Skip to main content

Table 4 The approximation error of \(S_{n,n}^{q_{n},q_{n}} ( h_{0} ) \) to \(h_{0}\) by means of the Lipschitz functions on \(I_{R}\) for \(n=1\times 10^{6}\)

From: Some inequalities and numerical results estimating error of approximation for tensor product kind bivariate quantum beta-type operators and pertaining to GBS variant

  θ = 0.1 × 10−5 θ = 0.1 × 10−4 θ = 0.1 × 10−3
\(\delta _{1}=\delta _{2}\) 0.6902146233 × 10−2 0.6902146233 × 10−2 0.6902146233 × 10−2
\(M_{h_{0}}\) 0.5517007928 × 10−1 0.5517502090 × 10−1 0.5522446144 × 10−1
\(E_{4} ( S_{n,n}^{q_{n},q_{n}} ( h_{0} ) ,h_{0} ) \) 0.5516953024 × 10−1 0.5516953024 × 10−1 0.5516953025 × 10−1