Skip to main content

Table 6 Optimal values of variables for lower bound \(f^{-}\)

From: Using concave optimization methods for inexact quadratic programming problems with an application to waste management

Time span (k) Facility type (i) Locality (j) Optimum waste allocation (tonnes)
1 1 1 \(x_{111}=250\)
2 \(x_{121}=150\)
3 \(x_{131}=250\)
2 1 \(x_{211}=0\)
2 \(x_{221}=0\)
3 \(x_{231}=0\)
2 1 1 \(x_{112}=300\)
2 \(x_{122}=102\)
3 \(x_{132}=250\)
2 1 \(x_{212}=0\)
2 \(x_{222}=83\)
3 \(x_{232}=0\)
3 1 1 \(x_{113}=350\)
2 \(x_{123}=215\)
3 \(x_{133}=300\)
2 1 \(x_{213}=0\)
2 \(x_{223}=0\)
3 \(x_{233}=0\)
  Lower bound \(f^{-}\) $260,670,295
\