal {B}}\left ( {\mathcal {H}}\right ) ^{m}\), then U is M-hyponormal tuple if and only if

$$ \sum _{1\leq k,l\leq m}\left \langle M^{2} \big(\mathcal{U}_{l}- \gamma _{l})\big)\omega _{k}\mid \big(\mathcal{U}_{k}-\gamma _{k} \big)\omega _{l}\right \rangle - \bigg\| \sum _{1\leq k\leq m} \big( \mathcal{U}_{k}-\gamma _{k})^{*}\omega _{k}\bigg\| ^{2}\geq 0, $$
(2.1)

for every \(\omega _{1},\ldots ,\omega _{m} \in {\mathcal {H}}\) and \(\gamma =(\gamma _{1},\ldots ,\gamma _{m})\in \mathbb{C}^{m}\).

Proof

For \(M>0\), we have

$$\begin{aligned} &\sum _{1\leq k,l\leq m}\left \langle \bigg(M^{2}\big(\mathcal{U}_{k}- \gamma _{k}\big)^{*}\big(\mathcal{U}_{l}-\gamma _{l}\big)-\big( \mathcal{U}_{l}-\gamma _{l}\big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \bigg)\omega _{k}\mid \omega _{l}\right \rangle \geq 0 \\ \Leftrightarrow & \sum _{1\leq k,l\leq m}\left \langle \bigg(M^{2} \big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\big(\mathcal{U}_{l}-\gamma _{l} \big)\omega _{k}\mid \omega _{l}\right \rangle -\left \langle \big( \mathcal{U}_{l}-\gamma _{l}\big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \bigg)\omega _{k}\mid \omega _{l}\right \rangle \geq 0 \\ \Leftrightarrow & \sum _{1\leq k,l\leq m}\left \langle \bigg(M^{2} \big(\mathcal{U}_{l}-\gamma _{l}\big)\omega _{k}\mid \big(\mathcal{U}_{k}- \gamma _{k}\big)\omega _{l}\right \rangle - \sum _{1\leq k,l\leq m} \left \langle \big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega _{k} \mid \big(\mathcal{U}_{l}-\gamma _{l}\big)^{*} \omega _{l}\right \rangle \geq 0 \\ \Leftrightarrow &\sum _{1\leq k,l\leq m}\left \langle \bigg(M^{2} \big(\mathcal{U}_{l}-\gamma _{l}\big)\omega _{k}\mid \big(\mathcal{U}_{k}- \gamma _{k}\big)\omega _{l}\right \rangle - \bigg\| \sum _{1\leq k \leq m} \big(\mathcal{U}_{k}-\gamma _{k})^{*}\omega _{k}\bigg\| ^{2} \geq 0. \end{aligned}$$

Therefore, U is M-hyponormal tuple if and only if U satisfies (2.1). □

Remark 2.1

If \(m=1\) (2.1) coincides with

$$ \|\big(\mathcal{U}-\gamma \big)\omega \| \geq \|\big(\mathcal{U}- \gamma \big)^{*}\omega \|\quad \forall \; \omega \in \mathcal{H},\; \gamma \in \mathbb{C}. $$

Set

$$ [0]= \{\alpha :=(\alpha _{1},\ldots ,\alpha _{m})\in \mathbb{C}^{m}/ \; \displaystyle \prod _{1\leq k \leq m} \alpha _{k}=0 \}. $$

Proposition 2.1

Let \(\mathbf{U}=\left ( \mathcal{U}_{1},\ldots ,\mathcal{U}_{m}\right ) \in {\mathcal {B}}\left ( {\mathcal {H}}\right )^{m} \) be an M-hyponormal tuple and let \(\alpha :=(\alpha _{1},\ldots ,\alpha _{m})\in \mathbb{C}^{m}\). The following properties hold:

\((1)\) \(\alpha \mathbf{U}:=\left ( \alpha _{1}\mathcal{U}_{1},\ldots , \alpha _{m}\mathcal{U}_{m}\right ) \) is an M-hyponormal tuple for \(\alpha \notin [0]\).

\((2)\) \({\mathbf{U}}-\alpha I:=\left ( \mathcal{U}_{1}-\alpha _{1}I, \ldots ,\mathcal{U}_{m}-\alpha _{m}I\right ) \) is an M-hyponormal tuple.

Proof

\((1)\) By taking into account (2.1), we get

$$\begin{aligned} &\sum _{1\leq i,j\leq m}\left \langle M^{2} \big(\alpha _{l} \mathcal{U}_{l}-\gamma _{l})\big)\omega _{k}\mid \big(\alpha _{k} \mathcal{U}_{k}-\gamma _{k} \big)\omega _{l}\right \rangle - \bigg\| \sum _{1\leq k\leq m} \big(\alpha _{k}\mathcal{U}_{k}-\gamma _{k})^{*} \omega _{k}\bigg\| ^{2} \\ =& \sum _{1\leq i,j\leq m}\left \langle M^{2} \big(\mathcal{U}_{l}- \frac{\gamma _{l}}{\alpha _{l}}\big)\overline{\alpha _{k}}\omega _{k} \mid \big(\mathcal{U}_{k}-\frac{\gamma _{k}}{\alpha _{k}} \big) \overline{\alpha _{l}}\omega _{l}\right \rangle - \bigg\| \sum _{1 \leq k\leq m} \big(\mathcal{U}_{k}-\frac{\gamma _{k}}{\alpha _{k}})^{*} \overline{\alpha _{k}}\omega _{k}\bigg\| ^{2} \\ \geq &0. \end{aligned}$$

\((2)\) The proof of the statement \((2)\) follows from (1.2). □

Theorem 2.2

Let \({\mathbf{U}}=(\mathcal{U}_{1},\ldots ,\mathcal{U}_{m}) \in \mathcal{B}(\mathcal{H})^{m}\) be a joint M-hyponormal tuple, then \({\mathbf{U}}^{*} \) is an \(\displaystyle \frac{1}{M}\)-hyponormal tuple if and only if

$$ \left \langle Re \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega \mid \omega \right \rangle =0,\;\;\forall \;\omega \in {\mathcal {H}},\;k,l =1, \ldots ,m. $$

Proof

Assume that \({\mathbf{U}}^{*}\) is an \(\frac{1}{M}\)-hyponormal tuple.

From the fact that U is an M-hyponormal tuple, we may write

$$ \sum _{1\leq k,l\leq m}\left \langle \bigg(M^{2}\big(\mathcal{U}_{k}- \gamma _{k}\big)^{*}\big(\mathcal{U}_{l}-\gamma _{l}\big)-\big( \mathcal{U}_{l}-\gamma _{l}\big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \bigg)\omega _{k}\mid \omega _{l}\right \rangle \geq 0. $$
(2.2)

However, \({\mathbf{U}}^{*}\) is \(\frac{1}{M}\)-hyponormal, thus we may write without loss of generality

$$ \sum _{1\leq k,l\leq m}\left \langle \bigg(\frac{1}{M^{2}}\big( \mathcal{U}_{k}^{*}-\overline{\gamma _{k}}\big)^{*}\big(\mathcal{U}_{l}^{*}- \overline{\gamma _{l}}\big)-\big(\mathcal{U}_{l}^{*}- \overline{\gamma _{l}}\big)\big(\mathcal{U}_{k}^{*}- \overline{\gamma _{k}}\big)^{*}\bigg)\omega _{k}\mid \omega _{l} \right \rangle \geq 0. $$
(2.3)

Equation (2.3) can be written as

$$ \sum _{1\leq k,l\leq m}\left \langle \bigg(\frac{1}{M^{2}}\big( \mathcal{U}_{k}-\gamma _{k}\big)\big(\mathcal{U}_{l}-{\gamma _{l}} \big)^{*}-\big(\mathcal{U}_{l}-{\gamma _{l}}\big)^{*}\big(\mathcal{U}_{k}-{ \gamma _{k}}\big)\bigg)\omega _{k}\mid \omega _{l}\right \rangle \geq 0, $$
(2.4)

or

$$ \sum _{1\leq k,l\leq m}\left \langle \bigg({M^{2}}\big(\big( \mathcal{U}_{l}-{\gamma _{l}}\big)^{*}\big(\mathcal{U}_{k}-{\gamma _{k}} \big)-\big(\mathcal{U}_{k}-\gamma _{k}\big)\big(\mathcal{U}_{l}-{ \gamma _{l}}\big)^{*}\bigg)\omega _{k}\mid \omega _{l}\right \rangle \leq 0. $$
(2.5)

Choosing \(\omega _{j}=0\) for \(j\notin \{l,k\}\), we can get from (2.2) and (2.5) that

$$\begin{aligned} &\left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega _{k}\mid \omega _{k}\right \rangle \\ +&\left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega _{l}\mid \omega _{l}\right \rangle \\ +& \left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega _{k}\mid \omega _{l}\right \rangle \\ +& \left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega _{l}\mid \omega _{k}\right \rangle \geq 0 \end{aligned}$$

and

$$\begin{aligned} &\left \langle \bigg({M^{2}}\big(\big(\mathcal{U}_{l}-{\gamma _{l}} \big)^{*}\big(\mathcal{U}_{l}-{\gamma _{l}}\big)-\big(\mathcal{U}_{l}- \gamma _{l}\big)\big(\mathcal{U}_{l}-{\gamma _{l}}\big)^{*}\bigg) \omega _{l}\mid \omega _{l}\right \rangle \\ +& \left \langle \bigg({M^{2}}\big(\big(\mathcal{U}_{k}-{\gamma _{k}} \big)^{*}\big(\mathcal{U}_{k}-{\gamma _{k}}\big)-\big(\mathcal{U}_{k}- \gamma _{k}\big)\big(\mathcal{U}_{k}-{\gamma _{k}}\big)^{*}\bigg) \omega _{k}\mid \omega _{k}\right \rangle \\ +& \left \langle \bigg({M^{2}}\big(\big(\mathcal{U}_{l}-{\gamma _{l}} \big)^{*}\big(\mathcal{U}_{k}-{\gamma _{k}}\big)-\big(\mathcal{U}_{k}- \gamma _{k}\big)\big(\mathcal{U}_{l}-{\gamma _{l}}\big)^{*}\bigg) \omega _{l}\mid \omega _{k}\right \rangle \\ +& \left \langle \bigg({M^{2}}\big(\big(\mathcal{U}_{k}-{\gamma _{k}} \big)^{*}\big(\mathcal{U}_{l}-{\gamma _{l}}\big)-\big(\mathcal{U}_{l}- \gamma _{l}\big)\big(\mathcal{U}_{k}-{\gamma _{k}}\big)^{*}\bigg) \omega _{k}\mid \omega _{l}\right \rangle \leq 0, \end{aligned}$$

we find that

$$\begin{aligned} &\left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega _{k}\mid \omega _{k}\right \rangle \\ +&\left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega _{l}\mid \omega _{l}\right \rangle \\ +& \left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega _{k}\mid \omega _{l}\right \rangle \\ +& \left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega _{l}\mid \omega _{k}\right \rangle =0. \end{aligned}$$

Letting \(\omega _{k} = \omega _{l} = \omega \in \mathcal{K}\), we then see that

$$\begin{aligned} &\left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega \mid \omega \right \rangle \\ +&\left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega \mid \omega \right \rangle \\ +& \left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega \mid \omega \right \rangle \\ +& \left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega \mid \omega \right \rangle =0. \end{aligned}$$
(2.6)

Letting \(\omega _{k} = \omega \) and \(\omega _{k}= -\omega \in \mathcal{K,}\) we then see that

$$\begin{aligned} &\left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega \mid \omega \right \rangle \\ +&\left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega \mid \omega \right \rangle \\ -& \left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega \mid \omega \right \rangle \\ -& \left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega \mid \omega \right \rangle =0. \end{aligned}$$
(2.7)

By subtracting (2.6) and (2.7), we obtain

$$\begin{aligned} & \left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega \mid \omega \right \rangle \end{aligned}$$
(2.8)
$$\begin{aligned} +& \left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega \mid \omega \right \rangle =0. \end{aligned}$$
(2.9)

This gives

$$ \left \langle Re\bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega \mid \omega \right \rangle =0\quad \forall \;\omega \in \mathcal{K}. $$

Conversely, assume that

$$ \left \langle Re\bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega \mid \omega \right \rangle =0\quad \forall \;\omega \in \mathcal{K}, k,l=1, \ldots ,m. $$

We deduce that

$$\begin{aligned} & \left \langle \bigg(M^{2}\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \big(\mathcal{U}_{l}-\gamma _{l}\big)-\big(\mathcal{U}_{l}-\gamma _{l} \big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*}\bigg)\omega \mid \omega \right \rangle \\ +& \left \langle \bigg(M^{2}\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*} \big(\mathcal{U}_{k}-\gamma _{k}\big)-\big(\mathcal{U}_{k}-\gamma _{k} \big)\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\bigg)\omega \mid \omega \right \rangle \quad \forall \;\omega \in \mathcal{K}\quad k,l=1, \ldots ,m \\ =& 0. \end{aligned}$$

Let \(\omega _{1},\ldots , \omega _{m}\in \mathcal{K}\). We get

$$\begin{aligned} & \sum _{1\leq l,k \leq m}\left \langle \bigg(M^{2}\big(\mathcal{U}_{k}- \gamma _{k}\big)^{*}\big(\mathcal{U}_{l}-\gamma _{l}\big)-\big( \mathcal{U}_{l}-\gamma _{l}\big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \bigg)\omega _{k}\mid \omega _{l}\right \rangle \\ =& -\sum _{1\leq l,k \leq m}\left \langle \bigg(M^{2}\big( \mathcal{U}_{l}-\gamma _{l}\big)^{*}\big(\mathcal{U}_{k}-\gamma _{k} \big)-\big(\mathcal{U}_{k}-\gamma _{k}\big)\big(\mathcal{U}_{l}- \gamma _{l}\big)^{*}\bigg)\omega _{k}\mid \omega _{l}\right \rangle \\ =& M^{2}\sum _{1\leq l,k \leq m}\left \langle \bigg(\frac{1}{M^{2}} \big(\mathcal{U}_{k}-\gamma _{k}\big)\big(\mathcal{U}_{l}-\gamma _{l} \big)^{*}-\big(\mathcal{U}_{l}-\gamma _{l}\big)^{*}\big(\mathcal{U}_{k}- \gamma _{k}\big)\bigg)\omega _{k}\mid \omega _{l}\right \rangle \\ =& M^{2}\sum _{1\leq l,k \leq m}\left \langle \bigg(\frac{1}{M^{2}} \big(\mathcal{U}_{k}^{*}-\overline{\gamma _{k}}\big)^{*}\big( \mathcal{U}_{l}^{*}-\overline{\gamma _{l}}\big)^{*}-\big(\mathcal{U}_{l}^{*}- \overline{\gamma _{l}}\big)\big(\mathcal{U}_{k}^{*}- \overline{\gamma _{k}}\big)^{*}\bigg)\omega _{k}\mid \omega _{l} \right \rangle \\ \geq 0& \quad (\text{since}\; {\mathbf{U}}\;\text{is}\; M-\text{hyponormal tuple}). \end{aligned}$$

We must have

$$ \sum _{1\leq l,k \leq m}\left \langle \bigg(\frac{1}{M^{2}}\big( \mathcal{U}_{k}^{*}-\overline{\gamma _{k}}\big)^{*}\big(\mathcal{U}_{l}^{*}- \overline{\gamma _{l}}\big)^{*}-\big(\mathcal{U}_{l}^{*}- \overline{\gamma _{l}}\big)\big(\mathcal{U}_{k}^{*}- \overline{\gamma _{k}}\big)^{*}\bigg)\omega _{k}\mid \omega _{l} \right \rangle \geq 0 $$

for all \(\omega _{,}\cdots ,\omega _{m} \in \mathcal{K}\) and \((\gamma _{1},\ldots ,\gamma _{m})\in \mathbb{C}^{m}\). Therefore, we must have

$$ \sum _{1\leq l,k \leq m}\left \langle \bigg(\frac{1}{M^{2}}\big( \mathcal{U}_{k}^{*}-{\gamma _{k}}\big)^{*}\big(\mathcal{U}_{l}^{*}-{ \gamma _{l}}\big)^{*}-\big(\mathcal{U}_{l}^{*}-{\gamma _{l}}\big) \big(\mathcal{U}_{k}^{*}-{\gamma _{k}}\big)^{*}\bigg)\omega _{k}\mid \omega _{l}\right \rangle \geq 0 $$

for all \(\omega _{,}\cdots ,\omega _{m} \in \mathcal{K}\) and \((\gamma _{,}\cdots ,\gamma _{m})\in \mathbb{C}^{m}\). We conclude that \({\mathbf{U}}^{*}\) is \(\displaystyle \frac{1}{M}\)-hyponormal tuple. □

Theorem 2.3

Let \(N\in {\mathcal {B}}\big(\mathcal{K}\big)\) be an invertible operator and \({\mathbf{U}}=(\mathcal{U}_{1}\cdots ,\mathcal{U}_{m}) \in \mathcal{H}(\mathcal{H})^{m}\) be a tuple of operators such that each \(\mathcal{U}_{k}\) commutes with \({N}^{*}{N}\) for \(k=1,\ldots ,m\). Then \({\mathbf{U}}=(\mathcal{U}_{1}\cdots ,\mathcal{U}_{m})\) is an M-hyponormal tuple if and only if \({N}{\mathbf{U}}{N}^{-1}:=\big( {N}\mathcal{U}_{1}{N}^{-1},\ldots ,{N} \mathcal{U}_{m}{N}^{-1}\big)\) is an M-hyponormal tuple.

Proof

Assume that \({\mathbf{U}}=(\mathcal{U}_{1}, \ldots ,\mathcal{U}_{m})\) is an M-hyponormal tuple. We show that \({N}{\mathbf{U}}{N}^{-1}:=\big( {N}\mathcal{U}_{1}{N}^{-1},\ldots ,{N} \mathcal{U}_{m}{N}^{-1}\big)\) is an M-hyponormal tuple. In fact, let \(\omega _{1},\ldots ,\omega _{m} \in \mathcal{H}\) and \(\gamma =(\gamma _{1},\ldots ,\gamma _{m})\in \mathbb{C}^{m}\). We have

$$\begin{aligned} &\sum _{1\leq k,l\leq m}\left \langle \bigg(M^{2}\big(N\mathcal{U}_{k}N^{-1}- \gamma _{k}\big)^{*}\big(N\mathcal{U}_{l}N^{-1}-\gamma _{l}\big)\right.\\ &\left.\qquad {}- \big(N\mathcal{U}_{l}N^{-1}-\gamma _{l}\big)\big(N\mathcal{U}_{k}N^{-1}- \gamma _{k}\big)^{*}\bigg)\omega _{k}\mid \omega _{l}\right \rangle \\ =&\sum _{1\leq k,l\leq m}\left \langle N\bigg(M^{2}\big(\mathcal{U}_{k}- \gamma _{k}\big)^{*}\big(\mathcal{U}_{l}-\gamma _{l}\big)-\big( \mathcal{U}_{l}-\gamma _{l}\big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \bigg)N^{-1}\omega _{k}\mid \omega _{l}\right \rangle \\ =& \sum _{1\leq k,l\leq m}\left \langle N\bigg(M^{2}\big(\mathcal{U}_{k}- \gamma _{k}\big)^{*}\big(\mathcal{U}_{l}-\gamma _{l}\big)-\big( \mathcal{U}_{l}-\gamma _{l}\big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \bigg)N^{-1}\omega _{k}\mid NN^{-1}\omega _{l}\right \rangle \\ =& \sum _{1\leq k,l\leq m}\left \langle N^{*}N\bigg(M^{2}\big( \mathcal{U}_{k}-\gamma _{k}\big)^{*}\big(\mathcal{U}_{l}-\gamma _{l} \big)-\big(\mathcal{U}_{l}-\gamma _{l}\big)\big(\mathcal{U}_{k}- \gamma _{k}\big)^{*}\bigg)N^{-1}\omega _{k}\mid N^{-1}\omega _{l} \right \rangle \\ =& \sum _{1\leq k,l\leq m}\left \langle \bigg(M^{2}\big(\mathcal{U}_{k}- \gamma _{k}\big)^{*}\big(\mathcal{U}_{l}-\gamma _{l}\big)\right.\\ &\left.\qquad {}-\big( \mathcal{U}_{l}-\gamma _{l}\big)\big(\mathcal{U}_{k}-\gamma _{k}\big)^{*} \bigg)\sqrt{N^{*}N}N^{-1}\omega _{k}\mid \sqrt{N^{*}N}N^{-1}\omega _{l} \right \rangle \\ \geq &0. \end{aligned}$$

Conversely, assume that \({N}{\mathbf{U}}{N}^{-1}:=\big( {N}\mathcal{U}_{1}{N}^{-1},\ldots ,{N} \mathcal{U}_{m}{N}^{-1}\big)\) is an M-hyponormal tuple. Set \(\mathcal{V}_{k}=N\mathcal{U}_{k}N^{-1}\) for \(k=1, \ldots ,m\). We can check that each \(\mathcal{V}_{k}\) commutes with \(\big(N^{-1}\big)^{*}N^{-1}\) and moreover

$$ \big( N^{-1}\mathcal{V}_{1}(N^{-1})^{-1},\ldots , N^{-1}\mathcal{V}_{m}(N^{-1})^{-1} \big)=\big( N^{-1}\mathcal{V}_{1}N,\ldots , N^{-1}\mathcal{V}_{m}N \big)= \big(\mathcal{U}_{1},\ldots ,\mathcal{U}_{m}). $$

Based on the first statement, we have \(\big( N^{-1}\mathcal{V}_{1}N,\ldots , N^{-1}\mathcal{V}_{m}N\big)\) is an M-hyponormal tuple and so it shall be \(\big(\mathcal{U}_{1},\ldots ,\mathcal{U}_{m})\) is an M-hyponormal tuple. □

For \(\mathcal{U} \in \mathcal{B}(\mathcal{K})\), let \(\sigma _{p}(\mathcal{U})\) and \(\sigma _{a}(\mathcal{U})\) denote the point spectrum and approximate point spectrum of \(\mathcal{U}\). If \(\mu \in \sigma _{p}(\mathcal{U})\) and \(\overline{\mu} \in \sigma _{p}(\mathcal{U}^{*})\), then μ is in the joint point spectrum, \(\sigma _{jp}(\mathcal{U})\). If \(\mu \in \sigma _{a}(\mathcal{U})\) and \(\overline{\mu} \in \sigma _{a}(\mathcal{U}^{*})\), then we say that μ is in the joint approximate point spectrum, \(\sigma _{ja}(\mathcal{U})\).

Definition 2.1

([15]) Let \({\mathbf{U}}=(\mathcal{U}_{1},\ldots ,\mathcal{U}_{m})\) on \(\mathcal{H}\).

\((1)\) A point \(\gamma =(\gamma _{1},\ldots ,\gamma _{m})\in \mathbb{C}^{m}\) is called a joint point eigenvalue of U if there exists a non-zero vector \(\omega \in \mathcal{H}\) such that

$$ \big(\mathcal{U}_{k}-\gamma _{k}I_{\mathcal {H}}) \big)\omega =0\;\; \text{for}\;\;k=1,\ldots ,m, $$

or equivalently if

$$ \displaystyle \bigcap _{1\leq k\leq d}\ker (\mathcal{U}_{k}-\gamma _{k}) \neq\{0\}. $$

The joint point spectrum, denoted by \(\widetilde{{\sigma _{jp}}}({\mathbf{U}})\) is the set of all joint eigenvalues of U.

\((2)\) \(\gamma =(\gamma _{1},\ldots ,\gamma _{d})\in \mathbb{C}^{m}\) is in the joint approximate point spectrum \({\widetilde{\sigma _{jp}}}({\mathbf{U}})\) if and only if there exists a sequence of unit vector \((\omega _{n})_{n}\) such that

$$ \lim _{n\to \infty}\|\big(\mathcal{U}_{k} -\gamma _{k} ) \omega _{n} \| =0,\quad \;\;k=1,\ldots ,m. $$

It was proved that if \(\mathcal{U}\) is M-hyponormal operator then for all \(\gamma \in \sigma _{p}(\mathcal{U})\).

$$ \ker (\mathcal{U}-\gamma )\subset \ker (\mathcal{U}-\gamma )^{*}. $$

In the following proposition, we extend this result to M-hyponormal tuple of operators.

Proposition 2.2

Let \({\mathbf{U}}=\left ( \mathcal{U}_{1},\ldots ,\mathcal{U}_{m} \right ) \in {\mathcal {B}}\left ( {\mathcal {H}}\right )^{m}\) be an M-hyponormal tuple. Then

$$ \bigcap _{k=1}^{m}\ker \big(\mathcal{U}_{k}-\gamma _{k} \big)\subset \ker \bigg( \sum _{1\leq k \leq m}\big(\mathcal{U}_{k}-\gamma _{k} \big)^{*}\bigg) $$

for \((\gamma _{1},\ldots ,\gamma _{m})\in \mathbb{C}^{m}\).

Proof

Let \(\omega \in \displaystyle \bigcap _{k=1}^{m}\ker \big(\mathcal{U}_{k}- \gamma _{k} \big)\) and it follows that \(\big(\mathcal{U}_{k}-\gamma _{k} \big)\omega =0\) for \(k=1,\ldots ,m\). According to (2.1) we get \(- \bigg\|\displaystyle \sum _{1\leq k\leq m} \big(\mathcal{U}_{k}- \gamma _{k})^{*}\omega \bigg\|^{2}\geq 0\) and hence

$$ \sum _{1\leq k\leq m} \big(\mathcal{U}_{k}-\gamma _{k})^{*}\omega =0. $$

 □

Corollary 2.1

Let \({\mathbf{U}}=\left ( \mathcal{U}_{1},\ldots ,\mathcal{U}_{m} \right ) \in {\mathcal {B}}\left ( {\mathcal {H}}\right ) ^{m}\) be an M-hyponormal tuple. If \(\gamma =(\gamma _{1},\ldots , \gamma _{m})\in \widetilde{\sigma _{jp}}({\mathbf{U}})\), then \(\overline{\displaystyle \sum _{1\leq k \leq m}\gamma _{k}} \in \sigma _{p}\bigg( \displaystyle \sum _{1\leq k \leq m}\mathcal{U}_{k}^{*} \bigg)\).

Proof

Since U is M-hyponormal tuple and \((\gamma _{1},\ldots ,\gamma _{m})\in \widetilde{\sigma _{jp}}( \mathcal{U})\), it follows from Corollary 2.1 that

$$ \bigcap _{k=1}^{m}\ker \big(\mathcal{U}_{k}-\gamma _{k} \big)\subset \ker \bigg( \sum _{1\leq k \leq m}\big(\mathcal{U}_{k}-\gamma _{k} \big)^{*}\bigg). $$

 □

Corollary 2.2

Let \({\mathbf{U}}=\left ( \mathcal{U}_{1},\ldots ,\mathcal{U}_{m} \right ) \in {\mathcal {B}}\left ( {\mathcal {H}}\right )^{m}\) be an M-hyponormal tuple. If \(\gamma =(\gamma _{1},\ldots , \gamma _{m})\in \widetilde{\sigma _{jp}}({\mathbf{U}})\) and \(\gamma ^{\prime }=(\gamma _{1}^{\prime },\ldots ,\gamma _{m}^{ \prime })\in \widetilde{ \sigma _{jp}}(\mathbf{{U})}\) such that \(\displaystyle \sum _{1\leq k\leq m}\big(\gamma _{k}-\gamma _{k}^{ \prime })\neq0\). Then

$$ \bigcap _{k=1}^{m}\ker \big(\mathcal{U}_{k}-\gamma _{k} \big)\bot \bigcap _{k=1}^{m}\ker \big(\mathcal{U}_{k}-\gamma _{k}^{\prime } \big). $$

Proof

Since \(\gamma =(\gamma _{1},\ldots ,\gamma _{m})\in \widetilde{\sigma _{jp}}({\mathbf{U}})\) there exists \(\omega _{1} \in \mathcal{K}\) such that

$$ \big(\mathcal{U}_{k}-\gamma _{k})\omega _{1}=0 \quad k=1,\ldots ,m. $$

Similarly, \(\gamma ^{\prime }=(\gamma _{1}^{\prime },\ldots ,\gamma _{m}^{ \prime })\in \widetilde{\sigma _{jp}}({\mathbf{U}})\) there exists \(\omega _{2} \in \mathcal{K}\) such that

$$ \big(\mathcal{U}_{k}-\gamma _{k}^{\prime})\omega _{2}=0 \quad k=1, \ldots ,m. $$

Since U is M-hyponormal tuple, we get from Corollary 2.1 that

$$\begin{aligned} \displaystyle \sum _{1\leq k\leq m}\gamma _{k}\left \langle \omega _{1} \mid \omega _{2} \right \rangle =& \left \langle \displaystyle \sum _{1 \leq k\leq m}\gamma _{k} \omega _{1}\mid \omega _{2} \right \rangle \\ =& \left \langle \displaystyle \sum _{1\leq k\leq m}\mathcal{U}_{k} \omega _{1}\mid \omega _{2} \right \rangle \\ =& \left \langle \omega _{1}\mid \displaystyle \sum _{1\leq k\leq m} \mathcal{U}_{k}^{*} \omega _{2} \right \rangle \\ =& \left \langle \omega _{1}\mid \overline{\displaystyle \sum _{1\leq k\leq m}\gamma _{k}^{\prime}} \omega _{2} \right \rangle \\ =&{\displaystyle \sum _{1\leq k\leq m}\gamma _{k}^{\prime}} \left \langle \omega _{1}\mid \omega _{2} \right \rangle . \end{aligned}$$

It will be \(\displaystyle \sum _{1\leq k\leq m}\big(\gamma _{k}-\gamma _{k}^{ \prime}\big)\left \langle \omega _{1}\mid \omega _{2} \right \rangle =0 \) and so it shall be \(\left \langle \omega _{1}\mid \omega _{2} \right \rangle =0 \). □

Proposition 2.3

Let \({\mathbf{U}}=\left ( \mathcal{U}_{1},\ldots ,\mathcal{U}_{m} \right ) \in {\mathcal {B}}\left ( {\mathcal {H}}\right )^{m}\) be an M-hyponormal tuple. If \(\gamma =(\gamma _{1},\ldots ,\gamma _{m})\in \widetilde{\sigma _{ja}}({\mathbf{U}})\) and \(\gamma ^{\prime }=(\gamma _{1}^{\prime },\ldots ,\gamma _{m}^{ \prime })\in \widetilde{ \sigma _{ja}}(\mathbf{{U})}\) such that \(\displaystyle \sum _{1\leq k\leq m}\big(\gamma _{k}-\gamma _{k}^{ \prime })\neq0\). The following hold,

\((1)\) \(\overline{\displaystyle \sum _{1\leq k \leq m}\gamma _{k}} \in \sigma _{ap}\bigg( \displaystyle \sum _{1\leq k \leq m}\mathcal{U}_{k}^{*} \bigg)\).

\((2)\) If \((\omega _{n})_{n} \subset \mathcal{K} \) and \((\omega _{n}^{\prime})_{n} \subset \mathcal{K} \) such that \(\|\omega _{n}\|=\|\omega _{n}^{\prime}\|=1\) and

$$ \|\big(\mathcal{U}_{k}-\gamma _{k})\omega _{n}\big)\|\longrightarrow 0 \quad \|\big(\mathcal{U}_{k}-\gamma _{k}^{\prime})\omega _{n}^{\prime} \big)\|\longrightarrow 0 \quad k=1,\ldots ,m, $$

then

$$ \left \langle \omega _{n}\mid \omega _{n}^{\prime }\right \rangle \longrightarrow 0 \quad n\longrightarrow \infty . $$

Proof

The steps of the proof are similar to what was done in the Corolaries 2.1 and 2.2, so we left it. □

Theorem 2.4

([8]) Let \(\mathcal{H}\) be a complex Hilbert space. Then there exists a Hilbert space \(\mathcal{K} \supset \mathcal{H}\) and \(\psi : \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}( \mathcal{K})\) satisfying the following properties for every \(T,S \in \mathcal{B}(\mathcal{H}) \) and \(\varrho ,\mu \in \mathbb{C}\).

(1) \(\psi (T^{*})=\psi (T)^{*}\), \(\psi (I_{\mathcal{H}})=I_{\mathcal{K}}\), \(\psi (\varrho T+\mu S)=\varrho \psi (T)+\mu \psi (S)\).

(2) \(\psi (TS)=\psi (T)\psi (S)\), \(\|\psi (T)\|= \|T\|\), \(\psi (T)\geq \psi (S)\), for \(T\geq S\),

(3) \(\psi (T) \geq 0\) if \(T\geq 0\),

(4) \(\sigma _{a}(T)=\sigma _{a}(\psi (T))=\sigma _{p}(\psi (T))\),

(5) \(\sigma _{ja}(T)=\sigma _{jp}(\psi (T))\).

Theorem 2.5

Let \(\mathcal{U} \in \mathcal{B}(\mathcal{H})\) be an M-hyponormal. Then \(\sigma _{a}({\mathcal{U}})=\sigma _{ja}({ \mathcal{U}})\).

Proof

Since \(\mathcal{U}\) is M-hyponormal, we have

$$ \bigg(M^{2}(\mathcal{U}-\gamma )^{*}(\mathcal{U}-\gamma )- ( \mathcal{U}-\gamma )(\mathcal{U}-\gamma )^{*}\bigg)\geq 0 \quad \forall \; \gamma \in {\mathbb{C}}. $$
(2.10)

In view of Theorem 2.4, we have

$$\begin{aligned} &\bigg(M^{2}(\psi (\mathcal{U})-\gamma )^{*}(\psi (\mathcal{U})- \gamma )- (\psi (\mathcal{U})-\gamma )(\psi (\mathcal{U})-\gamma )^{*} \bigg) \\ =& \bigg(M^{2}(\psi (\mathcal{U}-\gamma )^{*}(\psi (\mathcal{U}- \gamma )- (\psi (\mathcal{U}-\gamma )(\psi (\mathcal{U}-\gamma )^{*} \bigg) \\ =& \psi \bigg(\bigg(M^{2}(\mathcal{U}-\gamma )^{*}(\mathcal{U}- \gamma )- (\mathcal{U}-\gamma )(\mathcal{U}-\gamma )^{*}\bigg)\bigg) \\ \geq &0 \big(\text{by Theorem 2.4 and} \;\;\;( 2.10) \big). \end{aligned}$$

Hence \(\psi (\mathcal{U})\) is an M-hyponormal.

From Theorem 2.4, we have \(\sigma _{a}(\mathcal{U})=\sigma _{p}(\psi (\mathcal{U}))\). Since \(\psi (\mathcal{U})\) is an M-hyponormal, we have \(\ker \big(\psi (\mathcal{U})-\mu \big)\subset \ker \big(\psi ( \mathcal{U})-\mu \big)^{*}\) (from [22, Proposition 2]). Hence \(\sigma _{p}(\psi (\mathcal{U}))=\sigma _{jp}(\psi (\mathcal{U}))\). According to Theorem 2.4, we have \(\sigma _{jp}(\psi (\mathcal{U}))=\sigma _{ja}(\mathcal{U})\). Hence \(\sigma _{a}(\mathcal{U})=\sigma _{ja}(\mathcal{U})\). □

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ahmad, N., Kamel, E.S., Mahmoud, O.A., Ahmed, S.: \((n_{1},\ldots , n_{d})\)-quasi-\((p, q)\)-isometric commuting tuple of operators. Filomat 37(28), 9531–9542 (2023). https://doi.org/10.2298/FIL2328531A

    Article  MathSciNet  Google Scholar 

  2. Ahmed, O.A.M.S., Alshammari, H.O.: Joint m-quasihyponormal on a Hilbert space. Ann. Funct. Anal. 12, 42 (2021). https://doi.org/10.1007/s43034-021-00130-z

    Article  MathSciNet  Google Scholar 

  3. AL-Dohiman, A.A., Mahmoud, O.A., Ahmed, S.: Class of Operators Related to \((m, C)\)-Isometric Tuple of commuting Operators. J. Inequal. Appl. (2022)

  4. Alshamari, H.O.: Higher order \((n,m)\)-Drazin normal operators. J. Inequal. Appl. 2024, 18 (2024)

    Article  MathSciNet  Google Scholar 

  5. Athavale, A.: On joint hyponormality of operators. Proc. Am. Math. Soc. 103(2), 417–423 (1988)

    Article  MathSciNet  Google Scholar 

  6. Baklouti, H., Feki, K., Mahmoud, O.A., Ahmed, S.: Joint numerical ranges of operators in semi- Hilbertian spaces. Linear Algebra Appl. 555, 266–284 (2018)

    Article  MathSciNet  Google Scholar 

  7. Baklouti, H., Feki, K., Mahmoud, O.A., Ahmed, S.: Joint normality of operators in semi-Hilbertian spaces, Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2019.1593925

  8. Berberian, S.K.: Approximate proper values. Proc. Am. Math. Soc. 13, 111–114 (1962)

    Article  Google Scholar 

  9. Braha, N.L., Lohaj, M., Marevci, F.H., Lohaj, S.: Some properties of paranormal and hyponormal operators. Bull. Math. Anal. Appl. 1(2), 23–35 (2009)

    MathSciNet  Google Scholar 

  10. Chō, M., Mahmoud, O.A., Ahmed, S.: \((A,m)\)-Symmetric commuting tuple of operators on a Hilbert space. J. Inequal. Appl. 22(3), 931–947 (2019)

    MathSciNet  Google Scholar 

  11. Chō, M., Motoyoshi, H., Nastovska, B.N.: On the joint spectra of commuting tuples of operators and a conjugation. Funct. Anal. Approx. Comput. 9(2), 21–26 (2017)

    MathSciNet  Google Scholar 

  12. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, Berlin (1990)

    Google Scholar 

  13. Gleason, J., Richter, S.: m-isometric commuting tuples of operators on a Hilbert space. Integral Equ. Oper. Theory 56(2), 181196 (2006)

    Article  MathSciNet  Google Scholar 

  14. Gu, C.: Examples of m-isometric tuples of operators on a Hilbert space. J. Korean Math. Soc. 55(1), 225251 (2018)

    MathSciNet  Google Scholar 

  15. Köllström, A., Sleeman, B.: Joint spectra of commuting operators. Proc. Edinb. Math. Soc. 28, 233–248 (1985)

    Article  MathSciNet  Google Scholar 

  16. Mahmoud Sid Ahmed, O.A., Chō, M., Lee, J.E.: On \((m, C)\)-isometric commuting tuples of operators on a Hilbert space. Results Math. 73(2), 31 (2018)

    MathSciNet  Google Scholar 

  17. Mecheri, S.: On the normality of operators. Revista Colombiana de Matemáticas Volumen 39, 87–95 (2005)

    MathSciNet  Google Scholar 

  18. Messaoud, G., El Moctar, O.B., Mahmoud, O.A., Ahmed, S.: Joint A-hyponormality of operators in semi-Hilbert spaces, Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2019.1698509

  19. Putnam, C.R.: On normal operators in Hilbert space. Am. J. Math. 73, 357362 (1951)

    Article  MathSciNet  Google Scholar 

  20. Shah, N.C., Sheth, I.H.: Some results on quasihyponormal operators. J. Indian Math. Soc. 39, 285–291 (1975)

    MathSciNet  Google Scholar 

  21. Stamofli, J.G.: Hyponormal Operatros. Pac. J. Math. 12(4) (1962)

  22. Wadhwa, B.L.: M–hyponormal operators. Duke Math. J. 41(3), 655–660 (1974). https://doi.org/10.1215/S0012-7094-74-04168-4

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the anonymous reviewers for their valuable comments and suggestions, which have helped improve the quality of our manuscript.

Funding

not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Ohud Bulayhan Almutairi: Conceptualization, Supervision, Writing - original draft, Writing - review and editing. Sid Ahmed Ould Ahmed Mahmoud: Conceptualization, Supervision, Writing - original draft, Writing - review and editing.

Corresponding author

Correspondence to Ohud Bulayhan Almutairi.

Ethics declarations

Ethics approval and consent to participate

not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almutairi, O.B., Mahmoud, S.A.O.A. M-hyponormality in several variables operator theory. J Inequal Appl 2024, 102 (2024). https://doi.org/10.1186/s13660-024-03182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03182-6

Mathematics Subject Classification

Keywords