Skip to main content

Table 1 Numerical results of Example 4.3 for the initial points \(x_{0} = (-1,0)^{T}\) and \(x_{1} = (0,1)^{T}\) using the algorithm in Theorem 4.1

From: The zeros of monotone operators for the variational inclusion problem in Hilbert spaces

Type

\(\lambda _{n}\) for L = α = 1/2

n

CPU (s)

\(x^{*}\)

\(\|x_{n+1}-x_{n}\|_{2}\)

A1

\(\frac{L}{10}\)

272

0.078

\((0.50000, 0.50000)^{T}\)

9.92819 × 10−7

A2

\(L-\frac{L}{10}\)

44

0.016

\((0.49999, 0.49999)^{T}\)

9.80129 × 10−7

A3

L

45

0.015

\((0.49999, 0.49999)^{T}\)

9.90160 × 10−7

A4

\(L+\frac{L}{10}\)

47

0.031

\((0.49999, 0.49999)^{T}\)

9.30295 × 10−7

A5

\(2\alpha -\frac{L}{10}\)

105

0.031

\((0.49999,0.49999 )^{T}\)

9.41142 × 10−7

B1

\(\frac{Ln}{n+1}\)

45

0.015

\((0.49999, 0.49999)^{T}\)

9.60866 × 10−7

B2

\(\frac{L(n+2)}{n+1}\)

46

0.015

\((0.49999, 0.49999)^{T}\)

9.35467 × 10−7

C1

\(L+\frac{(-1)^{n} L}{n+1}\)

34

0.016

\((0.49998, 0.49998)^{T}\)

9.09566 × 10−7

C2

\(L+\frac{(-1)^{n+1} L}{n+1}\)

35

0.016

\((0.49998, 0.49998)^{T}\)

8.13627 × 10−7