Skip to main content

Table 3 Numerical results of Example 4.8 for the initial points \(x_{0} = (1,-2,-1)^{T}\) and \(x_{1} = (-2,-1,2)^{T}\) using the algorithm in Theorem 4.6

From: The zeros of monotone operators for the variational inclusion problem in Hilbert spaces

Type

\(\lambda _{n}\) for L = 1

n

CPU (s)

\(x^{*}\)

\(\|x_{n+1}-x_{n}\|_{2}\)

A1

\(\frac{L}{10}\)

272

0.109

\((0.99999,-2.48737 \times 10^{-2335},2.00000)^{T}\)

9.92500 × 10−7

A2

\(L-\frac{L}{10}\)

44

0.047

\((0.99999,-1.47065 \times 10^{-351},1.99999)^{T}\)

9.79481 × 10−7

A3

L

45

0.032

\((0.99999, +6.39411 \times 10^{-360},1.99999)^{T}\)

9.89477 × 10−7

A4

\(L+\frac{L}{10}\)

47

0.031

\((0.99999, +1.13371 \times 10^{-376},1.99999)^{T}\)

9.29597 × 10−7

A5

\(2L-\frac{L}{10}\)

123

0.063

\((0.99999, +7.06031 \times 10^{-1032},1.99999)^{T}\)

8.86229 × 10−7

B1

\(\frac{Ln}{n+1}\)

45

0.016

\((0.99999, +2.30611 \times 10^{-353},1.99999)^{T}\)

9.60213 × 10−7

B2

\(\frac{L(n+2)}{n+1}\)

46

0.046

\((0.99999, -2.72090 \times 10^{-368},1.99999)^{T}\)

9.34783 × 10−7

C1

\(L+\frac{(-1)^{n} L}{n+1}\)

34

0.015

\((0.99998, +2.17358 \times 10^{-255},1.99998)^{T}\)

9.10791 × 10−7

C2

\(L+\frac{(-1)^{n+1}L}{n+1}\)

35

0.016

\((0.99998, +9.23665 \times 10^{-277},1.99998)^{T}\)

8.14783 × 10−7