Skip to main content

Table 3 The smallest eigenvalue solved by Algorithm 3 and Algorithm 3M

From: Adaptive Morley element algorithms for the biharmonic eigenvalue problem

l \(N_{\mathrm{dof}}\) \(h_{l}\) \(\frac{h_{l}}{h_{l_{\min}}^{\alpha}}\) \(\lambda_{1,h_{l}}^{F}\) CPU(s) \(N_{\mathrm{dof}}\) \(h_{l}\) \(\frac{h_{l}}{h_{l_{\min}}^{\alpha}}\) \(\lambda_{1,h_{l}}^{FM}\) CPU(s)
1 2945 0.044 0.210 6333.637 0.086 2945 0.044 0.210 6333.637 0.086
2 2957 0.044 0.297 6373.503 0.137 2957 0.044 0.297 6373.503 0.137
3 3031 0.044 0.354 6538.971 0.187 3031 0.044 0.354 6538.971 0.187
4 3067 0.044 0.420 6443.737 0.244 3067 0.044 0.420 6443.737 0.245
5 3237 0.044 0.500 6489.761 0.299 3237 0.044 0.500 6489.761 0.300
6 3445 0.044 0.595 6523.466 0.358 3445 0.044 0.595 6523.466 0.360
7 3811 0.044 0.707 6566.620 0.423 3811 0.044 0.707 6566.620 0.426
8 4195 0.044 0.841 6595.431 0.496 4195 0.044 0.841 6595.431 0.498
9 4678 0.044 1.00 6597.955 0.577 4678 0.044 1.00 6597.955 0.581
10 5293 0.044 1.19 6607.441 0.670 5293 0.044 1.19 6607.441 0.696
11 6118 0.044 1.41 6623.248 0.779 25,297 0.022 0.841 6683.573 1.14
12 6997 0.044 1.68 6634.588 0.903 27,723 0.022 1.00 6686.324 1.62
13 8232 0.044 2.00 6648.804 1.05 30,933 0.022 1.19 6688.518 2.37
14 9527 0.044 2.38 6658.106 1.21 139,409 0.011 0.841 6700.069 5.85
15 11,102 0.044 2.83 6663.393 1.41 153,179 0.011 1.00 6701.996 9.71
16 12,928 0.044 3.36 6667.166 1.64 164,253 0.011 1.19 6701.274 15.2
17 15,139 0.044 4.00 6673.763 1.93 715,319 0.006 0.841 6702.994 38.2
18 17,619 0.044 4.76 6678.433 2.25 780,735 0.006 1.00 6703.096 63.8
19 20,763 0.044 5.66 6682.562 2.63 853,934 0.006 1.19 6703.205 100
20 24,365 0.044 6.73 6685.164 3.08 3,774,935 0.003 0.841 6703.503 231
21 28,967 0.044 8.00 6687.944 3.60 4,083,915 0.003 1.00 6703.538 372
22 34,068 0.044 9.51 6690.675 4.21
23 40,007 0.044 11.3 6692.914 4.97
24 47,117 0.044 13.5 6694.937 5.89
25 55,275 0.044 16.0 6696.294 6.98
26 64,407 0.044 19.0 6696.867 8.28
27 75,259 0.031 13.5 6697.823 9.85
28 88,357 0.031 16.0 6698.753 12.0
29 104,277 0.031 19.0 6699.461 14.6
30 123,275 0.031 22.6 6700.132 17.7
31 145,073 0.031 26.9 6700.784 21.4
32 170,409 0.022 22.6 6701.303 25.9
33 199,844 0.022 26.9 6701.644 31.2
34 235,273 0.022 26.9 6701.901 37.6
35 272,825 0.022 32.0 6702.117 45.7
36 319,389 0.022 38.1 6702.299 55.5
37 375,188 0.022 45.3 6702.459 67.4
38 443,902 0.022 53.8 6702.642 81.7
39 522,189 0.022 64.0 6702.815 98.8
40 612,931 0.022 76.1 6702.966 119
41 718,761 0.016 53.8 6703.061 143
42 844,127 0.016 64.0 6703.150 171
43 988,405 0.016 76.1 6703.208 205
44 1,149,526 0.016 90.5 6703.256 244
45 1,346,037 0.016 108 6703.295 291
46 1,583,069 0.016 128 6703.340 347
47 1,872,353 0.016 152 6703.381 412
48 2,194,659 0.011 108 6703.425 490
49 2,570,539 0.011 128 6703.458 580
50 3,008,669 0.011 152 6703.478 687
51 3,535,715 0.011 181 6703.498 813
52 4,118,331 0.011 215 6703.512 962