Skip to main content

Table 7 Optimal values of variables for upper bound \(f^{+}\)

From: Using concave optimization methods for inexact quadratic programming problems with an application to waste management

Time span (k) Facility type (i) Locality (j) Optimum waste allocation (tonnes)
1 1 1 \(x_{111}=0\)
2 \(x_{121}=250\)
3 \(x_{131}=200\)
2 1 \(x_{211}=350\)
2 \(x_{221}=0\)
3 \(x_{231}=150\)
2 1 1 \(x_{112}=0\)
2 \(x_{122}=165\)
3 \(x_{132}=350\)
2 1 \(x_{212}=400\)
2 \(x_{222}=100\)
3 \(x_{232}=0\)
3 1 1 \(x_{113}=0\)
2 \(x_{123}=285\)
3 \(x_{133}=361\)
2 1 \(x_{213}=440\)
2 \(x_{223}=0\)
3 \(x_{233}=39\)
  Upper bound \(f^{+}\) $473,418,686
\